Alaniz-Álvarez, S. A., Nieto-Samaniego, A., Reyes-Zaragoza, M. A., et al., 2001. Estratigrafía y Deformación Extensional en la Región San Miguel Allende-Querétaro. México. Rev. Mexicana de Ciencias Geológicas, 18(2): 129-148 (in Spanish) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000879196 |
American Public Health Association, AWWA (American Water Works Association), Water Environment Federation), 2005. Standard Methods for the Examination of Water and Wastewater, Amer. Public Health Assn., 21: 258-259 http://www.researchgate.net/publication/224945621_Standard_Methods_for_the_Examination_of_Water_and_Wastewater |
Aranda-Gómez, J. J., Levresse, G., Acheco Martínez, J., et al., 2013. Active Sinking at the Bottom of the Rincón de Parangueo Maar (Guanajuato, México) and Its Probable Relation with Subsidence Faults at Salamanca and Celaya. Boletín de la Sociedad Geológica Mexicana, 65(1): 169-188. https://doi.org/10.18268/bsgm2013v65n1a13 |
Barbieri, M., Nigro, A., Petitta, M., 2017. Groundwater Mixing in the Discharge Area of San Vittorino Plain (Central Italy): Geochemical Characterization and Implication for Drinking Uses. Environmental Earth Sciences, 76(11): 393. https://doi.org/10.1007/s12665-017-6719-1 |
Carrera, M. L., Higgins, R. W., Kousky, V. E., 2004. Downstream Weather Impacts Associated with Atmospheric Blocking over the Northeast Pacific. Journal of Climate, 17: 4823-4839. https://doi.org/10.1175/jcli-3237.1 |
Carranco-Lozada, S. E., Ramos-Leal, J. A., Noyola-Medrano, C., et al., 2013. Effects of Change of Use of Land on an Aquifer in a Tectonically Active Region. Natural Science, 05(2): 259-267. https://doi.org/10.4236/ns.2013.52a038 |
Carrasco-Núñez, G., Milány, M. C., Verma, S. P., 1989. Geology of the Zamorano Volcano, State of Querétaro. Mexican Journal of Geological Sciences, 8(2): 194-201 |
CEAG, 2000. Follow-up of the Hydrogeological Study and Mathematical Model of the Aquifer of the Irapuato Valley-Valle de Santiago-Huanimaro, Gto. Technical Report, State Water Commission of Guanajuato, Guanajuato. 72 |
Chae, G. T., Yun, S. T., Kim, K., et al., 2006. Hydrogeochemistry of Sodium-Bicarbonate Type Bedrock Groundwater in the Pocheon Spa Area, South Korea: Water-Rock Interaction and Hydrologic Mixing. Journal of Hydrology, 321(1/2/3/4): 326-343. https://doi.org/10.1016/j.jhydrol.2005.08.006 |
Cook, P. G., 2003. A Guide to Regional Groundwater Flow in Fractured Rock Aquifers. CSIRO Land and Water, Glen Osmond. 151 |
Douglas, M., Clark, I. D., Raven, K., et al., 2000. Groundwater Mixing Dynamics at a Canadian Shield Mine. Journal of Hydrology, 235(1/2): 88-103. https://doi.org/10.1016/s0022-1694(00)00265-1 |
Han, D. M., Liang, X., Jin, M. G., et al., 2010. Evaluation of Groundwater Hydrochemical Characteristics and Mixing Behavior in the Daying and Qicun Geothermal Systems, Xinzhou Basin. Journal of Volcanology and Geothermal Research, 189(1/2): 92-104. https://doi.org/10.1016/j.jvolgeores.2009.10.011 |
Huizar-Álvarez, R., Mitre-Salazar L. M., Marín-Córdova, S., et al., 2011. Subsidence in Celaya, Guanajuato, Central Mexico: Implications for Groundwater Extraction and the Neotectonic Regime. Geofísica Internacional, 50(3): 255-270 http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0016-71692011000300001&lng=en&nrm=iso&tlng=en |
Mifflin, M. D., 1968. Delineation of Groundwater Flow Systems in Nevada, Report series H-W., Desert Research Institute Technical, 4: 111 |
Morales-Arredondo, J. I., Armienta, M. A., et al., 2018. Estimación de la Exposición a Elevados Contenidos de Fluoruro en Agua Potable en Distintas Comunidades de Guanajuato, México. Tecnología y Ciencias del Agua, 9(3): 156-179. https://doi.org/10.24850/j-tyca-2018-03-07 (in Spanish) doi: 10.24850/j-tyca-2018-03-07(inSpanish) |
Morales-Arredondo, J. I., Esteller-Alberich, M. V., Armienta Hernández, M. A., et al., 2018. Characterizing the Hydrogeochemistry of Two Low-Temperature Thermal Systems in Central Mexico. Journal of Geochemical Exploration, 185: 93-104. https://doi.org/10.1016/j.gexplo.2017.11.006 |
Morán-Ramírez, J., Ramos-Leal, J. A., 2014. The VISHMOD Methodology with Hydrochemical Modeling in Intermountain (Karstic) Aquifers: Case of the Sierra Madre Oriental, Mexico. Journal of Geography and Geology, 6(2): 132-144. https://doi.org/10.5539/jgg.v6n2p132 |
Ortega-Gutiérrez, F., Mitre-Salazar, L. M., Roldan, Q. J., et al., 1992. Mapa Geológico de la República Mexicana y Texto Explicativo de la Quinta Edición de la Carta Geológica de la República Mexicana. Esc. 1 : 200 000 UNAM. México |
Pérez-Venzor, J. A., Aranda-Gómez, J. J., McDowell, F., et al., 1996. Geology of the Palo Huérfano Volcano, Guanajuato, Mexico. National Autonomous University of Mexico. Institute of Geology, 13(2): 174-183 |
Povară, I., Simion, G., Marin, C., 2008. Thermo-Mineral Waters from the Cerna Valley Basin (Romania). Studia Universitatis Babes-Bolyai, Geologia, 53(2): 41-54. https://doi.org/10.5038/1937-8602.53.2.4 |
Ramos-Leal, J. A., Martínez-Ruiz, V. J., Rangel-Mendez, J. R., et al., 2007. Hydrogeological and Mixing Process of Waters in Aquifers in Arid Regions: A Case Study in San Luis Potosi Valley, Mexico. Environmental Geology, 53(2): 325-337. https://doi.org/10.1007/s00254-007-0648-3 |
Rodríguez, R., Morales-Arredondo, I., Rodríguez, I., 2016. Geological Differentiation of Groundwater Threshold Concentrations of Arsenic, Vanadium and Fluorine in el Bajio Guanajuatense, Mexico. Geofísica Internacional, 55(1): 5-15 http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0016-71692016000100005 |
Trujillo-Candelaria, J. A., 1985. Subsidencia de Terrenos en la Ciudad de Celaya, Gto. Reunión SOBRE ASENTAMIENTOS Regionales: México, DF, Sociedad Mexicana de Suelos, Asociación Geohidrólogica Mexicana, 1-2 (in Spanish) |
Tubau, I., Vázquez-Suñé, E., Jurado, A., et al., 2014. Using EMMA and MIX Analysis to Assess Mixing Ratios and to Identify Hydrochemical Reactions in Groundwater. Science of the Total Environment, 470-471: 1120-1131 doi: 10.1016/j.scitotenv.2013.10.121 |
Valentino, G. M., Stanzione, D., 2003. Source Processes of the Thermal Waters from the Phlegraean Fields (Naples, Italy) by Means of the Study of Selected Minor and Trace Elements Distribution. Chemical Geology, 194(4): 245-274. https://doi.org/10.1016/s0009-2541(02)00196-1 |