Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 5
Oct 2021
Turn off MathJax
Article Contents
Weihua Huang, Yan Yang, Zeming Qi, Wendi Liu, Zhongping Wang, Yan Liu, Qunke Xia. Ammonium Impacts on Vibrations of Hydroxyl and Lattice of Phengite at High Temperature and High Pressure. Journal of Earth Science, 2021, 32(5): 1278-1286. doi: 10.1007/s12583-020-1113-4
Citation: Weihua Huang, Yan Yang, Zeming Qi, Wendi Liu, Zhongping Wang, Yan Liu, Qunke Xia. Ammonium Impacts on Vibrations of Hydroxyl and Lattice of Phengite at High Temperature and High Pressure. Journal of Earth Science, 2021, 32(5): 1278-1286. doi: 10.1007/s12583-020-1113-4

Ammonium Impacts on Vibrations of Hydroxyl and Lattice of Phengite at High Temperature and High Pressure

doi: 10.1007/s12583-020-1113-4
More Information
  • Corresponding author: Yan Yang, yanyang2005@zju.edu.cn
  • Received Date: 11 Aug 2020
  • Accepted Date: 07 Nov 2020
  • Publish Date: 01 Oct 2021
  • Dehydration in hydrous phases of the downgoing slab controls water release processes in subduction zones. Interplay between volatiles in hydrous minerals has complicated the previous knowledge of their dehydration. Phengite is an essential mineral carrying both hydrogen and nitrogen to the deep Earth. To further understand the link between nitrogen and dehydration process of phengite at an atomic level, we here carry out high temperature and high pressure vibrational spectroscopic investigations on hydroxyl and lattice of ammonium-bearing and ammonium-free phengites. The results show that heating to 800 ℃ hardly influences hydroxyl bonding strength, whereas pressure induces strengthening of hydrogen bonding until 10 GPa. Moreover, hydrogen transits between the sites with increasing temperature and pressure. The lattice modes soften with increasing temperature and stiffen under compression. Ammonium has no effect on hydroxyl bonding strength, but hinders hydrogen transition at high temperatures and high pressures. Ammonium does not influence the lattice at high pressures either, but delays softening of the lattice at high temperatures. These data unveil behavior of hydroxyl and lattice in phengite at high temperature and high pressure, and also evaluate ammonium impacts, shedding new lights on dehydration processes of phengite during subduction.

     

  • loading
  • Abbott, R. N. Jr., Post, J. E., Burnham, C. W., 1989. Treatment of the Hydroxyl in Structure-Energy Calculations. American Mineralogist, 74(1/2): 141-150
    Bebout, G. E., 1997. Nitrogen Isotope Tracers of High-Temperature Fluid-Rock Interactions: Case Study of the Catalina Schist, California. Earth and Planetary Science Letters, 151(1/2): 77-90. https://doi.org/10.1016/s0012-821x(97)00117-9
    Behr, W. M., Kotowski, A. J., Ashley, K. T., 2018. Dehydration-Induced Rheological Heterogeneity and the Deep Tremor Source in Warm Subduction Zones. Geology, 46(5): 475-478. https://doi.org/10.1130/g40105.1
    Bradbury, S. E., Williams, Q., 2003. Contrasting Bonding Behavior of Two Hydroxyl-Bearing Metamorphic Minerals under Pressure: Clinozoisite and Topaz. American Mineralogist, 88(10): 1460-1470. https://doi.org/10.2138/am-2003-1010
    Busigny, V., Cartigny, P., Philippot, P., et al., 2003. Ammonium Quantification in Muscovite by Infrared Spectroscopy. Chemical Geology, 198(1/2): 21-31. https://doi.org/10.1016/s0009-2541(02)00420-5
    Chen, S. B., Guo, X. Z., Yoshino, T., et al., 2018. Dehydration of Phengite Inferred by Electrical Conductivity Measurements: Implication for the High Conductivity Anomalies Relevant to the Subduction Zones. Geology, 46(1): 11-14. https://doi.org/10.1130/g39716.1
    Chibisov, A. N., 2011. Effect of Fluorine Additions on the Stability of Mg3Si4O10(OH)2: Computer Simulation. Glass Physics and Chemistry, 37(4): 441-444. https://doi.org/10.1134/s1087659611040043
    Debret, B., Bolfan-Casanova, N., Padrón-Navarta, J. A., et al., 2015. Redox State of Iron during High-Pressure Serpentinite Dehydration. Contributions to Mineralogy and Petrology, 169(4): 36. https://doi.org/10.1007/s00410-015-1130-y
    Faust, J., Knittle, E., 1994. The Equation of State, Amorphization, and High-Pressure Phase Diagram of Muscovite. Journal of Geophysical Research: Solid Earth, 99(B10): 19785-19792. https://doi.org/10.1029/94jb01185
    Ferrand, T. P., Hilairet, N., Incel, S., et al., 2017. Dehydration-Driven Stress Transfer Triggers Intermediate-Depth Earthquakes. Nature Communications, 8(1): 1-11. https://doi.org/10.1038/ncomms15247
    Foley, S., 1991. High-Pressure Stability of the Fluor- and Hydroxy-Endmembers of Pargasite and K-Richterite. Geochimica et Cosmochimica Acta, 55(9): 2689-2694. https://doi.org/10.1016/0016-7037(91)90386-j
    Gasc, J., Brunet, F., Bagdassarov, N., et al., 2011. Electrical Conductivity of Polycrystalline Mg(OH)2 at 2 GPa: Effect of Grain Boundary Hydration-Dehydration. Physics and Chemistry of Minerals, 38(7): 543-556. https://doi.org/10.1007/s00269-011-0426-3
    Gatta, G. D., McIntyre, G. J., Sassi, R., et al., 2011. Hydrogen-Bond and Cation Partitioning in Muscovite: A Single-Crystal Neutron-Diffraction Study at 295 and 20 K. American Mineralogist, 96(1): 34-41. https://doi.org/10.2138/am.2011.3595
    Gautier, M., Muller, F., le Forestier, L., et al., 2010. NH4-Smectite: Characterization, Hydration Properties and Hydro Mechanical Behaviour. Applied Clay Science, 49(3): 247-254. https://doi.org/10.1016/j.clay.2010.05.013
    Goryainov, S. V., Krylov, A. S., Polyansky, O. P., et al., 2017. In-situ Raman Study of Phengite Compressed in Water Medium under Simultaneously High P-T Parameters. Journal of Raman Spectroscopy, 48(11): 1431-1437. https://doi.org/10.1002/jrs.5112
    Green, D. H., Hibberson, W. O., Kovács, I., et al., 2010. Water and Its Influence on the Lithosphere-Asthenosphere Boundary. Nature, 467: 448-451. https://doi.org/10.1038/nature09369
    Grove, T. L., Till, C. B., Krawczynski, M. J., et al., 2012. The Role of H2O in Subduction Zone Magmatism. Annual Review of Earth and Planetary Sciences, 40(1): 413-439. https://doi.org/10.1146/annurev-earth-042711-105310
    Grützner, T., Klemme, S., Rohrbach, A., et al., 2017. The Role of F-Clinohumite in Volatile Recycling Processes in Subduction Zones. Geology, 45(5): 443-446. https://doi.org/10.1130/g38788.1
    Guo, X. Z., Yoshino, T., 2014. Pressure-Induced Enhancement of Proton Conduction in Brucite. Geophysical Research Letters, 41(3): 813-819. https://doi.org/10.1002/2013gl058627
    Halama, R., Bebout, G. E., John, T., et al., 2014. Nitrogen Recycling in Subducted Mantle Rocks and Implications for the Global Nitrogen Cycle. International Journal of Earth Sciences, 103(7): 2081-2099. https://doi.org/10.1007/s00531-012-0782-3
    Hall, A., 1999. Ammonium in Granites and Its Petrogenetic Significance. Earth-Science Reviews, 45(3/4): 145-165. https://doi.org/10.1016/s0012-8252(99)00006-9
    Hattori, K. H., Guillot, S., 2003. Volcanic Fronts Form as a Consequence of Serpentinite Dehydration in the Forearc Mantle Wedge. Geology, 31(6): 525-528. https://doi.org/10.1130/0091-7613(2003)031<0525:vffaac<2.0.co;2 doi: 10.1130/0091-7613(2003)031<0525:vffaac<2.0.co;2
    Hofmeister, A. M., Cynn, H., Burnley, P. C., et al., 1999. Vibrational Spectra of Dense, Hydrous Magnesium Silicates at High Pressure; Importance of the Hydrogen Bond Angle. American Mineralogist, 84(3): 454-464. https://doi.org/10.2138/am-1999-0330
    Holtz, M., Solin, S. A., Pinnavaia, T. J., 1993. Effect of Pressure on the Raman Vibrational Modes of Layered Aluminosilicate Compounds. Physical Review B, 48(18): 13312-13317. https://doi.org/10.1103/physrevb.48.13312
    Hu, Q. Y., Kim, D. Y., Liu, J., et al., 2017. Dehydrogenation of Goethite in Earth's Deep Lower Mantle. Proceedings of the National Academy of Sciences, 114(7): 1498-1501. https://doi.org/10.1073/pnas.1620644114
    Hwang, H., Seoung, D., Lee, Y., et al., 2017. A Role for Subducted Super-Hydrated Kaolinite in Earth's Deep Water Cycle. Nature Geoscience, 10(12): 947-953. https://doi.org/10.1038/s41561-017-0008-1
    John, T., Scambelluri, M., Frische, M., et al., 2011. Dehydration of Subducting Serpentinite: Implications for Halogen Mobility in Subduction Zones and the Deep Halogen Cycle. Earth and Planetary Science Letters, 308(1/2): 65-76. https://doi.org/10.1016/j.epsl.2011.05.038
    Kendrick, M. A., Honda, M., Pettke, T., et al., 2013. Subduction Zone Fluxes of Halogens and Noble Gases in Seafloor and Forearc Serpentinites. Earth and Planetary Science Letters, 365: 86-96. https://doi.org/10.1016/j.epsl.2013.01.006
    Kieffer, S. W., 1979. Thermodynamics and Lattice Vibrations of Minerals: 3. Lattice Dynamics and an Approximation for Minerals with Application to Simple Substances and Framework Silicates. Reviews of Geophysics, 17(1): 35-59. https://doi.org/10.1029/rg017i001p00035
    Liang, J. -J., Hawthorne, F. C., 1998. Calculated H-Atom Positions in Micas and Clay Minerals. The Canadian Mineralogist, 36(6): 1577-1585 http://www.researchgate.net/profile/Frank_Hawthorne/publication/287839631_Calculated_H-atom_positions_in_micas_and_clay_minerals/links/56947f3a08ae820ff072c8c6.pdf
    Liu, W. D., Yang, Y., Busigny, V., et al., 2019. Intimate Link between Ammonium Loss of Phengite and the Deep Earth's Water Cycle. Earth and Planetary Science Letters, 513: 95-102. https://doi.org/10.1016/j.epsl.2019.02.022
    Manthilake, G., Bolfan-Casanova, N., Novella, D., et al., 2016. Dehydration of Chlorite Explains Anomalously High Electrical Conductivity in the Mantle Wedges. Science Advances, 2(5): e1501631. https://doi.org/10.1126/sciadv.1501631
    Mao, H. K., Bell, P. M., Shaner, J. W., et al., 1978. Specific Volume Measurements of Cu, Mo, Pd, and Ag and Calibration of the Ruby R1 Fluorescence Pressure Gauge from 0.06 to 1 Mbar. Journal of Applied Physics, 49(6): 3276-3283. https://doi.org/10.1063/1.325277
    McKeown, D. A., Bell, M. I., Etz, E. S., 1999. Vibrational Analysis of the Dioctahedral Mica; 2M1 Muscovite. American Mineralogist, 84(7/8): 1041-1048. https://doi.org/10.2138/am-1999-7-806
    Mibe, K., Fujii, T., Yasuda, A., 1999. Control of the Location of the Volcanic Front in Island Arcs by Aqueous Fluid Connectivity in the Mantle Wedge. Nature, 401(6750): 259-262. https://doi.org/10.1038/45762
    Mookherjee, M., Redfern, S. A. T., 2002. A High-Temperature Fourier Transform Infrared Study of the Interlayer and Si-O-Stretching Region in Phengite-2M1. Clay Minerals, 37(2): 323-336. https://doi.org/10.1180/0009855023720036
    Okazaki, K., Hirth, G., 2016. Dehydration of Lawsonite could Directly Trigger Earthquakes in Subducting Oceanic Crust. Nature, 530(7588): 81-84. https://doi.org/10.1038/nature16501
    Ono, S., 1998. Stability Limits of Hydrous Minerals in Sediment and Mid-Ocean Ridge Basalt Compositions: Implications for Water Transport in Subduction Zones. Journal of Geophysical Research: Solid Earth, 103(B8): 18253-18267. https://doi.org/10.1029/98jb01351
    Pagé, L., Hattori, K., de Hoog, J. C. M., et al., 2016. Halogen (F, Cl, Br, I) Behaviour in Subducting Slabs: A Study of Lawsonite Blueschists in Western Turkey. Earth and Planetary Science Letters, 442: 133-142. https://doi.org/10.1016/j.epsl.2016.02.054
    Palya, A. P., Buick, I. S., Bebout, G. E., 2011. Storage and Mobility of Nitrogen in the Continental Crust: Evidence from Partially Melted Metasedimentary Rocks, Mt. Stafford, Australia. Chemical Geology, 281(3/4): 211-226. https://doi.org/10.1016/j.chemgeo.2010.12.009
    Pawley, A. R., Jones, R. L., 2011. Hydroxyl Stretching in Phyllosilicates at High Pressures and Temperatures: An Infrared Spectroscopic Study. Physics and Chemistry of Minerals, 38(10): 753-765. https://doi.org/10.1007/s00269-011-0448-x
    Pérez-Rodríguez, J., Poyato, J., de Haro, M. C., et al., 2004. Thermal Decomposition of NH+ 4-Vermiculite from Santa Olalla (Huelva, Spain) and Its Relation to the Metal Ion Distribution in the Octahedral Sheet. Physics and Chemistry of Minerals, 31(7): 415-420. https://doi.org/10.1007/s00269-004-0406-y
    Ross, N. L., 1992. Lattice Vibration and Mineral Stability. In: Price, G. D., Ross, N. L., eds., The Stability of Minerals. Springer. 132-171
    Rouxhet, P. G., 1970. Hydroxyl Stretching Bands in Micas: A Quantitative Interpretation. Clay Minerals, 8(4): 375-388. https://doi.org/10.1180/claymin.1970.008.4.02
    Sadofsky, S. J., Bebout, G. E., 2000. Ammonium Partitioning and Nitrogen-Isotope Fractionation among Coexisting Micas during High-Temperature Fluid-Rock Interactions: Examples from the New England Appalachians. Geochimica et Cosmochimica Acta, 64(16): 2835-2849. https://doi.org/10.1016/s0016-7037(00)00393-8
    Schmidt, M. W., 1996. Experimental Constraints on Recycling of Potassium from Subducted Oceanic Crust. Science, 272(5270): 1927-1930. https://doi.org/10.1126/science.272.5270.1927
    Schmidt, M. W., Poli, S., 2014. 4.19-Devolatilization during Subduction. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry (Second Edition), Elsevier. 669-701
    Schramke, J. A., Kerrick, D. M., Blencoe, J. G., 1982. Experimental Determination of the Brucite=Periclase+Water Equilibrium with a New Volumetric Technique. American Mineralogist, 67(3/4): 269-276
    Scott, H. P., Liu, Z., Hemley, R. J., et al., 2007. High-Pressure Infrared Spectra of Talc and Lawsonite. American Mineralogist, 92(11/12): 1814-1820. https://doi.org/10.2138/am.2007.2430
    Scott, H. P., Williams, Q., 1999. An Infrared Spectroscopic Study of Lawsonite to 20 GPa. Physics and Chemistry of Minerals, 26(6): 437-445. https://doi.org/10.1007/s002690050206
    Serratosa, J. M., Bradley, W. F., 1958. Determination of the Orientation of OH Bond Axes in Layer Silicates by Infrared Absorption. The Journal of Physical Chemistry, 62(10): 1164-1167. https://doi.org/10.1021/j150568a003
    Shinoda, K., Yamakata, M., Nanba, T., et al., 2002. High-Pressure Phase Transition and Behavior of Protons in Brucite Mg(OH)2: A High-Pressure-Temperature Study Using IR Synchrotron Radiation. Physics and Chemistry of Minerals, 29(6): 396-402. https://doi.org/10.1007/s00269-002-0243-9
    Thompson, E. C., Campbell, A. J., Liu, Z. X., 2016. In-situ Infrared Spectroscopic Studies of Hydroxyl in Amphiboles at High Pressure. American Mineralogist, 101(3): 706-712. https://doi.org/10.2138/am-2016-5465
    Tokiwai, K., Nakashima, S., 2010. Dehydration Kinetics of Muscovite by in situ Infrared Microspectroscopy. Physics and Chemistry of Minerals, 37(2): 91-101. https://doi.org/10.1007/s00269-009-0313-3
    Trittschack, R., Grobety, B., Koch-Muller, M., 2012. In situ High-Temperature Raman and FTIR Spectroscopy of the Phase Transformation of Lizardite. American Mineralogist, 97(11/12): 1965-1976. https://doi.org/10.2138/am.2012.4162
    Tuladhar, A., Chase, Z. A., Baer, M. D., et al., 2019. Direct Observation of the Orientational Anisotropy of Buried Hydroxyl Groups Inside Musco-vite Mica. Journal of the American Chemical Society, 141(5): 2135-2142. https://doi.org/10.1021/jacs.8b12483
    van Keken, P. E., Hacker, B. R., Syracuse, E. M., et al., 2011. Subduction Factory: 4. Depth-Dependent Flux of H2O from Subducting Slabs Worldwide. Journal of Geophysical Research, 116:B01401. https://doi.org/10.1029/2010jb007922
    Wallace, P. J., 2005. Volatiles in Subduction Zone Magmas: Concentrations and Fluxes Based on Melt Inclusion and Volcanic Gas Data. Journal of Volcanology and Geothermal Research, 140(1/2/3): 217-240. https://doi.org/10.1016/j.jvolgeores.2004.07.023
    Williams, Q., Knittle, E., Scott, H. P., et al., 2012. The High-Pressure Behavior of Micas: Vibrational Spectra of Muscovite, Biotite, and Phlogopite to 30 GPa. American Mineralogist, 97(1): 241-252. https://doi.org/10.2138/am.2012.3824
    Yang, Y., Busigny, V., Wang, Z. P., et al., 2017. The Fate of Ammonium in Phengite at High Temperature. American Mineralogist, 102(11): 2244-2253. https://doi.org/10.2138/am-2017-6094
    Yokochi, R., Marty, B., Chazot, G., et al., 2009. Nitrogen in Peridotite Xenoliths: Lithophile Behavior and Magmatic Isotope Fractionation. Geochimica et Cosmochimica Acta, 73(16): 4843-4861. https://doi.org/10.1016/j.gca.2009.05.054
    Zhang, M., 2006. Dehydroxylation, Proton Migration, and Structural Changes in Heated Talc: An Infrared Spectroscopic Study. American Mineralogist, 91(5/6): 816-825. https://doi.org/10.2138/am.2006.1945
    Zhang, M., Redfern, S. A. T., Salje, E. K. H., et al., 2010. Thermal Behavior of Vibrational Phonons and Hydroxyls of Muscovite in Dehydroxylation: In situ High-Temperature Infrared Spectroscopic Investigations. American Mineralogist, 95(10): 1444-1457. https://doi.org/10.2138/am.2010.3472
    Zhang, M., Salje, E. K. H., Carpenter, M. A., et al., 2007. Temperature Dependence of IR Absorption of Hydrous/hydroxyl Species in Minerals and Synthetic Materials. American Mineralogist, 92(8/9): 1502-1517. https://doi.org/10.2138/am.2007.2586
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(194) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return