Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 5
Oct 2020
Turn off MathJax
Article Contents
Janete Moran-Ramírez, José Iván Morales-Arredondo, Maria Aurora Armienta-Hernández, José Alfredo Ramos-Leal. Quantification of the Mixture of Hydrothermal and Fresh Water in Tectonic Valleys. Journal of Earth Science, 2020, 31(5): 1007-1015. doi: 10.1007/s12583-020-1294-x
Citation: Janete Moran-Ramírez, José Iván Morales-Arredondo, Maria Aurora Armienta-Hernández, José Alfredo Ramos-Leal. Quantification of the Mixture of Hydrothermal and Fresh Water in Tectonic Valleys. Journal of Earth Science, 2020, 31(5): 1007-1015. doi: 10.1007/s12583-020-1294-x

Quantification of the Mixture of Hydrothermal and Fresh Water in Tectonic Valleys

doi: 10.1007/s12583-020-1294-x
More Information
  • Corresponding author: José Iván Morales-Arredondo, ORCID:0000-0002-7529-992X,
  • Received Date: 12 Dec 2019
  • Accepted Date: 10 Mar 2020
  • Publish Date: 20 Oct 2020
  • This study was conducted to identify the origin, hydrogeochemical processes and evolution of groundwater in a tectonic valley. This study was carried out with the aim of quantifying the proportions of groundwater flows contributing to the water chemistry abstracted in a zone of convergence favored by the presence of active faults. The study area is located in the Trans-Mexican Volcanic Belt. End members methodology was applied to identify the mixing of hydrothermal with fresh groundwater, where changes in the aquifer geology result in distinct groundwater chemical signatures. Ternary mixing was quantified using conservative elements. Moreover, other evolutionary processes, such as ion exchange and silicate weathering occur due to changes in the geology of the area. In ternary mixing, each of the end members is associated with the lithology through which it circulates. The local flow contributes 70% of the water to the system, the intermediate flow contributes 14%, and the regional flow contributes 16%. Three types of water are produced:Na-HCO3, due to the interaction of water with volcanic rocks of rhyolitic composition, Na-Mg-HCO3, due to the interaction of water with volcanic rocks of basaltic-andesite composition, and Ca-HCO3, due to the interaction of water with sedimentary calcareous rocks.


  • loading
  • Alaniz-Álvarez, S. A., Nieto-Samaniego, A., Reyes-Zaragoza, M. A., et al., 2001. Estratigrafía y Deformación Extensional en la Región San Miguel Allende-Querétaro. México. Rev. Mexicana de Ciencias Geológicas, 18(2): 129-148 (in Spanish) J-Gate000000879196
    American Public Health Association, AWWA (American Water Works Association), Water Environment Federation), 2005. Standard Methods for the Examination of Water and Wastewater, Amer. Public Health Assn., 21: 258-259
    Aranda-Gómez, J. J., Levresse, G., Acheco Martínez, J., et al., 2013. Active Sinking at the Bottom of the Rincón de Parangueo Maar (Guanajuato, México) and Its Probable Relation with Subsidence Faults at Salamanca and Celaya. Boletín de la Sociedad Geológica Mexicana, 65(1): 169-188.
    Barbieri, M., Nigro, A., Petitta, M., 2017. Groundwater Mixing in the Discharge Area of San Vittorino Plain (Central Italy): Geochemical Characterization and Implication for Drinking Uses. Environmental Earth Sciences, 76(11): 393.
    Carrera, M. L., Higgins, R. W., Kousky, V. E., 2004. Downstream Weather Impacts Associated with Atmospheric Blocking over the Northeast Pacific. Journal of Climate, 17: 4823-4839.
    Carranco-Lozada, S. E., Ramos-Leal, J. A., Noyola-Medrano, C., et al., 2013. Effects of Change of Use of Land on an Aquifer in a Tectonically Active Region. Natural Science, 05(2): 259-267.
    Carrasco-Núñez, G., Milány, M. C., Verma, S. P., 1989. Geology of the Zamorano Volcano, State of Querétaro. Mexican Journal of Geological Sciences, 8(2): 194-201
    CEAG, 2000. Follow-up of the Hydrogeological Study and Mathematical Model of the Aquifer of the Irapuato Valley-Valle de Santiago-Huanimaro, Gto. Technical Report, State Water Commission of Guanajuato, Guanajuato. 72
    Chae, G. T., Yun, S. T., Kim, K., et al., 2006. Hydrogeochemistry of Sodium-Bicarbonate Type Bedrock Groundwater in the Pocheon Spa Area, South Korea: Water-Rock Interaction and Hydrologic Mixing. Journal of Hydrology, 321(1/2/3/4): 326-343.
    Cook, P. G., 2003. A Guide to Regional Groundwater Flow in Fractured Rock Aquifers. CSIRO Land and Water, Glen Osmond. 151
    Douglas, M., Clark, I. D., Raven, K., et al., 2000. Groundwater Mixing Dynamics at a Canadian Shield Mine. Journal of Hydrology, 235(1/2): 88-103.
    Han, D. M., Liang, X., Jin, M. G., et al., 2010. Evaluation of Groundwater Hydrochemical Characteristics and Mixing Behavior in the Daying and Qicun Geothermal Systems, Xinzhou Basin. Journal of Volcanology and Geothermal Research, 189(1/2): 92-104.
    Huizar-Álvarez, R., Mitre-Salazar L. M., Marín-Córdova, S., et al., 2011. Subsidence in Celaya, Guanajuato, Central Mexico: Implications for Groundwater Extraction and the Neotectonic Regime. Geofísica Internacional, 50(3): 255-270
    Mifflin, M. D., 1968. Delineation of Groundwater Flow Systems in Nevada, Report series H-W., Desert Research Institute Technical, 4: 111
    Morales-Arredondo, J. I., Armienta, M. A., et al., 2018. Estimación de la Exposición a Elevados Contenidos de Fluoruro en Agua Potable en Distintas Comunidades de Guanajuato, México. Tecnología y Ciencias del Agua, 9(3): 156-179. (in Spanish) doi: 10.24850/j-tyca-2018-03-07(inSpanish)
    Morales-Arredondo, J. I., Esteller-Alberich, M. V., Armienta Hernández, M. A., et al., 2018. Characterizing the Hydrogeochemistry of Two Low-Temperature Thermal Systems in Central Mexico. Journal of Geochemical Exploration, 185: 93-104.
    Morán-Ramírez, J., Ramos-Leal, J. A., 2014. The VISHMOD Methodology with Hydrochemical Modeling in Intermountain (Karstic) Aquifers: Case of the Sierra Madre Oriental, Mexico. Journal of Geography and Geology, 6(2): 132-144.
    Ortega-Gutiérrez, F., Mitre-Salazar, L. M., Roldan, Q. J., et al., 1992. Mapa Geológico de la República Mexicana y Texto Explicativo de la Quinta Edición de la Carta Geológica de la República Mexicana. Esc. 1 : 200 000 UNAM. México
    Pérez-Venzor, J. A., Aranda-Gómez, J. J., McDowell, F., et al., 1996. Geology of the Palo Huérfano Volcano, Guanajuato, Mexico. National Autonomous University of Mexico. Institute of Geology, 13(2): 174-183
    Povară, I., Simion, G., Marin, C., 2008. Thermo-Mineral Waters from the Cerna Valley Basin (Romania). Studia Universitatis Babes-Bolyai, Geologia, 53(2): 41-54.
    Ramos-Leal, J. A., Martínez-Ruiz, V. J., Rangel-Mendez, J. R., et al., 2007. Hydrogeological and Mixing Process of Waters in Aquifers in Arid Regions: A Case Study in San Luis Potosi Valley, Mexico. Environmental Geology, 53(2): 325-337.
    Rodríguez, R., Morales-Arredondo, I., Rodríguez, I., 2016. Geological Differentiation of Groundwater Threshold Concentrations of Arsenic, Vanadium and Fluorine in el Bajio Guanajuatense, Mexico. Geofísica Internacional, 55(1): 5-15
    Trujillo-Candelaria, J. A., 1985. Subsidencia de Terrenos en la Ciudad de Celaya, Gto. Reunión SOBRE ASENTAMIENTOS Regionales: México, DF, Sociedad Mexicana de Suelos, Asociación Geohidrólogica Mexicana, 1-2 (in Spanish)
    Tubau, I., Vázquez-Suñé, E., Jurado, A., et al., 2014. Using EMMA and MIX Analysis to Assess Mixing Ratios and to Identify Hydrochemical Reactions in Groundwater. Science of the Total Environment, 470-471: 1120-1131 doi: 10.1016/j.scitotenv.2013.10.121
    Valentino, G. M., Stanzione, D., 2003. Source Processes of the Thermal Waters from the Phlegraean Fields (Naples, Italy) by Means of the Study of Selected Minor and Trace Elements Distribution. Chemical Geology, 194(4): 245-274.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(264) PDF downloads(17) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint