Abbott, R. N. Jr., Post, J. E., Burnham, C. W., 1989. Treatment of the Hydroxyl in Structure-Energy Calculations. American Mineralogist, 74(1/2): 141-150 |
Bebout, G. E., 1997. Nitrogen Isotope Tracers of High-Temperature Fluid-Rock Interactions: Case Study of the Catalina Schist, California. Earth and Planetary Science Letters, 151(1/2): 77-90. https://doi.org/10.1016/s0012-821x(97)00117-9 |
Behr, W. M., Kotowski, A. J., Ashley, K. T., 2018. Dehydration-Induced Rheological Heterogeneity and the Deep Tremor Source in Warm Subduction Zones. Geology, 46(5): 475-478. https://doi.org/10.1130/g40105.1 |
Bradbury, S. E., Williams, Q., 2003. Contrasting Bonding Behavior of Two Hydroxyl-Bearing Metamorphic Minerals under Pressure: Clinozoisite and Topaz. American Mineralogist, 88(10): 1460-1470. https://doi.org/10.2138/am-2003-1010 |
Busigny, V., Cartigny, P., Philippot, P., et al., 2003. Ammonium Quantification in Muscovite by Infrared Spectroscopy. Chemical Geology, 198(1/2): 21-31. https://doi.org/10.1016/s0009-2541(02)00420-5 |
Chen, S. B., Guo, X. Z., Yoshino, T., et al., 2018. Dehydration of Phengite Inferred by Electrical Conductivity Measurements: Implication for the High Conductivity Anomalies Relevant to the Subduction Zones. Geology, 46(1): 11-14. https://doi.org/10.1130/g39716.1 |
Chibisov, A. N., 2011. Effect of Fluorine Additions on the Stability of Mg3Si4O10(OH)2: Computer Simulation. Glass Physics and Chemistry, 37(4): 441-444. https://doi.org/10.1134/s1087659611040043 |
Debret, B., Bolfan-Casanova, N., Padrón-Navarta, J. A., et al., 2015. Redox State of Iron during High-Pressure Serpentinite Dehydration. Contributions to Mineralogy and Petrology, 169(4): 36. https://doi.org/10.1007/s00410-015-1130-y |
Faust, J., Knittle, E., 1994. The Equation of State, Amorphization, and High-Pressure Phase Diagram of Muscovite. Journal of Geophysical Research: Solid Earth, 99(B10): 19785-19792. https://doi.org/10.1029/94jb01185 |
Ferrand, T. P., Hilairet, N., Incel, S., et al., 2017. Dehydration-Driven Stress Transfer Triggers Intermediate-Depth Earthquakes. Nature Communications, 8(1): 1-11. https://doi.org/10.1038/ncomms15247 |
Foley, S., 1991. High-Pressure Stability of the Fluor- and Hydroxy-Endmembers of Pargasite and K-Richterite. Geochimica et Cosmochimica Acta, 55(9): 2689-2694. https://doi.org/10.1016/0016-7037(91)90386-j |
Gasc, J., Brunet, F., Bagdassarov, N., et al., 2011. Electrical Conductivity of Polycrystalline Mg(OH)2 at 2 GPa: Effect of Grain Boundary Hydration-Dehydration. Physics and Chemistry of Minerals, 38(7): 543-556. https://doi.org/10.1007/s00269-011-0426-3 |
Gatta, G. D., McIntyre, G. J., Sassi, R., et al., 2011. Hydrogen-Bond and Cation Partitioning in Muscovite: A Single-Crystal Neutron-Diffraction Study at 295 and 20 K. American Mineralogist, 96(1): 34-41. https://doi.org/10.2138/am.2011.3595 |
Gautier, M., Muller, F., le Forestier, L., et al., 2010. NH4-Smectite: Characterization, Hydration Properties and Hydro Mechanical Behaviour. Applied Clay Science, 49(3): 247-254. https://doi.org/10.1016/j.clay.2010.05.013 |
Goryainov, S. V., Krylov, A. S., Polyansky, O. P., et al., 2017. In-situ Raman Study of Phengite Compressed in Water Medium under Simultaneously High P-T Parameters. Journal of Raman Spectroscopy, 48(11): 1431-1437. https://doi.org/10.1002/jrs.5112 |
Green, D. H., Hibberson, W. O., Kovács, I., et al., 2010. Water and Its Influence on the Lithosphere-Asthenosphere Boundary. Nature, 467: 448-451. https://doi.org/10.1038/nature09369 |
Grove, T. L., Till, C. B., Krawczynski, M. J., et al., 2012. The Role of H2O in Subduction Zone Magmatism. Annual Review of Earth and Planetary Sciences, 40(1): 413-439. https://doi.org/10.1146/annurev-earth-042711-105310 |
Grützner, T., Klemme, S., Rohrbach, A., et al., 2017. The Role of F-Clinohumite in Volatile Recycling Processes in Subduction Zones. Geology, 45(5): 443-446. https://doi.org/10.1130/g38788.1 |
Guo, X. Z., Yoshino, T., 2014. Pressure-Induced Enhancement of Proton Conduction in Brucite. Geophysical Research Letters, 41(3): 813-819. https://doi.org/10.1002/2013gl058627 |
Halama, R., Bebout, G. E., John, T., et al., 2014. Nitrogen Recycling in Subducted Mantle Rocks and Implications for the Global Nitrogen Cycle. International Journal of Earth Sciences, 103(7): 2081-2099. https://doi.org/10.1007/s00531-012-0782-3 |
Hall, A., 1999. Ammonium in Granites and Its Petrogenetic Significance. Earth-Science Reviews, 45(3/4): 145-165. https://doi.org/10.1016/s0012-8252(99)00006-9 |
Hattori, K. H., Guillot, S., 2003. Volcanic Fronts Form as a Consequence of Serpentinite Dehydration in the Forearc Mantle Wedge. Geology, 31(6): 525-528. https://doi.org/10.1130/0091-7613(2003)031<0525:vffaac<2.0.co;2 doi: 10.1130/0091-7613(2003)031<0525:vffaac<2.0.co;2 |
Hofmeister, A. M., Cynn, H., Burnley, P. C., et al., 1999. Vibrational Spectra of Dense, Hydrous Magnesium Silicates at High Pressure; Importance of the Hydrogen Bond Angle. American Mineralogist, 84(3): 454-464. https://doi.org/10.2138/am-1999-0330 |
Holtz, M., Solin, S. A., Pinnavaia, T. J., 1993. Effect of Pressure on the Raman Vibrational Modes of Layered Aluminosilicate Compounds. Physical Review B, 48(18): 13312-13317. https://doi.org/10.1103/physrevb.48.13312 |
Hu, Q. Y., Kim, D. Y., Liu, J., et al., 2017. Dehydrogenation of Goethite in Earth's Deep Lower Mantle. Proceedings of the National Academy of Sciences, 114(7): 1498-1501. https://doi.org/10.1073/pnas.1620644114 |
Hwang, H., Seoung, D., Lee, Y., et al., 2017. A Role for Subducted Super-Hydrated Kaolinite in Earth's Deep Water Cycle. Nature Geoscience, 10(12): 947-953. https://doi.org/10.1038/s41561-017-0008-1 |
John, T., Scambelluri, M., Frische, M., et al., 2011. Dehydration of Subducting Serpentinite: Implications for Halogen Mobility in Subduction Zones and the Deep Halogen Cycle. Earth and Planetary Science Letters, 308(1/2): 65-76. https://doi.org/10.1016/j.epsl.2011.05.038 |
Kendrick, M. A., Honda, M., Pettke, T., et al., 2013. Subduction Zone Fluxes of Halogens and Noble Gases in Seafloor and Forearc Serpentinites. Earth and Planetary Science Letters, 365: 86-96. https://doi.org/10.1016/j.epsl.2013.01.006 |
Kieffer, S. W., 1979. Thermodynamics and Lattice Vibrations of Minerals: 3. Lattice Dynamics and an Approximation for Minerals with Application to Simple Substances and Framework Silicates. Reviews of Geophysics, 17(1): 35-59. https://doi.org/10.1029/rg017i001p00035 |
Liang, J. -J., Hawthorne, F. C., 1998. Calculated H-Atom Positions in Micas and Clay Minerals. The Canadian Mineralogist, 36(6): 1577-1585 http://www.researchgate.net/profile/Frank_Hawthorne/publication/287839631_Calculated_H-atom_positions_in_micas_and_clay_minerals/links/56947f3a08ae820ff072c8c6.pdf |
Liu, W. D., Yang, Y., Busigny, V., et al., 2019. Intimate Link between Ammonium Loss of Phengite and the Deep Earth's Water Cycle. Earth and Planetary Science Letters, 513: 95-102. https://doi.org/10.1016/j.epsl.2019.02.022 |
Manthilake, G., Bolfan-Casanova, N., Novella, D., et al., 2016. Dehydration of Chlorite Explains Anomalously High Electrical Conductivity in the Mantle Wedges. Science Advances, 2(5): e1501631. https://doi.org/10.1126/sciadv.1501631 |
Mao, H. K., Bell, P. M., Shaner, J. W., et al., 1978. Specific Volume Measurements of Cu, Mo, Pd, and Ag and Calibration of the Ruby R1 Fluorescence Pressure Gauge from 0.06 to 1 Mbar. Journal of Applied Physics, 49(6): 3276-3283. https://doi.org/10.1063/1.325277 |
McKeown, D. A., Bell, M. I., Etz, E. S., 1999. Vibrational Analysis of the Dioctahedral Mica; 2M1 Muscovite. American Mineralogist, 84(7/8): 1041-1048. https://doi.org/10.2138/am-1999-7-806 |
Mibe, K., Fujii, T., Yasuda, A., 1999. Control of the Location of the Volcanic Front in Island Arcs by Aqueous Fluid Connectivity in the Mantle Wedge. Nature, 401(6750): 259-262. https://doi.org/10.1038/45762 |
Mookherjee, M., Redfern, S. A. T., 2002. A High-Temperature Fourier Transform Infrared Study of the Interlayer and Si-O-Stretching Region in Phengite-2M1. Clay Minerals, 37(2): 323-336. https://doi.org/10.1180/0009855023720036 |
Okazaki, K., Hirth, G., 2016. Dehydration of Lawsonite could Directly Trigger Earthquakes in Subducting Oceanic Crust. Nature, 530(7588): 81-84. https://doi.org/10.1038/nature16501 |
Ono, S., 1998. Stability Limits of Hydrous Minerals in Sediment and Mid-Ocean Ridge Basalt Compositions: Implications for Water Transport in Subduction Zones. Journal of Geophysical Research: Solid Earth, 103(B8): 18253-18267. https://doi.org/10.1029/98jb01351 |
Pagé, L., Hattori, K., de Hoog, J. C. M., et al., 2016. Halogen (F, Cl, Br, I) Behaviour in Subducting Slabs: A Study of Lawsonite Blueschists in Western Turkey. Earth and Planetary Science Letters, 442: 133-142. https://doi.org/10.1016/j.epsl.2016.02.054 |
Palya, A. P., Buick, I. S., Bebout, G. E., 2011. Storage and Mobility of Nitrogen in the Continental Crust: Evidence from Partially Melted Metasedimentary Rocks, Mt. Stafford, Australia. Chemical Geology, 281(3/4): 211-226. https://doi.org/10.1016/j.chemgeo.2010.12.009 |
Pawley, A. R., Jones, R. L., 2011. Hydroxyl Stretching in Phyllosilicates at High Pressures and Temperatures: An Infrared Spectroscopic Study. Physics and Chemistry of Minerals, 38(10): 753-765. https://doi.org/10.1007/s00269-011-0448-x |
Pérez-Rodríguez, J., Poyato, J., de Haro, M. C., et al., 2004. Thermal Decomposition of NH+ 4-Vermiculite from Santa Olalla (Huelva, Spain) and Its Relation to the Metal Ion Distribution in the Octahedral Sheet. Physics and Chemistry of Minerals, 31(7): 415-420. https://doi.org/10.1007/s00269-004-0406-y |
Ross, N. L., 1992. Lattice Vibration and Mineral Stability. In: Price, G. D., Ross, N. L., eds., The Stability of Minerals. Springer. 132-171 |
Rouxhet, P. G., 1970. Hydroxyl Stretching Bands in Micas: A Quantitative Interpretation. Clay Minerals, 8(4): 375-388. https://doi.org/10.1180/claymin.1970.008.4.02 |
Sadofsky, S. J., Bebout, G. E., 2000. Ammonium Partitioning and Nitrogen-Isotope Fractionation among Coexisting Micas during High-Temperature Fluid-Rock Interactions: Examples from the New England Appalachians. Geochimica et Cosmochimica Acta, 64(16): 2835-2849. https://doi.org/10.1016/s0016-7037(00)00393-8 |
Schmidt, M. W., 1996. Experimental Constraints on Recycling of Potassium from Subducted Oceanic Crust. Science, 272(5270): 1927-1930. https://doi.org/10.1126/science.272.5270.1927 |
Schmidt, M. W., Poli, S., 2014. 4.19-Devolatilization during Subduction. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry (Second Edition), Elsevier. 669-701 |
Schramke, J. A., Kerrick, D. M., Blencoe, J. G., 1982. Experimental Determination of the Brucite=Periclase+Water Equilibrium with a New Volumetric Technique. American Mineralogist, 67(3/4): 269-276 |
Scott, H. P., Liu, Z., Hemley, R. J., et al., 2007. High-Pressure Infrared Spectra of Talc and Lawsonite. American Mineralogist, 92(11/12): 1814-1820. https://doi.org/10.2138/am.2007.2430 |
Scott, H. P., Williams, Q., 1999. An Infrared Spectroscopic Study of Lawsonite to 20 GPa. Physics and Chemistry of Minerals, 26(6): 437-445. https://doi.org/10.1007/s002690050206 |
Serratosa, J. M., Bradley, W. F., 1958. Determination of the Orientation of OH Bond Axes in Layer Silicates by Infrared Absorption. The Journal of Physical Chemistry, 62(10): 1164-1167. https://doi.org/10.1021/j150568a003 |
Shinoda, K., Yamakata, M., Nanba, T., et al., 2002. High-Pressure Phase Transition and Behavior of Protons in Brucite Mg(OH)2: A High-Pressure-Temperature Study Using IR Synchrotron Radiation. Physics and Chemistry of Minerals, 29(6): 396-402. https://doi.org/10.1007/s00269-002-0243-9 |
Thompson, E. C., Campbell, A. J., Liu, Z. X., 2016. In-situ Infrared Spectroscopic Studies of Hydroxyl in Amphiboles at High Pressure. American Mineralogist, 101(3): 706-712. https://doi.org/10.2138/am-2016-5465 |
Tokiwai, K., Nakashima, S., 2010. Dehydration Kinetics of Muscovite by in situ Infrared Microspectroscopy. Physics and Chemistry of Minerals, 37(2): 91-101. https://doi.org/10.1007/s00269-009-0313-3 |
Trittschack, R., Grobety, B., Koch-Muller, M., 2012. In situ High-Temperature Raman and FTIR Spectroscopy of the Phase Transformation of Lizardite. American Mineralogist, 97(11/12): 1965-1976. https://doi.org/10.2138/am.2012.4162 |
Tuladhar, A., Chase, Z. A., Baer, M. D., et al., 2019. Direct Observation of the Orientational Anisotropy of Buried Hydroxyl Groups Inside Musco-vite Mica. Journal of the American Chemical Society, 141(5): 2135-2142. https://doi.org/10.1021/jacs.8b12483 |
van Keken, P. E., Hacker, B. R., Syracuse, E. M., et al., 2011. Subduction Factory: 4. Depth-Dependent Flux of H2O from Subducting Slabs Worldwide. Journal of Geophysical Research, 116:B01401. https://doi.org/10.1029/2010jb007922 |
Wallace, P. J., 2005. Volatiles in Subduction Zone Magmas: Concentrations and Fluxes Based on Melt Inclusion and Volcanic Gas Data. Journal of Volcanology and Geothermal Research, 140(1/2/3): 217-240. https://doi.org/10.1016/j.jvolgeores.2004.07.023 |
Williams, Q., Knittle, E., Scott, H. P., et al., 2012. The High-Pressure Behavior of Micas: Vibrational Spectra of Muscovite, Biotite, and Phlogopite to 30 GPa. American Mineralogist, 97(1): 241-252. https://doi.org/10.2138/am.2012.3824 |
Yang, Y., Busigny, V., Wang, Z. P., et al., 2017. The Fate of Ammonium in Phengite at High Temperature. American Mineralogist, 102(11): 2244-2253. https://doi.org/10.2138/am-2017-6094 |
Yokochi, R., Marty, B., Chazot, G., et al., 2009. Nitrogen in Peridotite Xenoliths: Lithophile Behavior and Magmatic Isotope Fractionation. Geochimica et Cosmochimica Acta, 73(16): 4843-4861. https://doi.org/10.1016/j.gca.2009.05.054 |
Zhang, M., 2006. Dehydroxylation, Proton Migration, and Structural Changes in Heated Talc: An Infrared Spectroscopic Study. American Mineralogist, 91(5/6): 816-825. https://doi.org/10.2138/am.2006.1945 |
Zhang, M., Redfern, S. A. T., Salje, E. K. H., et al., 2010. Thermal Behavior of Vibrational Phonons and Hydroxyls of Muscovite in Dehydroxylation: In situ High-Temperature Infrared Spectroscopic Investigations. American Mineralogist, 95(10): 1444-1457. https://doi.org/10.2138/am.2010.3472 |
Zhang, M., Salje, E. K. H., Carpenter, M. A., et al., 2007. Temperature Dependence of IR Absorption of Hydrous/hydroxyl Species in Minerals and Synthetic Materials. American Mineralogist, 92(8/9): 1502-1517. https://doi.org/10.2138/am.2007.2586 |