Citation: | Zhen Wang, Yiming Gong. Composition and Construction of High- and Low-Energy Ooid Shoals and Their Relationships with Environmental Changes: A Case Study from the Cambrian Zhangxia Formation in the Ordos Basin, North China. Journal of Earth Science, 2023, 34(1): 156-172. doi: 10.1007/s12583-020-1097-0 |
On the basis of systematic study of sedimentary facies, microfacies and geochemistry of measured strata sections and wells, the ooid shoals of the Cambrian Miaolingian Zhangxia Formation in the southern Ordos Basin are composed of both high- and low-energy ooid shoals. The characteristics of the high-energy shoals are sparry cementation, with moderate to well sorting, large grain size, high ooid content and low micrite, weak micritization, and well-preserved internal textures of the ooids. Macroscopically, the high-energy ooid shoals display a thick-bedded aggradational stacking pattern in upward coarsening and thickening sequences. The low-energy ooid shoals are mainly made up of micritic cementation, with moderate to poor sorting, relatively small grain size, lower ooid content and higher micrite, strong micritization, and poorly-preserved internal textures of the ooids. Macroscopically, the low-energy ooid shoals show a thin-bedded, interbedded stacking pattern in upward fining and thinning sequences. The sedimentological evidence and carbon isotope data show that the differences of internal fabric and sedimentary evolution of both high- and low-energy ooid shoals are closely related to the sea-level change.
Amour, F., Mutti, M., Christ, N., et al., 2013. Outcrop Analog for an Oolitic Carbonate Ramp Reservoir: a Scale-Dependent Geologic Modeling Approach Based on Stratigraphic Hierarchy. AAPG Bulletin, 97(5): 845–871. https://doi.org/10.1306/10231212039 |
Artyushkov, E. A., Lindström, M., Popov, L. E., 2000. Relative Sea-Level Changes in Baltoscandia in the Cumbrian and Early Ordovician: The Predominance of Tectonic Factors and the Absence of Large Scale Eustatic Fluctuations. Tectonophysics, 320(3/4): 375–407. https://doi.org/10.1016/S0040-1951(00)00038-X |
Bai, Y. L., Ma, Y. H., Huang, Y., et al., 2013. Properties of Continental Margin and Its Hydrocarbon Exploration Significance in Cambrian in the Southern Ordos Kratogen of North China. Acta Geologica Sinica - English Edition, 87(3): 777–803. https://doi.org/10.1111/1755-6724.12089 |
Brasier, M. D., 1982. Sea-Level Changes, Facies Changes and the Late Precambrian—Early Cambrian Evolutionary Explosion. Precambrian Research, 17(2): 105–123. https://doi.org/10.1016/0301-9268(82)90050-X |
Brehm, U., Krumbein, W. E., Palińska, K. A., 2003. Microbial Spheres: A Novel Cyanobacterial-Diatom Symbiosis. Naturwissenschaften, 90(3): 136–140. https://doi.org/10.1007/s00114-003-0403-x |
Brehm, U., Krumbein, W. E., Palinska, K. A., 2006. Biomicrospheres Generate Ooids in the Laboratory. Geomicrobiology Journal, 23(7): 545–550. https://doi.org/10.1080/01490450600897302 |
Chen, A. Q., 2010. Basin Evolution and Sediments Accumulation during Eopaleozoic in Ordos Continental Block: [Dissertation]. Chengdu University of Technology, Chengdu. 1–137 (in Chinese) |
Chen, L., Lu, Y. C., Fu, X. Y., et al., 2017. Oolitic Shoal Complexes Characterization of the Lower Triassic Feixianguan Formation in the Yuanba Gas Field, Northeast Sichuan Basin, China. Marine and Petroleum Geology, 83: 35–49. https://doi.org/10.1016/j.marpetgeo.2017.03.009 |
Chen, Q. L., Bai, Y. L., Liao, J. B., et al., 2015. Distribution Characteristics and Exploring Significance of Cambrian Source Rock in the Deep of Ordos Basin, China. Natural Gas Geoscience, 26(3): 397–407. https://doi.org/10.11764/j.issn.1672-1926.2015.03.0397 (in Chinese with English Abstract) |
Chen, Q. L., Bai, Y. L., Ma, Y. H., et al., 2013. Further Study on Lithofacies Palaeogeography and Sedimentary-Tectonic Evolution of Cambrian in Ordos Basin, North China. Journal of Jilin University (Earth Science Edition), 43(6): 1697–1715 (in Chinese with English Abstract) |
Chen, X. W., Mou, C. L., Ge, X. Y., et al., 2012. Distributing Characteristics and Controlling Factors for Oolitic Shoal of the Third Series of Cambrian in North China. Journal of Oil and Gas Technology, 34(11): 8–14, 166 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-9752.2012.11.002 |
Davies, P. J., Bubela, B., Ferguson, J., 1978. The Formation of Ooids. Sedimentology, 25(5): 703–730. https://doi.org/10.1111/j.1365-3091.1978.tb00326.x |
Diaz, M. R., Eberli, G. P., Blackwelder, P., et al., 2017. Microbially Mediated Organomineralization in the Formation of Ooids. Geology, 45(9): 771–774. https://doi.org/10.1130/g39159.1 |
Diaz, M. R., Swart, P. K., Eberli, G. P., et al., 2015. Geochemical Evidence of Microbial Activity within Ooids. Sedimentology, 62(7): 2090–2112. https://doi.org/10.1111/sed.12218 |
Drummond, C. N., Wilkinson, B. H., Lohmann, K. C., et al., 1993. Effect of Regional Topography and Hydrology on the Lacustrine Isotopic Record of Miocene Paleoclimate in the Rocky Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 101(1/2): 67–79. https://doi.org/10.1016/0031-0182(93)90152-9 |
Duguid, S. M. A., Kyser, T. K., James, N. P., et al., 2010. Microbes and Ooids. Journal of Sedimentary Research, 80(3): 236–251. https://doi.org/10.2110/jsr.2010.027 |
Dupraz, C., Visscher, P. T., 2005. Microbial Lithification in Marine Stromatolites and Hypersaline Mats. Trends in Microbiology, 13(9): 429–438. https://doi.org/10.1016/j.tim.2005.07.008 |
Edgcomb, V. P., Bernhard, J. M., Beaudoin, D., et al., 2013. Molecular Indicators of Microbial Diversity in Oolitic Sands of Highborne Cay, Bahamas. Geobiology, 11(3): 234–251. https://doi.org/10.1111/gbi.12029 |
Elrick, M., Rieboldt, S., Saltzman, M., et al., 2011. Oxygen-Isotope Trends and Seawater Temperature Changes across the Late Cambrian Steptoean Positive Carbon-Isotope Excursion (SPICE Event). Geology, 39(10): 987–990. https://doi.org/10.1130/g32109.1 |
Flügel, E., 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, Berlin. 203 |
Folk, R. L., Leo Lynch, F., 2001. Organic Matter, Putative Nannobacteria and the Formation of Ooids and Hardgrounds. Sedimentology, 48(2): 215–229. https://doi.org/10.1046/j.1365-3091.2001.00354.x |
Fouke, B. W., Schlager, W., Vandamme, M. G. M., et al., 2005. Basin-to-Platform Chemostratigraphy and Diagenesis of the Early Cretaceous Vercors Carbonate Platform, SE France. Sedimentary Geology, 175(1/2/3/4): 297–314. https://doi.org/10.1016/j.sedgeo.2004.12.020 |
Guo, Z. M., Zhang, J., Yu, Z. P., 1994. The Evolutional Characteristics of Structure of the Oil and Gas Bearing Areas in Ordos Massif. Petroleum Exploration and Development, 21(2): 22–29 (in Chinese with English Abstract) |
Heller, P. L., Komar, P. D., Pevear, D. R., 1980. Transport Processes in Ooid Genesis. SEPM Journal of Sedimentary Research, 50(3): 943–952. https://doi.org/10.1306/212f7b2b-2b24-11d7-8648000102c1865d |
Hou, F. H., Fang, S. X., Dong, Z. X., 2003. The Developmental Characters of Sedimentary Environments and Lithofacies of Middle Ordovician Majiagou Formation in Ordos Basin. Acta Sedimentologica Sinica, 21(1): 106–112. https://doi.org/10.1007/BF02873154 (in Chinese with English Abstract) |
Hu, R., Wang, W., Li, S. Q., et al., 2016. Sedimentary Environment of Ediacaran Sequences of South China: Trace Element and Sr-Nd Isotope Constraints. The Journal of Geology, 124(6): 769–789. https://doi.org/10.1086/688668 |
Huang, B. C., Zhou, Y. X., Zhu, R. X., 2008. Discussions on Phanerozoic Evolution and Formation of Continental China, Based on Paleomagnetic Studies. Earth Science Frontiers, 15(3): 348–359 (in Chinese with English Abstract) |
Jenkyns, H. C., Gale, A. S., Corfield, R. M., 1994. Carbon- and Oxygen-Isotope Stratigraphy of the English Chalk and Italian Scaglia and Its Palaeoclimatic Significance. Geological Magazine, 131(1): 1–34. https://doi.org/10.1017/s0016756800010451 |
Jia, Z. Y., Cai, Z. X., 1997. Evolution and Relation of the Early Paleozoic in the Southern Margin of Ordos and East Qinling: Use Concept of Mesosequence Review. Earth Science––Journal of China University of Geosciences, 22(5): 531–537 (in Chinese with English Abstract) |
Korte, C., Kozur, H. W., Veizer, J., 2005. δ13C and δ18O Values of Triassic Brachiopods and Carbonate Rocks as Proxies for Coeval Seawater and Palaeotemperature. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(3/4): 287–306. https://doi.org/10.1016/j.palaeo.2005.05.018 |
Lee, J. H., Chen, J. T., Chough, S. K., 2015. The Middle–Late Cambrian Reef Transition and Related Geological Events: A Review and New View. Earth-Science Reviews, 145: 66–84. https://doi.org/10.1016/j.earscirev.2015.03.002 |
Li, F., 2016. The Spatial and Temporal Distributions of Ooids and Their Petrological and Geochemical Composition: Implication for Paleoceanographic Conditions in the Permian-Triassic Transition: [Dissertation]. China University of Geosciences, Wuhan. 1–122 |
Li, F., Yan, J. X., Burne, R. V., et al., 2017. Paleo-Seawater REE Compositions and Microbial Signatures Preserved in Laminae of Lower Triassic Ooids. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 96–107. https://doi.org/10.1016/j.palaeo.2017.04.005 |
Li, W. H., Chen, Q., Li, Z. C., et al., 2012. Lithofacies Palaeogeography of the Early Paleozoic in Ordos Area. Journal of Palaeogeography, 14(1): 85–100 (in Chinese with English Abstract) |
Liu, Y. Q., Meng, X. H., Ge, M., 1999. The Sea-Level Change Forcing Cycles of Oolitic Carbonate and Cycloc-Hrological Applications. Chinese Journal of Geology (Scientia Geologica Sinica), 34(4): 442–450 (in Chinese with English Abstract) |
Luo, G. M., 2011. Microbial Geological Processes and the Associated Biogeochemical Cycles of Carbon, Nitrogen and Sulfur during the Permian–Triassic Crisis Interval: [Dissertation]. China University of Geosciences, Wuhan. 1–214 |
Ma, Y. S., Mei, M. X., Zhou, R. X., et al., 2017. Forming Patterns for the Oolitic Bank within the Sequence-Stratigraphic Framework: An Example from the Cambrian Series 3 at the Xiaweidian Section in the Western Suburb of Beijing. Acta Petrologica Sinica, 33(4): 1021–1036 (in Chinese with English Abstract) |
Mei, M. X., Latif, K., Meng, Q. F., et al., 2019. Cambrian Bioherms Dominated by Microbial Carbonate within the Oolitic Grainstone Bank, Zhangxia Formation of the Miaolingian, Zhucaoying Section in Qinhuangdao City of Hebei Province. Acta Geologica Sinica, 93(1): 227–251. https://doi.org/10.19762/j.cnki.dizhixuebao.2019013 (in Chinese with English Abstract) |
Mei, M. X., Ma, Y. S., Deng, J., et al., 2005. From Cycles to Sequences: Sequence Stratigraphy and Relative Sea Level Change for the Late Cambrian of the North China Platform. Acta Geologica Sinica: English Edition, 79(3): 372–383. https://doi.org/10.1111/j.1755-6724.2005.tb00902.x |
Melchin, M. J., Holmden, C., 2006. Carbon Isotope Chemostratigraphy in Arctic Canada: Sea-Level Forcing of Carbonate Platform Weathering and Implications for Hirnantian Global Correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(2/3/4): 186–200. https://doi.org/10.1016/j.palaeo.2005.10.009 |
Meyer, K. M., Kump, L. R., 2008. Oceanic Euxinia in Earth History: Causes and Consequences. Annual Review of Earth and Planetary Sciences, 36(1): 251–288. https://doi.org/10.1146/annurev.earth.36.031207.124256 |
Meyer, K. M., Yu, M., Jost, A. B., et al., 2011. δ13C Evidence that High Primary Productivity Delayed Recovery from End-Permian Mass Extinction. Earth and Planetary Science Letters, 302(3/4): 378–384. https://doi.org/10.1016/j.epsl.2010.12.033 |
Nie, S. Y., 1991. Paleoclimatic and Paleomagnetic Constraints on the Paleozoic Reconstructions of South China, North China and Tarim. Tectonophysics, 196(3/4): 279–308. https://doi.org/10.1016/0040-1951(91)90327-O |
O'Reilly, S. S., Mariotti, G., Winter, A. R., et al., 2017. Molecular Biosignatures Reveal Common Benthic Microbial Sources of Organic Matter in Ooids and Grapestones from Pigeon Cay, the Bahamas. Geobiology, 15(1): 112–130. https://doi.org/10.1111/gbi.12196 |
Osleger, D., Read, J. F., 1993. Comparative Analysis of Methods Used to Define Eustatic Variations in Outcrop; Late Cambrian Interbasinal Sequence Development. American Journal of Science, 293(3): 157–216. https://doi.org/10.2475/ajs.293.3.157 |
Pacton, M., Ariztegui, D., Wacey, D., et al., 2012. Going Nano: A New Step Toward Understanding the Processes Governing Freshwater Ooid Formation. Geology, 40(6): 547–550. https://doi.org/10.1130/g32846.1 |
Pomar, L., Aurell, M., Bádenas, B., et al., 2015. Depositional Model for a Prograding Oolitic Wedge, Upper Jurassic, Iberian Basin. Marine and Petroleum Geology, 67: 556–582. https://doi.org/10.1016/j.marpetgeo.2015.05.025 |
Pratt, B. R., Bordonaro, O. L., 2007. Tsunamis in a Stormy Sea: Middle Cambrian Inner-Shelf Limestones of Western Argentina. Journal of Sedimentary Research, 77(4): 256–262. https://doi.org/10.2110/jsr.2007.032 |
Qiao, Z. F., Janson, X., Shen, A. J., et al., 2016. Lithofacies, Architecture, and Reservoir Heterogeneity of Tidal-Dominated Platform Marginal Oolitic Shoal: An Analogue of Oolitic Reservoirs of Lower Triassic Feixianguan Formation, Sichuan Basin, SW China. Marine and Petroleum Geology, 76(2): 290–309. https://doi.org/10.1016/j.marpetgeo.2016.05.030 |
Rankey, E. C., 2014. Contrasts between Wave- and Tide-Dominated Oolitic Systems: Holocene of Crooked-Acklins Platform, Southern Bahamas. Facies, 60(2): 405–428. https://doi.org/10.1007/s10347-013-0385-x |
Rankey, E. C., Reeder, S. L., 2010. Controls on Platform-Scale Patterns of Surface Sediments, Shallow Holocene Platforms, Bahamas. Sedimentology, 57(6): 1545–1565. https://doi.org/10.1111/j.1365-3091.2010.01155.x |
Rankey, E. C., Reeder, S. L., 2011. Holocene Oolitic Marine Sand Complexes of the Bahamas. Journal of Sedimentary Research, 81(2): 97–117. https://doi.org/10.2110/jsr.2011.10 |
Rankey, E. C., Riegl, B., Steffen, K., 2006. Form, Function and Feedbacks in a Tidally Dominated Ooid Shoal, Bahamas. Sedimentology, 53(6): 1191–1210. https://doi.org/10.1111/j.1365-3091.2006.00807.x |
Reeder, S. L., Rankey, E. C., 2008. Interactions between Tidal Flows and Ooid Shoals, Northern Bahamas. Journal of Sedimentary Research, 78(3): 175–186. https://doi.org/10.2110/jsr.2008.020 |
Riding, R., Liang, L. Y., 2005. Geobiology of Microbial Carbonates: Metazoan and Seawater Saturation State Influences on Secular Trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1/2): 101–115. https://doi.org/10.1016/j.palaeo.2004.11.018 |
Royer, D. L., Berner, R. A., Beerling, D. J., 2001. Phanerozoic Atmospheric CO2 Change: Evaluating Geochemical and Paleobiological Approaches. Earth-Science Reviews, 54(4): 349–392. https://doi.org/10.1016/S0012-8252(00)00042-8 |
Rush, J. W., Rankey, E. C., 2017. Geostatistical Facies Modeling Trends for Oolitic Tidal Sand Shoals. AAPG Bulletin, 101(8): 1341–1379. https://doi.org/10.1306/09221616032 |
Saltzman, M. R., Ripperdan, R. L., Brasier, M. D., et al., 2000. A Global Carbon Isotope Excursion (SPICE) during the Late Cambrian: Relation to Trilobite Extinctions, Organic-Matter Burial and Sea Level. Palaeogeography, Palaeoclimatology, Palaeoecology, 162(3/4): 211–223. https://doi.org/10.1016/S0031-0182(00)00128-0 |
Sandberg, P. A., 1983. An Oscillating Trend in Phanerozoic Non-Skeletal Carbonate Mineralogy. Nature, 305(5929): 19–22. https://doi.org/10.1038/305019a0 |
Schiffbauer, J. D., Huntley, J. W., Fike, D. A., et al., 2017. Decoupling Biogeochemical Records, Extinction, and Environmental Change during the Cambrian SPICE Event. Science Advances, 3(3): e1602158. https://doi.org/10.1126/sciadv.1602158 |
Schildgen, T. F., Cosentino, D., Frijia, G., et al., 2014. Sea Level and Climate Forcing of the Sr Isotope Composition of Late Miocene Mediterranean Marine Basins. Geochemistry, Geophysics, Geosystems, 15(7): 2964–2983. https://doi.org/10.1002/2014GC005332 |
Sellwood, B. W., Beckett, D., 1991. Ooid Microfabrics: The Origin and Distribution of High Intra-Ooid Porosity; Mid-Jurassic Reservoirs, S. England. Sedimentary Geology, 71(3/4): 189–193. https://doi.org/10.1016/0037-0738(91)90101-I |
Shi, X. Y., Chen, J. Q., Mei, S. L., 1997. Cambrian Sequence Chronostratigraphic Framework of the North China Platform. Earth Science Frontiers, 4(3): 161–173 (in Chinese with English Abstract) http://www.researchgate.net/publication/313618866_Cambrian_sequence_chronostratigraphic_framework_of_the_North_China_Platform |
Shi, X. Y., Mei, S. L., Chen, J. Q., et al., 1999. Cambrian Sequence Stratigraphy and Sea Level Cycles of North China Platform. Journal of China University of Geosciences, 10(2): 372–383 |
Siahi, M., Hofmann, A., Master, S., et al., 2017. Carbonate Ooids of the Mesoarchaean Pongola Supergroup, South Africa. Geobiology, 15(6): 750–766. https://doi.org/10.1111/gbi.12249 |
Sparks, A. G., Rankey, E. C., 2013. Relations between Geomorphic Form and Sedimentologic-Stratigraphic Variability: Holocene Ooid Sand Shoal, Lily Bank, Bahamas. AAPG Bulletin, 97(1): 61–85. https://doi.org/10.1306/05101211125 |
Summons, R. E., Bird, L. R., Gillespie, A. L., et al., 2013. Lipid Biomarkers in Ooids from Different Locations and Ages: Evidence for a Common Bacterial Flora. Geobiology, 11(5): 420–436. https://doi.org/10.1111/gbi.12047 |
Sumner, D. Y., Grotzinger, J. P., 1993. Numerical Modeling of Ooid Size and the Problem of Neoproterozoic Giant Ooids. Journal of Sedimentary Petrology, 63(5): 974–982. https://doi.org/10.1306/d4267c5d-2b26-11d7-8648000102c1865d |
Tripati, A. K., Allmon, W. D., Sampson, D. E., 2009. Possible Evidence for a Large Decrease in Seawater Strontium/Calcium Ratios and Strontium Concentrations during the Cenozoic. Earth and Planetary Science Letters, 282(1/2/3/4): 122–130. https://doi.org/10.1016/j.epsl.2009.03.020 |
Tucker, M. E., 1984. Calcitic, Aragonitic and Mixed Calcitic-Aragonitic Ooids from the Mid-Proterozoic Belt Supergroup, Montana. Sedimentology, 31(5): 627–644. https://doi.org/10.1111/j.1365-3091.1984.tb01227.x |
Wan, T. F., Zhu, H., 2007. Positions and Kinematics of Chinese Continental Blocks in Reconstruction of Global Paleocontinents for Paleoziock and Triassic. Geoscience, 21(1): 1–13 (in Chinese with English Abstract) |
Wenzel, B., Joachimski, M. M., 1996. Carbon and Oxygen Isotopic Composition of Silurian Brachiopods (Gotland/Sweden): Palaeoceanographic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 122(1/2/3/4): 143–166. https://doi.org/10.1016/0031-0182(95)00094-1 |
Wilkinson, B. H., Buczynski, C., Owen, R. M., 1984. Chemical Control of Carbonate Phases-Implications from Upper Pennsylvanian Calcitearagonite Ooids of Southeastern Kansas. Journal of Sedimentary Petrology, 54(3): 932–947. https://doi.org/10.1306/212f853a-2b24-11d7-8648000102c1865d |
Wynn, T. C., Read, J. F., 2007. Carbon-Oxygen Isotope Signal of Mississippian Slope Carbonates, Appalachians, USA: A Complex Response to Climate-Driven Fourth-Order Glacio-Eustasy. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3/4): 254–272. https://doi.org/10.1016/j.palaeo.2007.02.033 |
Xiao, E. Z., Zafar, T., Latif, K., et al., 2020. Geochemical and Petrographic Analyses of the Cambrian Oncoids of the North China Platform: Implications for Their Paleogeography and Paleoenvironment. Arabian Journal for Science and Engineering, 45(1): 307–325. https://doi.org/10.1007/s13369-019-04146-5 |
Xiao, F., Wang, J. G., Wu, H. Y., et al., 2017. Cambrian Sequence Stratigraphic Framework in the Middle-Northern North China. Acta Petrolei Sinica, 38(10): 1144–1157, 1167. https://doi.org/10.7623/syxb201710005 (in Chinese with English Abstract) |
Xie, G. A., Zhang, Q. L., Guo, L. Z., 2003. The Genesis and Hydrocarbon Distribution of Western and Southern Margins of Paleozoic Foreland Basin and Central Paleouplift in Ordos Basin. Acta Petrolei Sinica, 24(2): 18–23, 29. https://doi.org/10.3321/j.issn:0253-2697.2003.02.004 (in Chinese with English Abstract) |
Yang, H., Xi, S. L., Wei, X. S., et al., 2006. Evolution and Natural Gas Enrichment of Multicycle Superimposed Basin in Ordos Basin. China Petroleum Exploration, 11(1): 17–24 (in Chinese with English Abstract) |
Yu, S. Y., He, J. Y., Yang, M. H., 1987. The Petrologic Study of Oolitic Limestone of Zhangxia Series of Middle Cambrian in Tangshan, Hebei. Earth Science, 12(3): 301–310, 334 (in Chinese with English Abstract) |
Zhang, C. L., Zhang, F. D., Zhu, Q. Y., et al., 2017. New Understanding of the Cambrian Palaeotectonic and Lithofacies Palaeogeography in the Ordos Craton Basin. Oil and Gas Geology, 38(2): 281–291 (in Chinese with English Abstract) |
Zhang, W. H., Shi, X. Y., Jiang, G. Q., et al., 2015. Mass-Occurrence of Oncoids at the Cambrian Series 2–Series 3 Transition: Implications for Microbial Resurgence Following an Early Cambrian Extinction. Gondwana Research, 28(1): 432–450. https://doi.org/10.1016/j.gr.2014.03.015 |
Zhang, Y. X., 2001. Diachronism of the Cambrian Strata on the North China Platform. Sedimentary Geology and Tethyan Geology, 21(1): 78–87 (in Chinese with English Abstract) |
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202. https://doi.org/10.1016/j.precamres.2004.10.002 |
Zhao, P. Y., Liu, B., Qin, S., 2011. The Third Series of Cambrian Oolitic Limestones and Their Sedimentary Environment in Beijing, Tianjin, Shanxi and Hebei Provinces, North China. Acta Scientiarum Naturalium Universitatis Pekinensis, 47(5): 825–830. https://doi.org/10.13209/j.0479-8023.2011.115 (in Chinese with English Abstract) |
Zhao, Y. Y., Zheng, Y. F., Chen, F. K., 2009. Trace Element and Strontium Isotope Constraints on Sedimentary Environment of Ediacaran Carbonates in Southern Anhui, South China. Chemical Geology, 265(3/4): 345–362. https://doi.org/10.1016/j.chemgeo.2009.04.015 |
Zhou, X. B., Li, J. H., Wang, H. H., et al., 2014. Reconstruction of Cambrian Global Paleo-Plates and Paleogeography. Marine Origin Petroleum Geology, 19(2): 1–7 (in Chinese with English Abstract) |