Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 5
Oct 2020
Turn off MathJax
Article Contents
Tianyi Shen, Guocan Wang. Detrital Zircon Fission-Track Thermochronology of the Present-Day River Drainage System in the Mt. Kailas Area, Western Tibet: Implications for Multiple Cooling Stages of the Gangdese Magmatic Arc. Journal of Earth Science, 2020, 31(5): 896-904. doi: 10.1007/s12583-020-1285-y
Citation: Tianyi Shen, Guocan Wang. Detrital Zircon Fission-Track Thermochronology of the Present-Day River Drainage System in the Mt. Kailas Area, Western Tibet: Implications for Multiple Cooling Stages of the Gangdese Magmatic Arc. Journal of Earth Science, 2020, 31(5): 896-904. doi: 10.1007/s12583-020-1285-y

Detrital Zircon Fission-Track Thermochronology of the Present-Day River Drainage System in the Mt. Kailas Area, Western Tibet: Implications for Multiple Cooling Stages of the Gangdese Magmatic Arc

doi: 10.1007/s12583-020-1285-y
More Information
  • Corresponding author: Tianyi Shen, shenty@cug.edu.cn
  • Received Date: 11 Nov 2019
  • Accepted Date: 25 Dec 2019
  • Publish Date: 20 Oct 2020
  • It is still controversial how the high elevation of the Tibetan Plateau established after the Indian-Asian collision during the Cenozoic. The timing of Gangdese magmatic arc exhumation and uplift history would provide useful message for this disputation. We present six zircon fission-track (ZFT) data from modern river sand in the western Tibet,around the Mt. Kailas,to decipher the long-term exhumation histories of the Gangdese magmatic arc. The data suggests that all the Gangdese magmatic arc rocks experienced rapid cooling during the Eocene (~46-35 Ma) and Oligocene (~31-26 Ma). The movement along the north-south trending extensional fault and dextral strike-slip Karakoram fault induced the adjacent rocks exhumed at the Middle Miocene (~15-16 Ma) and Late Miocene (~10-11 Ma),respectively. According to the minimum and central AFT ages for each sample,the fastest exhumation rate is about 0.4 km/Ma,with average long-term exhumation rates on the order of~0.3 km/Ma since the Oligocene. This result supports the outward growth model for plateau forming,indicating the southern margin of the Gangdese magmatic arc attained high elevation after the Oligocene.

     

  • loading
  • Bernet, M., 2013. Detrital Zircon Fission-Track Thermochronology of the Present-Day Isère River Drainage System in the Western Alps: No Evidence for Increasing Erosion Rates at 5 Ma. Geosciences, 3(3): 528-542. https://doi.org/10.3390/geosciences3030528
    Bernet, M., Garver, J. I., 2005. Fission-Track Analysis of Detrital Zircon, Low-Temperature Thermochronology. Techniques, Interpretations, and Applications, 58: 205-237. https://doi.org/10.2138/rmg.2005.58.8
    Bernet, M., van der Beek, P., Pik, R., et al., 2006. Miocene to Recent Exhumation of the Central Himalaya Determined from Combined Detrital Zircon Fission-Track and U/Pb Analysis of Siwalik Sediments, Western Nepal. Basin Research, 18(4): 393-412. https://doi.org/10.1111/j.1365-2117.2006.00303.x
    Bernet, M., Zattin, M., Garver, J. I., et al., 2001. Steady-State Exhumation of the European Alps. Geology, 29(1): 3-38. https://doi.org/10.1130/0091-7613(2001)029 < 0035:sseote > 2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0035:sseote>2.0.co;2
    Brandon, M. T., 1992. Decomposition of Fission-Track Grain-Age Distributions. American Journal of Science, 292(8): 535-564. https://doi.org/10.2475/ajs.292.8.535
    Brandon, M. T., 1996. Probability Density Plot for Fission-Track Grain-Age Samples. Radiation Measurements, 26(5): 663-676. https://doi.org/10.1016/s1350-4487(97)82880-6
    Carrapa, B., Orme, D. A., DeCelles, P. G., et al., 2014. Miocene Burial and Exhumation of the India-Asia Collision Zone in Southern Tibet: Response to Slab Dynamics and Erosion. Geology, 42(5): 443-446. https://doi.org/10.1130/g35350.1
    Carter, A., Moss, S. J., 1999. Combined Detrital-Zircon Fission-Track and U-Pb Dating: A New Approach to Understanding Hinterland Evolution. Geology, 27(3): 235-238. https://doi.org/10.1130/0091-7613(1999)027 < 0235:cdzfta > 2.3.co; 2 doi: 10.1130/0091-7613(1999)027<0235:cdzfta>2.3.co;2
    Chen, J. S., Huang, B. C., Sun, L. S., 2010. New Constraints to the Onset of the India-Asia Collision: Paleomagnetic Reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 489(1/2/3/4): 189-209. https://doi.org/10.1016/j.tecto.2010.04.024
    Chevalier, M. L., Ryerson, F. J., Tapponnier, P., et al., 2005. Slip-Rate Measurements on the Karakorum Fault May Imply Secular Variations in Fault Motion. Science, 307: 411-414. https://doi.org/10.1126/science.1105466
    Chirouze, F., Bernet, M., Huyghe, P., et al., 2012. Detrital Thermochronology and Sediment Petrology of the Middle Siwaliks along the Muksar Khola Section in Eastern Nepal. Journal of Asian Earth Sciences, 44: 94-106. https://doi.org/10.1016/j.jseaes.2011.01.009
    Chung, S. L., Chu, M. F., Ji, J. Q., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 477(1/2): 36-48. https://doi.org/10.1016/j.tecto.2009.08.008
    Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
    Copeland, P., Harrison, T. M., Pan, Y., et al., 1995. Thermal Evolution of the Gangdese Batholith, Southern Tibet: A History of Episodic Unroofing. Tectonics, 14(2): 223-236. https://doi.org/10.1029/94tc01676
    Dai, J. G., Wang, C. S., Hourigan, J., et al., 2013. Exhumation History of the Gangdese Batholith, Southern Tibetan Plateau: Evidence from Apatite and Zircon (U-Th)/He Thermochronology. The Journal of Geology, 121(2): 155-172. https://doi.org/10.1086/669250
    DeCelles, P. G., Kapp, P., Gehrels, G. E., et al., 2014. Paleocene-Eocene Foreland Basin Evolution in the Himalaya of Southern Tibet and Nepal: Implications for the Age of Initial India-Asia Collision. Tectonics, 33(5): 824-849. https://doi.org/10.1002/2014tc003522
    DeCelles, P. G., Kapp, P., Quade, J., et al., 2011. Oligocene-Miocene Kailas Basin, Southwestern Tibet: Record of Postcollisional Upper-Plate Extension in the Indus-Yarlung Suture Zone. Geological Society of America Bulletin, 123(7/8): 1337-1362. https://doi.org/10.1130/b30258.1
    DeCelles, P. G., Quade, J., Kapp, P., et al., 2007. High and Dry in Central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 253(3/4): 389-401. https://doi.org/10.1016/j.epsl.2006.11.001
    Ding, L., Xu, Q., Yue, Y. H., et al., 2014. The Andean-Type Gangdese Mountains: Paleoelevation Record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 392: 250-264. https://doi.org/10.1016/j.epsl.2014.01.045
    Ehlers, T. A., 2005. Computational Tools for Low-Temperature Thermochronometer Interpretation. Reviews in Mineralogy and Geochemistry, 58(1): 589-622. https://doi.org/10.2138/rmg.2005.58.22
    England, P., Molnar, P., 1990. Surface Uplift, Uplift of Rocks, and Exhumation of Rocks. Geology, 18(12): 1173-1177. https://doi.org/10.1130/0091-7613(1990)018 < 1173:suuora > 2.3.co; 2 doi: 10.1130/0091-7613(1990)018<1173:suuora>2.3.co;2
    Galbraith, R. F., Laslett, G. M., 1993. Statistical Models for Mixed Fission Track Ages. Nuclear Tracks and Radiation Measurements, 21(4): 459-470. https://doi.org/10.1016/1359-0189(93)90185-c
    Gao, S. B., Zheng, Y. Y., Jiang, J. S., et al., 2019. Geochemistry and Geochronology of the Gebunongba Iron Polymetallic Deposit in the Gangdese Belt, Tibet. Journal of Earth Science, 30(2): 296-308. https://doi.org/10.1007/s12583-018-0984-0
    Ge, Y. K., Dai, J. G., Wang, C. S., et al., 2017. Cenozoic Thermo-Tectonic Evolution of the Gangdese Batholith Constrained by Low-Temperature Thermochronology. Gondwana Research, 41: 451-462. https://doi.org/10.1016/j.gr.2016.05.006
    Gourbet, L., Mahéo, G., Leloup, P. H., et al., 2017. Western Tibet Relief Evolution since the Oligo-Miocene. Gondwana Research, 41: 425-437. https://doi.org/10.1016/j.gr.2014.12.003
    Haider, V. L., Dunkl, I., Eynatten, H. V., et al., 2013. Cretaceous to Cenozoic Evolution of the Northern Lhasa Terrane and the Early Paleogene Development of Peneplains at Nam Co, Tibetan Plateau. Journal of Asian Earth Sciences, 70-71: 79-98. https://doi.org/10.1016/j.jseaes.2013.03.005
    Harrison, T. M., Copeland, P., Kidd, W. S. F., et al., 1995. Activation of the Nyainqentanghla Shear Zone: Implications for Uplift of the Southern Tibetan Plateau. Tectonics, 14(3): 658-676. https://doi.org/10.1029/95tc00608
    Harrison, T. M., Yin, A., Grove, M., et al., 2000. The Zedong Window: A Record of Superposed Tertiary Convergence in Southeastern Tibet. Journal of Geophysical Research: Solid Earth, 105(B8): 19211-19230. https://doi.org/10.1029/2000jb900078
    Heim, A., Gansser, A., 1939. Central Himalayan Geological Observations of the Swiss Expedition. Mem. Sos. Halv. Nat., 77: 245 http://library.isical.ac.in/cgi-bin/koha/opac-detail.pl?biblionumber=53302
    Hetzel, R., Dunkl, I., Haider, V., et al., 2011. Peneplain Formation in Southern Tibet Predates the India-Asia Collision and Plateau Uplift. Geology, 39: 983-986. https://doi.org/10.1130/G32069.1
    Hu, X. M., Garzanti, E., Wang, J. G., et al., 2016. The Timing of India-Asia Collision Onset--Facts, Theories, Controversies. Earth-Science Reviews, 160: 264-299. https://doi.org/10.1016/j.earscirev.2016.07.014
    Huang, H. X., Zhang, L. K., Liu, H., et al., 2019. Major Types, Mineralization and Potential Prospecting Areas in Western Section of the Gangdise Metallogenic Belt, Tibet. Earth Science, 44(6): 1876-1887 (in Chinese with English Abstract). https://doi.org/10.3799/dqkx.2018.364
    Hurford, A. J., Fitch, F. J., Clarke, A., 1984. Resolution of the Age Structure of the Detrital Zircon Populations of Two Lower Cretaceous Sandstones from the Weald of England by Fission Track Dating. Geological Magazine, 121(4): 269-277. https://doi.org/10.1017/s0016756800029162
    Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7/8): 917-933. https://doi.org/10.1130/b26033.1
    Kapp, P., Yin, A., Harrison, T. M., et al., 2005. Cretaceous-Tertiary Shortening, Basin Development, and Volcanism in Central Tibet. Geological Society of America Bulletin, 117(7): 865-878. https://doi.org/10.1130/b25595.1
    Lacassin, R., Valli, F., Arnaud, N., et al., 2004. Large-Scale Geometry, Offset and Kinematic Evolution of the Karakorum Fault, Tibet. Earth and Planetary Science Letters, 219(3/4): 255-269. https://doi.org/10.1016/s0012-821x(04)00006-8
    Laskowski, A. K., Kapp, P., Cai, F. L., et al., 2018. Gangdese Culmination Model: Oligocene-Miocene Duplexing along the India-Asia Suture Zone, Lazi Region, Southern Tibet. GSA Bulletin, 130(7/8): 1355-1376. https://doi.org/10.1130/b31834.1
    Leech, M., Singh, S., Jain, A., et al., 2005. The Onset of India-Asia Continental Collision: Early, Steep Subduction Required by the Timing of UHP Metamorphism in the Western Himalaya. Earth and Planetary Science Letters, 234(1/2): 83-97. https://doi.org/10.1016/j.epsl.2005.02.038
    Li, G. W., Kohn, B., Sandiford, M., et al., 2016. Synorogenic Morphotectonic Evolution of the Gangdese Batholith, South Tibet: Insights from Low-Temperature Thermochronology. Geochemistry, Geophysics, Geosystems, 17(1): 101-112. https://doi.org/10.1002/2015gc006047
    Li, G. W., Tian, Y. T., Kohn, B. P., et al., 2015. Cenozoic Low Temperature Cooling History of the Northern Tethyan Himalaya in Zedang, SE Tibet and Its Implications. Tectonophysics, 643: 80-93. https://doi.org/10.1016/j.tecto.2014.12.014
    Li, S., Ding, L., Xu, Q., et al., 2017. The Evolution of Yarlung Tsangpo River: Constraints from the Age and Provenance of the Gangdese Conglomerates, Southern Tibet. Gondwana Research, 41: 249-266. https://doi.org/10.1016/j.gr.2015.05.010
    Li, Z. L., Yang, J. S., Li, T. F., et al., 2019. Helium Isotopic Composition of the Songduo Eclogites in the Lhasa Terrane, Tibet: Information from the Deep Mantle. Journal of Earth Science, 30(3): 563-570. https://doi.org/10.1007/s12583-019-1226-9
    Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2009. Mantle Input to the Crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf Isotopic Evidence. Journal of Earth Science, 20(2): 241-249. https://doi.org/10.1007/s12583-009-0023-2
    Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1/2/3/4): 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
    Murphy, M. A., Sanchez, V., Taylor, M. H., 2010. Syncollisional Extension along the India-Asia Suture Zone, South-Central Tibet: Implications for Crustal Deformation of Tibet. Earth and Planetary Science Letters, 290(3/4): 233-243. https://doi.org/10.1016/j.epsl.2009.11.046
    Murphy, M. A., Yin, A., 2003. Structural Evolution and Sequence of Thrusting in the Tethyan Fold-Thrust Belt and Indus-Yalu Suture Zone, Southwest Tibet. Geological Society of America Bulletin, 115(1): 21-34. https://doi.org/10.1130/0016-7606(2003)115 < 0021:seasot > 2.0.co; 2 doi: 10.1130/0016-7606(2003)115<0021:seasot>2.0.co;2
    Najman, Y., Appel, E., Boudagher-Fadel, M., et al., 2010. Timing of India-Asia Collision: Geological, Biostratigraphic, and Palaeomagnetic Constraints. Journal of Geophysical Research—Solid Earth, 115: B12416. https://doi.org/10.1029/2010jb007673
    Pullen, A., Kapp, P., DeCelles, P. G., et al., 2011. Cenozoic Anatexis and Exhumation of Tethyan Sequence Rocks in the Xiao Gurla Range, Southwest Tibet. Tectonophysics, 501(1/2/3/4): 28-40. https://doi.org/10.1016/j.tecto.2011.01.008
    Reiners, P. W., Brandon, M. T., 2006. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 34(1): 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202
    Rohrmann, A., Kapp, P., Carrapa, B., et al., 2012. Thermochronologic Evidence for Plateau Formation in Central Tibet by 45 Ma. Geology, 40(2): 187-190. https://doi.org/10.1130/g32530.1
    Rowley, D. B., Currie, B. S., 2006. Palaeo-Altimetry of the Late Eocene to Miocene Lunpola Basin, Central Tibet. Nature, 439(7077): 677-681. https://doi.org/10.1038/nature04506
    Shen, T. Y., Wang, G. C., Bernet, M., et al., 2019. Long-Term Exhumation History of the Gangdese Magmatic Arc: Implications for the Evolution of the Kailas Basin, Western Tibet. Geological Journal, 515(4): 1-12. https://doi.org/10.1002/gj.3539
    Shen, T. Y., Wang, G. C., Leloup, P. H., et al., 2016. Controls on Cenozoic Exhumation of the Tethyan Himalaya from Fission-Track Thermochronology and Detrital Zircon U-Pb Geochronology in the Gyirong Basin Area, Southern Tibet. Tectonics, 35(7-8): 1713-1734. https://doi.org/10.1002/2016tc004149
    Spicer, R. A., Harris, N. B. W., Widdowson, M., et al., 2003. Constant Elevation of Southern Tibet over the Past 15 Million Years. Nature, 421(6923): 622-624. https://doi.org/10.1038/nature01356
    Stewart, R. J., Brandon, M. T., 2004. Detrital-Zircon Fission-Track Ages for the "Hoh Formation": Implications for Late Cenozoic Evolution of the Cascadia Subduction Wedge. Geological Society of America Bulletin, 116(1): 60-75. https://doi.org/10.1130/b22101.1
    Styron, R., Taylor, M., Sundell, K., 2015. Accelerated Extension of Tibet Linked to the Northward Underthrusting of Indian Crust. Nature Geoscience, 8(2): 131-134. https://doi.org/10.1038/ngeo2336
    Tapponnier, P., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
    Tremblay, M. M., Fox, M., Schmidt, J. L., et al., 2015. Erosion in Southern Tibet Shut down at ∼10 Ma Due to Enhanced Rock Uplift within the Himalaya. Proceedings of the National Academy of Sciences, 112(39): 12030-12035. https://doi.org/10.1073/pnas.1515652112
    Valli, F., Arnaud, N., Leloup, P. H., et al., 2007. Twenty Million Years of Continuous Deformation along the Karakorum Fault, Western Tibet: A Thermochronological Analysis. Tectonics, 26(4): TC4004. https://doi.org/10.1029/2005tc001913
    Vermeesch, P., 2009. RadialPlotter: A Java Application for Fission Track, Luminescence and Other Radial Plots. Radiation Measurements, 44(4): 409-410. https://doi.org/10.1016/j.radmeas.2009.05.003
    Wang, A., Wang, G., Xie, D., et al., 2006. Fission Track Geochronology of Xiaonanchuan Pluton and the Morphotectonic Evolution of Eastern Kunlun since Late Miocene. Journal of China University of Geosciences, 17(4): 302-309. https://doi.org/10.1016/s1002-0705(07)60003-x
    Wang, C. S., Dai, J. G., Zhao, X. X., et al., 2014. Outward-Growth of the Tibetan Plateau during the Cenozoic: A Review. Tectonophysics, 621: 1-43. https://doi.org/10.1016/j.tecto.2014.01.036
    Wang, C. S., Zhao, X. X., Liu, Z. F., et al., 2008. Constraints on the Early Uplift History of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105(13): 4987-4992. https://doi.org/10.1073/pnas.0703595105
    Wang, E., Kamp, P. J. J., Xu, G. Q., et al., 2015. Flexural Bending of Southern Tibet in a Retro Foreland Setting. Scientific Reports, 5(1): 12076. https://doi.org/10.1038/srep12076
    Wang, J. G., Hu, X. M., Garzanti, E., et al., 2013. Upper Oligocene-Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo Initiation. The Journal of Geology, 121(4): 425-444. https://doi.org/10.1086/670722
    Wei, Y., Zhang, K. X., Garzione, C. N., et al., 2016. Low Palaeoelevation of the Northern Lhasa Terrane during Late Eocene: Fossil Foraminifera and Stable Isotope Evidence from the Gerze Basin. Scientific Reports, 6(1): 27508. https://doi.org/10.1038/srep27508
    Willett, S. D., Brandon, M. T., 2013. Some Analytical Methods for Converting Thermochronometric Age to Erosion Rate. Geochemistry, Geophysics, Geosystems, 14(1): 209-222. https://doi.org/10.1029/2012gc004279
    Wu, Z. H., Hu, D. G., Ye, P. S., et al., 2004. Thrusting of the North Lhasa Block in the Tibetan Plateau. Acta Geologica Sinica--English Edition, 78(1): 246-259. https://doi.org/10.1111/j.1755-6724.2004.tb00697.x
    Xu, Q., Ding, L., Hetzel, R., et al., 2015. Low Elevation of the Northern Lhasa Terrane in the Eocene: Implications for Relief Development in South Tibet. Terra Nova, 27(6): 458-466. https://doi.org/10.1111/ter.12180
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
    Yin, A., Harrison, T. M., Murphy, M. A., et al., 1999. Tertiary Deformation History of Southeastern and Southwestern Tibet during the Indo-Asian Collision. Geological Society of America Bulletin, 111(11): 1644-1664. https://doi.org/10.1130/0016-7606(1999)111 < 1644:tdhosa > 2.3.co; 2 doi: 10.1130/0016-7606(1999)111<1644:tdhosa>2.3.co;2
    Yin, A., Harrison, T. M., Ryerson, F. J., et al., 1994. Tertiary Structural Evolution of the Gangdese Thrust System, Southeastern Tibet. Journal of Geophysical Research: Solid Earth, 99(B9): 18175-18201. https://doi.org/10.1029/94jb00504
    Zhao, H., Yang, J. S., Liu, F., et al., 2019. Post-Collisional, Potassic Volcanism in the Saga Area, Western Tibet: Implications for the Nature of the Mantle Source and Geodynamic Setting. Journal of Earth Science, 30(3): 571-584. https://doi.org/10.1007/s12583-019-1228-7
    Zhang, L. Y., Huang, F., Xu, J. F., et al., 2019. Petrogenesis and Geochemistry of Meso-Cenozoic Granitic Rocks and Implication of Crustal Structure Changes in Shannan Area, Southern Tibet. Earth Science, 4(6): 1822-1833 (in Chinese with English Abstract). https://doi.org/10.3799/dqkx.2018.385
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(426) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return