Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67-95. https://doi.org/10.1016/s0377-0273(00)00182-7 |
Aldanmaz, E., Yaliniz, M. K., Güctekin, A., et al., 2008. Geochemical Characteristics of Mafic Lavas from the Neotethyan Ophiolites in Western Turkey: Implications for Heterogeneous Source Contribution during Variable Stages of Ocean Crust Generation. Geological Magazine, 145(1): 37-54 doi: 10.1017/S0016756807003986 |
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x |
Berman, R. G., Pehrsson, S., Davis, W. J., et al., 2013. The Arrowsmith Orogeny: Geochronological and Thermobarometric Constraints on Its Extent and Tectonic Setting in the Rae Craton, with Implications for Pre-Nuna Supercontinent Reconstruction. Precambrian Research, 232: 44-69. https://doi.org/10.1016/j.precamres.2012.10.015 |
Bodet, F., Schärer, U., 2000. Evolution of the SE-Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircon and Baddeleyite from Large Rivers. Geochimica et Cosmochimica Acta, 64(12): 2067-2091. https://doi.org/10.1016/s0016-7037(00)00352-5 |
Castillo, P. R., 2008. Origin of the Adakite-High-Nb Basalt Association and Its Implications for Postsubduction Magmatism in Baja California, Mexico. Geological Society of America Bulletin, 120(3/4): 451-462. https://doi.org/10.1130/b26166.1 |
Castillo, P. R., 2009. Origin of Nb-Enriched Basalts and Adakites in Baja California, Mexico, Revisited: Reply. Geological Society of America Bulletin, 121(9/10): 1470-1472. https://doi.org/10.1130/b30044.1 |
Castillo, P. R., Rigby, S. J., Solidum, R. U., 2007. Origin of High Field Strength Element Enrichment in Volcanic Arcs: Geochemical Evidence from the Sulu Arc, Southern Philippines. Lithos, 97(3/4): 271-288. https://doi.org/10.1016/j.lithos.2006.12.012 |
Castillo, P. R., Solidum, R. U., Punongbayan, R. S., 2002. Origin of High Field Strength Element Enrichment in the Sulu Arc, Southern Philippines, Revisited. Geology, 30(8): 707. https://doi.org/10.1130/0091-7613(2002)030 < 0707:oohfse > 2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0707:oohfse>2.0.co;2 |
Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186: 173-194. https://doi.org/10.1016/j.earscirev.2017.06.001 |
Cen, Y., Peng, S. B., Kusky, T. M., et al., 2012. Granulite Facies Metamorphic Age and Tectonic Implications of BIFs from the Kongling Group in the Northern Huangling Anticline. Journal of Earth Science, 23(5): 648-658. https://doi.org/10.1007/s12583-012-0286-x |
Chen, W. T., Zhou, M. F., Zhao, X. F., 2013. Late Paleoproterozoic Sedimentary and Mafic Rocks in the Hekou Area, SW China: Implication for the Reconstruction of the Yangtze Block in Columbia. Precambrian Research, 231: 61-77. https://doi.org/10.1016/j.precamres.2013.03.011 |
Condie, K. C., O'Neill, C., Aster, R. C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters, 282(1/2/3/4): 294-298. https://doi.org/10.1016/j.epsl.2009.03.033 |
Cui, X. Z., Wang, J., Sun, Z. M., et al., 2019. Early Paleoproterozoic (ca. 2.36 Ga) Post-Collisional Granitoids in Yunnan, SW China: Implications for Linkage between Yangtze and Laurentia in the Columbia Supercontinent. Journal of Asian Earth Sciences, 169: 308-322. https://doi.org/10.1016/j.jseaes.2018.10.026 |
Diwu, C. R., Sun, Y., Zhao, Y., et al., 2014. Early Paleoproterozoic (2.45-2.20 Ga) Magmatic Activity during the Period of Global Magmatic Shutdown: Implications for the Crustal Evolution of the Southern North China Craton. Precambrian Research, 255: 627-640. https://doi.org/10.1016/j.precamres.2014.08.001 |
Dos Santos, T. J. S., Fetter, A. H., van Schmus, W. R., et al., 2009. Evidence for 2.35 to 2.30 Ga Juvenile Crustal Growth in the Northwest Borborema Province, NE Brazil. Geological Society, London, Special Publications, 323(1): 271-281. https://doi.org/10.1144/sp323.13 |
Eriksson, P. G., Condie, K. C., 2014. Cratonic Sedimentation Regimes in the ca. 2 450-2 000 Ma Period: Relationship to a Possible Widespread Magmatic Slowdown on Earth?. Gondwana Research, 25(1): 30-47. https://doi.org/10.1016/j.gr.2012.08.005 |
French, J. E., Heaman, L. M., 2010. Precise U-Pb Dating of Paleoproterozoic Mafic Dyke Swarms of the Dharwar Craton, India: Implications for the Existence of the Neoarchean Supercraton Sclavia. Precambrian Research, 183(3): 416-441. https://doi.org/10.1016/j.precamres.2010.05.003 |
French, J. E., Heaman, L. M., Chacko, T., 2002. Feasibility of Chemical U-Th-Total Pb Baddeleyite Dating by Electron Microprobe. Chemical Geology, 188(1/2): 85-104. https://doi.org/10.1016/s0009-2541(02)00074-8 |
Gao, S., Ling, W. L., Qiu, Y. M., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13/14): 2071-2088. https://doi.org/10.1016/s0016-7037(99)00153-2 |
Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2): 153-182. https://doi.org/10.2475/02.2011.03 |
Gong, S. L., Chen, N. S., Geng, H. Y., et al., 2014. Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 25(1): 74-86. https://doi.org/10.1007/s12583-014-0401-2 |
Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5): 1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065 |
Greentree, M. R., Li, Z. X., 2008. The Oldest Known Rocks in South-Western China: SHRIMP U-Pb Magmatic Crystallisation Age and Detrital Provenance Analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33(5/6): 289-302. https://doi.org/10.1016/j.jseaes.2008.01.001 |
Guo, J. L., Gao, S., Wu, Y. B., et al., 2014. 3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242: 82-95. https://doi.org/10.1016/j.precamres.2013.12.018 |
Han, Q. S., Peng, S. B., Polat, A., et al., 2018. A ca. 2.1 Ga Andean-Type Margin Built on Metasomatized Lithosphere in the Northern Yangtze Craton, China: Evidence from High-Mg Basalts and Andesites. Precambrian Research, 309: 309-324. https://doi.org/10.1016/j.precamres.2017.05.015 |
Hartlaub, R. P., Heaman, L. M., Chacko, T., et al., 2007. Circa 2.3‐Ga Magmatism of the Arrowsmith Orogeny, Uranium City Region, Western Churchill Craton, Canada. The Journal of Geology, 115(2): 181-195. https://doi.org/10.1086/510641 |
Hastie, A. R., Mitchell, S. F., Kerr, A. C., et al., 2011. Geochemistry of Rare High-Nb Basalt Lavas: Are they Derived from a Mantle Wedge Metasomatised by Slab Melts?. Geochimica et Cosmochimica Acta, 75(17): 5049-5072. https://doi.org/10.1016/j.gca.2011.06.018 |
He, C., Gong, S. L., Wang, L., et al., 2018. Protracted Post-Collisional Magmatism during Plate Subduction Shutdown in Early Paleoproterozoic: Insights from Post-Collisional Granitoid Suite in NW China. Gondwana Research, 55: 92-111. https://doi.org/10.1016/j.gr.2017.11.009 |
Heaman, L. M., Tarney, J., 1989. U-Pb Baddeleyite Ages for the Scourie Dyke Swarm, Scotland: Evidence for Two Distinct Intrusion Events. Nature, 340(6236): 705-708. https://doi.org/10.1038/340705a0 |
Hölttä, P., Huhma, H., Mänttäri, I., et al., 2000. P-T-t Development of Archaean Granulites in Varpaisjärvi, Central Finland. Lithos, 50(1/2/3): 121-136. https://doi.org/10.1016/s0024-4937(99)00055-9 |
Hu, J., Liu, X. C., Chen, L. Y., et al., 2013. A ~2.5 Ga Magmatic Event at the Northern Margin of the Yangtze Craton: Evidence from U-Pb Dating and Hf Isotope Analysis of Zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin, 58(28/29): 3564-3579. https://doi.org/10.1007/s11434-013-5904-1 |
Hu, J., Zhang, S. T., Zhang, G. Z., et al., 2018. Geochemistry and Tectonic Setting of the Eshan Granites in the Southwestern Margin of the Yangtze Plate, Yunnan. Journal of Earth Science, 29(1): 130-143. https://doi.org/10.1007/s12583-017-0747-3 |
Hui, B., Dong, Y. P., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-Rock Geochemistry for the Neoarchean- Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301: 65-85. https://doi.org/10.1016/j.precamres.2017.09.003 |
Jiao, W. F., Wu, Y. B., Yang, S. H., et al., 2009. The Oldest Basement Rock in the Yangtze Craton Revealed by Zircon U-Pb Age and Hf Isotope Composition. Science in China Series D: Earth Sciences, 52(9): 1393-1399. https://doi.org/10.1007/s11430-009-0135-7 |
Kepezhinskas, P., Defant, M. J., Drummond, M. S., 1996. Progressive Enrichment of Island Arc Mantle by Melt-Peridotite Interaction Inferred from Kamchatka Xenoliths. Geochimica et Cosmochimica Acta, 60(7): 1217-1229. https://doi.org/10.1016/0016-7037(96)00001-4 |
Kou, C. H., Zhang, Z. C., Santosh, M., et al., 2017. Oldest Volcanic-Hosted Submarine Iron Ores in South China: Evidence from Zircon U-Pb Geochronology and Geochemistry of the Paleoproterozoic Dahongshan Iron Deposit. Gondwana Research, 49: 182-204. https://doi.org/10.1016/j.gr.2017.05.016 |
Kröner, A., Wilde, S. A., Li, J. H., et al., 2005. Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China. Journal of Asian Earth Sciences, 24: 577-595 doi: 10.1016/j.jseaes.2004.01.001 |
Kullerud, K., Skjerlie, K. P., Corfu, F., et al., 2006. The 2.40 Ga Ringvassøy Mafic Dykes, West Troms Basement Complex, Norway: The Concluding Act of Early Palaeoproterozoic Continental Breakup. Precambrian Research, 150(3/4): 183-200. https://doi.org/10.1016/j.precamres.2006.08.003 |
Kumar, A., Hamilton, M. A., Halls, H. C., 2012. A Paleoproterozoic Giant Radiating Dyke Swarm in the Dharwar Craton, Southern India. Geochemistry, Geophysics, Geosystems, 13(2): Q02011. https://doi.org/10.1029/2011gc003926 |
Lan, C. Y., Chung, S. L., Lo, C. H., et al., 2001. First Evidence for Archean Continental Crust in Northern Vietnam and Its Implications for Crustal and Tectonic Evolution in Southeast Asia. Geology, 29(3): 219. https://doi.org/10.1130/0091-7613(2001)029 < 0219:fefacc > 2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0219:fefacc>2.0.co;2 |
Li, L. M., Lin, S. F., Davis, D. W., et al., 2014. Geochronology and Geochemistry of Igneous Rocks from the Kongling Terrane: Implications for Mesoarchean to Paleoproterozoic Crustal Evolution of the Yangtze Block. Precambrian Research, 255: 30-47. https://doi.org/10.1016/j.precamres.2014.09.009 |
Li, Y. H., Zheng, J. P., Xiong, Q., et al., 2016. Petrogenesis and Tectonic Implications of Paleoproterozoic Metapelitic Rocks in the Archean Kongling Complex from the Northern Yangtze Craton, South China. Precambrian Research, 276: 158-177. https://doi.org/10.1016/j.precamres.2016.01.028 |
Liu, H. C., Wang, Y. J., Cawood, P. A., et al., 2017. Episodic Slab Rollback and Back-Arc Extension in the Yunnan-Burma Region: Insights from Cretaceous Nb-Enriched and Oceanic-Island Basalt-Like Mafic Rocks. Geological Society of America Bulletin, 129(5/6): 698-714. https://doi.org/10.1130/b31604.1 |
Liu, S. W., Pan, Y. M., Li, J. H., et al., 2002. Geological and Isotopic Geochemical Constraints on the Evolution of the Fuping Complex, North China Craton. Precambrian Research, 117(1/2): 41-56. https://doi.org/10.1016/s0301-9268(02)00063-3 |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 |
Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 |
Lu, G. M., Wang, W., Ernst, R. E., et al., 2019. Petrogenesis of Paleo- Mesoproterozoic Mafic Rocks in the Southwestern Yangtze Block of South China: Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 322: 66-84. https://doi.org/10.1016/j.precamres.2018.12.019 |
Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley |
Macambira, M. J. B., Vasquez, M. L., da Silva, D. C. C., et al., 2009. Crustal Growth of the Central-Eastern Paleoproterozoic Domain, SW Amazonian Craton: Juvenile Accretion vs. Reworking. Journal of South American Earth Sciences, 27(4): 235-246. https://doi.org/10.1016/j.jsames.2009.06.006 |
Manyeruke, T. D., Blenkinsop, T. G., Buchholz, P., et al., 2004. The Age and Petrology of the Chimbadzi Hill Intrusion, NW Zimbabwe: First Evidence for Early Paleoproterozoic Magmatism in Zimbabwe. Journal of African Earth Sciences, 40(5): 281-292. https://doi.org/10.1016/j.jafrearsci.2004.12.003 |
Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048 |
Mazhari, S. A., 2016. Petrogenesis of Adakite and High-Nb Basalt Association in the SW of Sabzevar Zone, NE of Iran: Evidence for Slab Melt-Mantle Interaction. Journal of African Earth Sciences, 116: 170-181. https://doi.org/10.1016/j.jafrearsci.2015.12.026 |
McKenzie, D., O'Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021 |
Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. https://doi.org/10.2475/ajs.274.4.321 |
Nam, T. N., Toriumi, M., Sano, Y., et al., 2003. 2.9, 2.36, and 1.96 Ga Zircons in Orthogneiss South of the Red River Shear Zone in Viet Nam: Evidence from SHRIMP U-Pb Dating and Tectonothermal Implications. Journal of Asian Earth Sciences, 21(7): 743-753. https://doi.org/10.1016/s1367-9120(02)00089-5 |
Nemchin, A. A., Pidgeon, R. T., 1998. Precise Conventional and SHRIMP Baddeleyite U-Pb Age for the Binneringie Dyke, near Narrogin, Western Australia. Australian Journal of Earth Sciences, 45(5): 673-675. https://doi.org/10.1080/08120099808728424 |
Nie, H., Yao, J., Wan, X., et al., 2016. Precambrian Tectonothermal Evolution of South Qinling and Its Affinity to the Yangtze Block: Evidence from Zircon Ages and Hf-Nd Isotopic Compositions of Basement Rocks. Precambrian Research, 286: 167-179. https://doi.org/10.1016/j.precamres.2016.10.005 |
Nilsson, M. K. M., Klausen, M. B., Söderlund, U., et al., 2013. Precise U-Pb Ages and Geochemistry of Palaeoproterozoic Mafic Dykes from Southern West Greenland: Linking the North Atlantic and the Dharwar Cratons. Lithos, 174: 255-270. https://doi.org/10.1016/j.lithos.2012.07.021 |
Partin, C. A., Bekker, A., Sylvester, P. J., et al., 2014. Filling in the Juvenile Magmatic Gap: Evidence for Uninterrupted Paleoproterozoic Plate Tectonics. Earth and Planetary Science Letters, 388: 123-133. https://doi.org/10.1016/j.epsl.2013.11.041 |
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192 |
Pisarevsky, S. A., Elming, S. Å., Pesonen, L. J., et al., 2014. Mesoproterozoic Paleogeography: Supercontinent and beyond. Precambrian Research, 244: 207-225. https://doi.org/10.1016/j.precamres.2013.05.014 |
Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46(5): 921-944. https://doi.org/10.1093/petrology/egi005 |
Prouteau, G., Maury, R. C., Sajona, F. G., et al., 2000. Behavior of Niobium, Tantalum and other High Field Strength Elements in Adakites and Related Lavas from the Philippines. The Island Arc, 9(4): 487-498. https://doi.org/10.1046/j.1440-1738.2000.00296.x |
Qian, J. H., Shen, Y. R., 1990. The Dahongshan Volcanogenic Fe-Cu Deposit in Yunnan Province. Series of Geological Memoirs of People's Republic of China. Geological Publishing House, Beijing. 236 (in Chinese with English Abstract) |
Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1): 5-22. https://doi.org/10.1016/s1342-937x(05)70883-2 |
Rolland, Y., Galoyan, G., Bosch, D., et al., 2009. Jurassic Back-Arc and Cretaceous Hot-Spot Series in the Armenian Ophiolites—Implications for the Obduction Process. Lithos, 112(3/4): 163-187. https://doi.org/10.1016/j.lithos.2009.02.006 |
Rosen, O. M., 2002. Siberian Craton--A Fragment of a Paleoproterozoic Supercontinent. Russian Journal of Earth Sciences, 4(2): 103-119. https://doi.org/10.2205/2002es000090 |
Saccani, E., Azimzadeh, Z., Dilek, Y., et al., 2013. Geochronology and Petrology of the Early Carboniferous Misho Mafic Complex (NW Iran), and Implications for the Melt Evolution of Paleo-Tethyan Rifting in Western Cimmeria. Lithos, 162/163: 264-278. https://doi.org/10.1016/j.lithos.2013.01.008 |
Sajona, F. G., Bellon, H., Maury, R., et al., 1994. Magmatic Response to Abrupt Changes in Geodynamic Settings: Pliocene—Quaternary Calc-Alkaline and Nb-Enriched Lavas from Mindanao (Philippines). Tectonophysics, 237(1/2): 47-72. https://doi.org/10.1016/0040-1951(94)90158-9 |
Sajona, F. G., Maury, R. C., Bellon, H., et al., 1996. High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3): 693-726. https://doi.org/10.1093/petrology/37.3.693 |
Santosh, M., Yang, Q. Y., Teng, X. M., et al., 2015. Paleoproterozoic Crustal Growth in the North China Craton: Evidence from the Lüliang Complex. Precambrian Research, 263: 197-231. https://doi.org/10.1016/j.precamres.2015.03.015 |
Seixas, L. A. R., David, J., Stevenson, R., 2012. Geochemistry, Nd Isotopes and U-Pb Geochronology of a 2 350 Ma TTG Suite, Minas Gerais, Brazil: Implications for the Crustal Evolution of the Southern São Francisco Craton. Precambrian Research, 196-197: 61-80. https://doi.org/10.1016/j.precamres.2011.11.002 |
Spencer, C. J., Murphy, J. B., Kirkland, C. L., et al., 2018. A Palaeoproterozoic Tectono-Magmatic Lull as a Potential Trigger for the Supercontinent Cycle. Nature Geoscience, 11(2): 97-101. https://doi.org/10.1038/s41561-017-0051-y |
Stepanova, A. V., Salnikova, E. B., Samsonov, A. V., et al., 2015. The 2.31 Ga Mafic Dykes in the Karelian Craton, Eastern Fennoscandian Shield: U-Pb Age, Source Characteristics and Implications for Continental Break-Up Processes. Precambrian Research, 259: 43-57. https://doi.org/10.1016/j.precamres.2014.10.002 |
Straub, S. M., Gómez-Tuena, A., Zellmer, G. F., et al., 2013. The Processes of Melt Differentiation in Arc Volcanic Rocks: Insights from OIB-Type Arc Magmas in the Central Mexican Volcanic Belt. Journal of Petrology, 54(4): 665-701. https://doi.org/10.1093/petrology/egs081 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241. https://doi.org/10.1029/95rg00262 |
Tchameni, R., Mezger, K., Nsifa, N. E., et al., 2001. Crustal Origin of Early Proterozoic Syenites in the Congo Craton (Ntem Complex), South Cameroon. Lithos, 57(1): 23-42. https://doi.org/10.1016/s0024-4937(00)00072-4 |
Teixeira, W., Ávila, C. A., Dussin, I. A., et al., 2015. A Juvenile Accretion Episode (2.35-2.32 Ga) in the Mineiro Belt and Its Role to the Minas Accretionary Orogeny: Zircon U-Pb-Hf and Geochemical Evidences. Precambrian Research, 256: 148-169. https://doi.org/10.1016/j.precamres. 2014.11.009 doi: 10.1016/j.precamres.2014.11.009 |
Wang, K., Dong, S. W., Li, Z. X., et al., 2018a. Age and Chemical Composition of Archean Metapelites in the Zhongxiang Complex and Implications for Early Crustal Evolution of the Yangtze Craton. Lithos, 320-321: 280-301. https://doi.org/10.1016/j.lithos.2018.09.027 |
Wang, K., Li, Z. X., Dong, S. W., et al., 2018b. Early Crustal Evolution of the Yangtze Craton, South China: New Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of ca. 2.9-2.6 Ga Granitic Rocks in the Zhongxiang Complex. Precambrian Research, 314: 325-352. https://doi.org/10.1016/j.precamres.2018.05.016 |
Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Triassic Nb-Enriched Basalts, Magnesian Andesites, and Adakites of the Qiangtang Terrane (Central Tibet): Evidence for Metasomatism by Slab-Derived Melts in the Mantle Wedge. Contributions to Mineralogy and Petrology, 155(4): 473-490. https://doi.org/10.1007/s00410-007-0253-1 |
Wang, Q., Wyman, D. A., Zhao, Z. H., et al., 2007. Petrogenesis of Carboniferous Adakites and Nb-Enriched Arc Basalts in the Alataw Area, Northern Tianshan Range (western China): Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt. Chemical Geology, 236(1/2): 42-64. https://doi.org/10.1016/j.chemgeo.2006.08.013 |
Wang, W., Cawood, P. A., Pandit, M. K., et al., 2017. Zircon U-Pb Age and Hf Isotope Evidence for an Eoarchaean Crustal Remnant and Episodic Crustal Reworking in Response to Supercontinent Cycles in NW India. Journal of the Geological Society, 174(4): 759-772. https://doi.org/10.1144/jgs2016-080 |
Wang, W., Cawood, P. A., Zhou, M. F., et al., 2016. Paleoproterozoic Magmatic and Metamorphic Events Link Yangtze to Northwest Laurentia in the Nuna Supercontinent. Earth and Planetary Science Letters, 433: 269-279. https://doi.org/10.1016/j.epsl.2015.11.005 |
Wang, W., Zhou, M. F., 2014. Provenance and Tectonic Setting of the Paleo- to Mesoproterozoic Dongchuan Group in the Southwestern Yangtze Block, South China: Implication for the Breakup of the Supercontinent Columbia. Tectonophysics, 610: 110-127. https://doi.org/10.1016/j.tecto.2013.11.009 |
Wang, W., Zhou, M. F., Zhao, X. F., et al., 2014. Late Paleoproterozoic to Mesoproterozoic Rift Successions in SW China: Implication for the Yangtze Block-North Australia-Northwest Laurentia Connection in the Columbia Supercontinent. Sedimentary Geology, 309: 33-47. https://doi.org/10.1016/j.sedgeo.2014.05.004 |
Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020 |
Wang, Z. J., Wang, J., Du, Q. D., et al., 2013. Mature Archean Continental Crust in the Yangtze Craton: Evidence from Petrology, Geochronology and Geochemistry. Chinese Science Bulletin, 58(19): 2360-2369. https://doi.org/10.1007/s11434-013-5668-7 |
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2 |
Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005 |
Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200/203: 26-37. https://doi.org/10.1016/j.precamres.2011.12.015 |
Wu, Y. B., Zhou, G. Y., Gao, S., et al., 2014. Petrogenesis of Neoarchean TTG Rocks in the Yangtze Craton and Its Implication for the Formation of Archean TTGs. Precambrian Research, 254: 73-86. https://doi.org/10.1016/j.precamres.2014.08.004 |
Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x |
Yuan, L. L., Zhang, X. H., Yang, Z. L., et al., 2017. Paleoproterozoic Alaskan-Type Ultramafic-Mafic Intrusions in the Zhongtiao Mountain Region, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 296: 39-61. https://doi.org/10.1016/j.precamres.2017.04.037 |
Zhang, C. L., Li, Z. X., Li, X. H., et al., 2007. An Early Paleoproterozoic High-K Intrusive Complex in Southwestern Tarim Block, NW China: Age, Geochemistry, and Tectonic Implications. Gondwana Research, 12(1/2): 101-112. https://doi.org/10.1016/j.gr.2006.10.006 |
Zhang, L. M., Wang, Y. J., Qian, X., et al., 2018. Petrogenesis of Mesoproterozoic Mafic Rocks in Hainan (South China) and Its Implication on the Southwest Hainan-Laurentia-Australia Connection. Precambrian Research, 313: 119-133. https://doi.org/10.1016/j.precamres.2018.05.002 |
Zhang, Z. Q., Zhang, G. W., Tang, S. H., et al., 2001. On the Age of Metamorphic Rocks of the Yudongzi Group and the Archean Crystalline Basement of the Qinling Orogen. Acta Geologic Sinica, 75: 198-204 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200102008 |
Zhao, G. C., 2015. Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Research, 27(3): 1173-1180. https://doi.org/10.1016/j.gr.2014.09.004 |
Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1/2/3/4): 125-162. https://doi.org/10.1016/ s0012- 8252(02)00073-9 doi: 10.1016/s0012-8252(02)00073-9 |
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 67(1/2): 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003 |
Zhao, G. C., Wilde, S. A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Ages of Granitoid Rocks in the Lüliang Complex: Implications for the Accretion and Evolution of the Trans-North China Orogen. Precambrian Research, 160(3/4): 213-226. https://doi.org/10.1016/j.precamres.2007.07.004 |
Zhao, T. Y., Cawood, P. A., Zi, J. W., et al., 2019. Early Paleoproterozoic Magmatism in the Yangtze Block: Evidence from Zircon U-Pb Ages, Sr-Nd-Hf Isotopes and Geochemistry of ca. 2.3 Ga and 2.1 Ga Granitic Rocks in the Phan Si Pan Complex, North Vietnam. Precambrian Research, 324: 253-268. https://doi.org/10.1016/j.precamres.2019.01.012 |
Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182(1/2): 57-69. https://doi.org/10.1016/j.precamres.2010.06.021 |
Zhou, G. Y., Wu, Y. B., Gao, S., et al., 2015. The 2.65 Ga A-Type Granite in the Northeastern Yangtze Craton: Petrogenesis and Geological Implications. Precambrian Research, 258: 247-259. https://doi.org/10.1016/j.precamres.2015.01.003 |
Zhu, H. P., Fan, W. Y., Zhou, B. G., et al., 2011. Assessing Precambrian Stratigraphic Sequence of Dongchuan Area: Evidence from Zircon SHRIMP and LA-ICP-MS Dating. Geological Journal of China Universities, 17(3): 452-461 (in Chinese with English Abstract) |