Citation: | Qigao Fan, Deng Liu, Dominic Papineau, Xuan Qiu, Hongmei Wang, Zhenbing She, Linduo Zhao. Precipitation of High Mg-Calcite and Protodolomite Using Dead Biomass of Aerobic Halophilic Bacteria. Journal of Earth Science, 2023, 34(2): 456-466. doi: 10.1007/s12583-020-1108-1 |
The microbial dolomite model has been used to interpret the origin of sedimentary dolomite. In this model, the formation of low-temperature protodolomite, an important precursor to sedimentary dolomite, can be facilitated either by actively metabolizing cells of anaerobic microbes and aerobic halophilic archaea or by their inactive biomass. Aerobic halophilic bacteria are widely distri-buted in (proto-)dolomite-depositing evaporitic environments and their biomass might serve as a template for the crystallization of protodolomite. To test this hypothesis, carbonation experiments were conducted using dead biomass of an aerobic halophilic bacterium (
Al Disi, Z. A., Jaoua, S., Bontognali, T. R. R., et al., 2017. Evidence of a Role for Aerobic Bacteria in High Magnesium Carbonate Formation in the Evaporitic Environment of Dohat Faishakh Sabkha in Qatar. Frontiers in Environmental Science, 5: Article 1. |
Alibrahim, A., Al-Gharabally, D., Mahmoud, H., et al., 2019. Proto-Dolomite Formation in Microbial Consortia Dominated by Halomonas Strains. Extremophiles, 23(6): 765–781. https://doi.org/10.1007/s0079 2-019-01135-2 doi: 10.1007/s00792-019-01135-2 |
Arvidson, R. S., 1999. The Dolomite Problem; Control of Precipitation Kinetics by Temperature and Saturation State. American Journal of Science, 299(4): 257–288. https://doi.org/10.2475/ajs.299.4.257 |
Bischoff, W. D., Bishop, F. C., Mackenzie, F. T., 1983. Biogenically Produced Magnesian Calcite: Inhomogeneities in Chemical and Physical Properties: Comparison with Synthetic Phases. American Mineralogist, 68(11): 1183–1188 |
Bontognali, T. R. R., McKenzie, J. A., Warthmann, R. J., et al., 2014. Microbially Influenced Formation of Mg-Calcite and Ca-Dolomite in the Presence of Exopolymeric Substances Produced by Sulphate-Reducing Bacteria. Terra Nova, 26(1): 72–77. https://doi.org/10.1111/ter.12072 |
Bontognali, T. R. R., Vasconcelos, C., Warthmann, R. J., et al., 2010. Dolomite Formation within Microbial Mats in the Coastal Sabkha of Abu Dhabi (United Arab Emirates). Sedimentology, 57: 824–844 doi: 10.1111/j.1365-3091.2009.01121.x |
Bontognali, T. R. R., Vasconcelos, C., Warthmann, R. J., et al., 2012. Dolomite-Mediating Bacterium Isolated from the Sabkha of Abu Dhabi (UAE). Terra Nova, 24(3): 248–254. https://doi.org/10.1111/j.1365-3121.2012.01065.x |
Daye, M., Higgins, J., Bosak, T., 2019. Formation of Ordered Dolomite in Anaerobic Photosynthetic Biofilms. Geology, 47(6): 509–512. https://doi.org/10.1130/g45821.1 |
Deng, S. C., Dong, H. L., Lü, G., et al., 2010. Microbial Dolomite Precipitation Using Sulfate Reducing and Halophilic Bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 278(3/4): 151–159. https://doi.org/10.1016/j.chemgeo.2010.09.008 |
Dodd, M. S., Papineau, D., Grenne, T., et al., 2017. Evidence for Early Life in Earth's Oldest Hydrothermal Vent Precipitates. Nature, 543(7643): 60–64. https://doi.org/10.1038/nature21377 |
Edwards, H. G. M., Jorge Villar, S. E., Jehlicka, J., et al., 2005. FT-Raman Spectroscopic Study of Calcium-Rich and Magnesium-Rich Carbonate Minerals. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy, 61(10): 2273–2280 doi: 10.1016/j.saa.2005.02.026 |
Gregg, J. M., Bish, D. L., Kaczmarek, S. E., et al., 2015. Mineralogy, Nucleation and Growth of Dolomite in the Laboratory and Sedimentary Environment: A Review. Sedimentology, 62(6): 1749–1769. https://doi.org/10.1111/sed.12202 |
Grenne, T., Slack, J. F., 2003. Bedded Jaspers of the Ordovician Løkken Ophiolite, Norway: Seafloor Deposition and Diagenetic Maturation of Hydrothermal Plume-Derived Silica-Iron Gels. Mineralium Deposita, 38(5): 625–639. https://doi.org/10.1007/s00126-003-0346-3 |
Huang, Y. R., Yao, Q. Z., Li, H., et al., 2019. Aerobically Incubated Bacterial Biomass-Promoted Formation of Disordered Dolomite and Implication for Dolomite Formation. Chemical Geology, 523: 19–30. https://doi.org/10.1016/j.chemgeo.2019.06.006 |
Jiao, D., King, C., Grossfield, A., et al., 2006. Simulation of Ca2+ and Mg2+ Solvation Using Polarizable Atomic Multipole Potential. The Journal of Physical Chemistry B, 110(37): 18553–18559. https://doi.org/10.10 21/jp062230r doi: 10.1021/jp062230r |
Kaczmarek, S. E., Thornton, B. P., 2017. The Effect of Temperature on Stoichiometry, Cation Ordering, and Reaction Rate in High-Temperature Dolomitization Experiments. Chemical Geology, 468: 32–41. https://doi.org/10.1016/j.chemgeo.2017.08.004 |
Kenward, P. A., Fowle, D. A., Goldstein, R. H., et al., 2013. Ordered Low-Temperature Dolomite Mediated by Carboxyl-Group Density of Microbial Cell Walls. AAPG Bulletin, 97(11): 2113–2125. https://doi.org/10.1306/05171312168 |
Kenward, P. A., Goldstein, R. H., González, L. A., et al., 2009. Precipitation of Low-Temperature Dolomite from an Anaerobic Microbial Consortium: The Role of Methanogenic Archaea. Geobiology, 7(5): 556–565. https://doi.org/10.1111/j.1472-4669.2009.00210.x |
Land, L., 1998. Failure to Precipitate Dolomite at 25 ℃ from Dilute Solution Despite 1 000 Fold Oversaturation After 32 Years. Aquatic Geochemistry, 4(3): 361–368. https://doi.org/10.1023/a:1009688315854 |
Li, Y. L., Zhao, L. M., Li, Z. Y., et al., 2018. Petrology of Garnet Amphibolites from the Hualong Group: Implications for Metamorphic Evolution of the Qilian Orogen, NW China. Journal of Earth Science, 29(5): 1102–1115. https://doi.org/10.1007/s12583-018-0850-0 |
Lian, B., Hu, Q. N., Chen, J., et al., 2006. Carbonate Biomineralization Induced by Soil Bacterium Bacillus Megaterium. Geochimica et Cosmochimica Acta, 70(22): 5522–5535. https://doi.org/10.1016/j.gc a.2006.08.044 doi: 10.1016/j.gca.2006.08.044 |
Liu, D., Fan, Q. G., Papineau, D., et al., 2020. Precipitation of Protodolomite Facilitated by Sulfate-Reducing Bacteria: The Role of Capsule Extracellular Polymeric Substances. Chemical Geology, 533: 119415. https://doi.org/10.1016/j.chemgeo.2019.119415 |
Liu, D., Yu, N., Papineau, D., et al., 2019a. The Catalytic Role of Planktonic Aerobic Heterotrophic Bacteria in Protodolomite Formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolia, China. Geochimica et Cosmochimica Acta, 263: 31–49. https://doi.org/10.1016/j.gca.2019. 07.056 doi: 10.1016/j.gca.2019.07.056 |
Liu, D., Xu, Y. Y., Papineau, D., et al., 2019b. Experimental Evidence for Abiotic Formation of Low-Temperature Proto-Dolomite Facilitated by Clay Minerals. Geochimica et Cosmochimica Acta, 247: 83–95. https://doi.org/10.1016/j.gca.2018.12.036 |
Malone, M. J., Baker, P. A., Burns, S. J., 1996. Recrystallization of Dolomite: an Experimental Study from. Geochimica et Cosmochimica Acta, 60(12): 2189–2207. https://doi.org/10.1016/0016-7037(96)00062-2 |
McKenzie, J., Vasconcelos, C., 2009. Dolomite Mountains and the Origin of the Dolomite Rock of which They Mainly Consist: Historical Developments and New Perspectives. Sedimentology, 56: 205–219 doi: 10.1111/j.1365-3091.2008.01027.x |
Nascimento, G. S., Eglinton, T. I., Haghipour, N., et al., 2019. Oceanographic and Sedimentological Influences on Carbonate Geochemistry and Mineralogy in Hypersaline Coastal Lagoons, Rio de Janeiro State, Brazil. Limnology and Oceanography, 64(6): 2605–2620. https://doi.org/10.1002/lno.11237 |
Ngia, N. R., Hu, M. Y., da Gao, et al., 2019. Application of Stable Strontium Isotope Geochemistry and Fluid Inclusion Microthermometry to Studies of Dolomitization of the Deeply Buried Cambrian Carbonate Successions in West-Central Tarim Basin, NW China. Journal of Earth Science, 30(1): 176–193. https://doi.org/10.1 007/s12583-017-0954-y doi: 10.1007/s12583-017-0954-y |
Papineau, D., de Gregorio, B., Fearn, S., et al., 2016. Nanoscale Petrographic and Geochemical Insights on the Origin of the Palaeoproterozoic Stromatolitic Phosphorites from Aravalli Supergroup, India. Geobiology, 14(1): 3–32. https://doi.org/10.1111/gbi.12164 |
Perrin, J., Vielzeuf, D., Laporte, D., et al., 2016. Raman Characterization of Synthetic Magnesian Calcites. American Mineralogist, 101(11): 2525–2538. https://doi.org/10.2138/am‐2016‐57 |
Petrash, D. A., Bialik, O. M., Bontognali, T. R. R., et al., 2017. Microbially Catalyzed Dolomite Formation: From Near-Surface to Burial. Earth-Science Reviews, 171: 558–582. https://doi.org/10.1016/j.earscirev.201 7.06.015 doi: 10.1016/j.earscirev.2017.06.015 |
Qiu, X., Wang, H. M., Yao, Y. C., et al., 2017. High Salinity Facilitates Dolomite Precipitation Mediated by Haloferax Volcanii DS52. Earth and Planetary Science Letters, 472: 197–205. https://doi.org/10.1016/j.epsl.2017.05.018 |
Roberts, J. A., Bennett, P. C., González, L. A., et al., 2004. Microbial Precipitation of Dolomite in Methanogenic Groundwater. Geology, 32(4): 277–280. https://doi.org/10.1130/g20246.2 |
Roberts, J. A., Kenward, P. A., Fowle, D. A., et al., 2013. Surface Chemistry Allows for Abiotic Precipitation of Dolomite at Low Temperature. Proceedings of the National Academy of Sciences of the United States of America, 110(36): 14540–14545. https://doi.org/10.1073/pnas.1305403 110 doi: 10.1073/pnas.1305403110 |
Rodriguez-Blanco, J. D., Shaw, S., Benning, L. G., 2015. A Route for the Direct Crystallization of Dolomite. American Mineralogist, 100(5/6): 1172–1181. https://doi.org/10.2138/am-2015-4963 |
Romanek, C. S., Jiménez-López, C., Navarro, A. R., et al., 2009. Inorganic Synthesis of Fe-Ca-Mg Carbonates at Low Temperature. Geochimica et Cosmochimica Acta, 73(18): 5361–5376. https://doi.org/10.1016/j.gca.2009.05.065 |
Rouillard, J., García-Ruiz, J. M., Gong, J., et al., 2018. A Morphogram for Silica-Witherite Biomorphs and Its Application to Microfossil Identification in the Early Earth Rock Record. Geobiology, 16(3): 279–296. https://doi.org/10.1111/gbi.12278 |
Sánchez-Román, M., McKenzie, J. A., de Luca Rebello Wagener, A., et al., 2009. Presence of Sulfate does not Inhibit Low-Temperature Dolomite Precipitation. Earth and Planetary Science Letters, 285(1/2): 131–139. https://doi.org/10.1016/j.epsl.2009.06.003 |
Sánchez-Román, M., Vasconcelos, C., Schmid, T., et al., 2008. Aerobic Microbial Dolomite at the Nanometer Scale: Implications for the Geologic Record. Geology, 36: 879–882. https://doi.org/10.1130/g2501 3a.1 doi: 10.1130/g25013a.1 |
Shen, Z. Z., Szlufarska, I., Brown, P. E., et al., 2015. Investigation of the Role of Polysaccharide in the Dolomite Growth at Low Temperature by Using Atomistic Simulations. Langmuir: The ACS Journal of Surfaces and Colloids, 31(38): 10435–10442. https://doi.org/10.1021/acs.langmuir.5b02025 |
Slaughter, M., Hill, R. J., 1991. The Influence of Organic Matter in Organogenic Dolomitization. Journal of Sedimentary Research, 61(2): 296–303. https://doi.org/10.1306/d42676f9-2b26-11d7-8648000102c1865d |
van Lith, Y., Warthmann, R., Vasconcelos, C., et al., 2003. Sulphate-Reducing Bacteria Induce Low-Temperature Ca-Dolomite and High Mg-Calcite Formation. Geobiology, 1(1): 71–79. https://doi.org/10.10 46/j.1472-4669.2003.00003.x doi: 10.1046/j.1472-4669.2003.00003.x |
Vasconcelos, C., McKenzie, J. A., Bernasconi, S., et al., 1995. Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures. Nature, 377(6546): 220–222. https://doi.org/10.10 38/377220a0 doi: 10.1038/377220a0 |
Wang, D. B., Wallace, A. F., de Yoreo, J. J., et al., 2009. Carboxylated Molecules Regulate Magnesium Content of Amorphous Calcium Carbonates during Calcification. Proceedings of the National Academy of Sciences of the United States of America, 106(51): 21511–21516. https://doi.org/10.1073/pnas.0906741106 |
Wang, R. C., Wang, H. M., Xiang, X., et al., 2018. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 29(4): 969–976. https://doi.org/10.1007/s12583-017-0818-5 |
Wang, X., Xu, X. X., Ye, Y., et al., 2019. In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties. Journal of Earth Science, 30(5): 964–976. https://doi.org/10.1007/s12583-019-1236-7 |
Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 52(1/2/3): 1–81. https://doi.org/10.1016/S0012-8252(00)00022-2 |
Wright, D. T., Wacey, D., 2005. Precipitation of Dolomite Using Sulphate-Reducing Bacteria from the Coorong Region, South Australia: Significance and Implications. Sedimentology, 52(5): 987–1008. https://doi.org/10.1111/j.1365-3091.2005.00732.x |
Xu, J., Yan, C., Zhang, F. F., et al., 2013. Testing the Cation-Hydration Effect on the Crystallization of Ca-Mg-CO3 Systems. Proceedings of the National Academy of Sciences of the United States of America, 110(44): 17750–17755. https://doi.org/10.1073/pnas.1307612110 |
Zhang, F., Xu, H., Konishi, H., et al., 2012. Polysaccharide-Catalyzed Nucleation and Growth of Disordered Dolomite: A Potential Precursor of Sedimentary Dolomite. American Mineralogist, 97(4): 556–567. https://doi.org/10.2138/am.2012.3979 |
Zhang, F., Xu, H., Shelobolina, E. S., et al., 2015. The Catalytic Effect of Bound Extracellular Polymeric Substances Excreted by Anaerobic Microorganisms on Ca-Mg Carbonate Precipitation: Implications for the "Dolomite Problem". American Mineralogist, 100(2/3): 483–494. https://doi.org/10.2138/am-2015-4999 |