Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 3
Jul 2020
Turn off MathJax
Article Contents
Esra Yildirim, Nail Yildirim, Cahit Dönmez, Kurtuluş Günay, Taner Korkmaz, Mustafa Akyildiz, Burcu Gören. Composition of Pancarli Magmatic Ni-Cu±(PGE) Sulfide Deposit in the Cadomian-Avalonian Belt, Eastern Turkey. Journal of Earth Science, 2020, 31(3): 536-550. doi: 10.1007/s12583-020-1299-5
Citation: Esra Yildirim, Nail Yildirim, Cahit Dönmez, Kurtuluş Günay, Taner Korkmaz, Mustafa Akyildiz, Burcu Gören. Composition of Pancarli Magmatic Ni-Cu±(PGE) Sulfide Deposit in the Cadomian-Avalonian Belt, Eastern Turkey. Journal of Earth Science, 2020, 31(3): 536-550. doi: 10.1007/s12583-020-1299-5

Composition of Pancarli Magmatic Ni-Cu±(PGE) Sulfide Deposit in the Cadomian-Avalonian Belt, Eastern Turkey

doi: 10.1007/s12583-020-1299-5
More Information
  • Corresponding author: Esra Yildirim, ORCID:0000-0002-0823-988X, eozyildirim@gmail.com
  • Received Date: 25 Sep 2019
  • Accepted Date: 17 Dec 2019
  • Publish Date: 01 Mar 2020
  • Pancarli Ni-Cu±(PGE) sulfide deposit occurs in the Neoproterozoic basement complex of the Bitlis massif, which is one of the Andean-type active continental margin fragments with arc-type assemblages represented by the Cadomian orogenic belt. Pancarli sulfides are associated with quartzo-feldspathic gneisses (country rock) and mafic intrusions (host rock). Composed of only semi-massive ore, the Ni-Cu±(PGE) sulfide deposit is a small-scale deposit, and it does not contain net-textured and disseminated ore. The mineral assemblage comprises pyrrhotite, pentlandite, and chalcopyrite. The semi-massive ore samples contain 2.2 wt.%-2.9 wt.% Ni, 0.8 wt.%-2.2 wt.% Cu (Cu/(Cu+Ni)=0.2-0.5) and 0.13 wt.%-0.17 wt.% Co. The Cu/Ni ratios (average 0.57) are consistent with the segregation of sulfides from a basaltic magma. Low Pt+Pd100%S values of 0.08 ppm-0.89 ppm, relatively low Pt/Pd ratios of 0.2-1.4, and Pd/Ir ratios of 4.5-39 have also been revealed. These values demonstrate that the magma reached S saturation before its emplacement and the mineralization with high Cu/Pd ratios formed by sulfides segregated from a PGE-depleted magma. δ34S isotope values (average -3.1‰) of Pancarli sulfides are lower than mantle source. Negative δ34S value indicates contamination from surrounding rocks. Concerning the composition, remobilization style and magma type, the Pancarli Ni-Cu±(PGE) sulfide deposit is similar to the deposits associated with Andean-type magmatic arcs located in the convergent plate margin settings.

     

  • loading
  • Arndt, N. T., Lesher, C. M., Czamanske, G. K., 2005. Mantle-Derived Magmas and Magmatic Ni-Cu-PGE Deposits. In:Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., et al., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists. 5-24. https://doi.org/10.5382/av100.02
    Barnes, S.-J., Couture, J. F., Sawyer, E. W., et al., 1993. Nickel-Copper Occurrences in the Belleterre-Angliers Belt of the Pontiac Subprovince and the Use of Cu-Pd Ratios in Interpreting Platinum-Group Element Distributions. Economic Geology, 88(6):1402-1418. https://doi.org/10.2113/gsecongeo.88.6.1402
    Barnes, S.-J., Francis, D., 1995. The Distribution of Platinum-Group Elements, Nickel, Copper, and Gold in the Muskox Layered Intrusion, Northwest Territories, Canada. Economic Geology, 90(1):135-154. https://doi.org/10.2113/gsecongeo.90.1.135
    Barnes, S.-J., Gole, M. J., Hill, R. E. T., 1988. The Agnew Nickel Deposit, Western Australia; Part Ⅱ, Sulfide Geochemistry, with Emphasis on the Platinum-Group Elements. Economic Geology, 83(3):537-550. https://doi.org/10.2113/gsecongeo.83.3.537
    Barnes, S.-J., Lightfoot, P. C., 2005. Formation of Magmatic Nickel Sulfide Ore Deposits and Processes Affecting Their Copper and Platinum Group Element Contents. Economic Geology. 100th Anniversary Volume. 179-213
    Barnes, S.-J., Maier, W. D., 1999. The Fractionation of Ni, Cu, and the Noble Metals in Silicate and Sulphide Liquids. Geological Association of Canada Short Course Notes, 13:69-106 https://www.researchgate.net/publication/254300308_THE_FRACTIONATION_OF_NI_CU_AND_THE_NOBLE_METALS_IN_SILICATE_AND_SULFIDE_LIQUIDS
    Barnes, S.-J., Makovicky, E., Makovicky, M., et al., 1997a. Partition Coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between Monosulphide Solid Solution and Sulphide Liquid and the Formation of Compositionally Zoned Ni-Cu Sulphide Bodies by Fractional Crystallization of Sulphide Liquid. Canadian Journal of Earth Sciences, 34(4):366-374. https://doi.org/10.1139/e17-032
    Barnes, S.-J., Zientek, M., Severson, M. J., 1997b. Ni, Cu, Au and Platinum Group Element Contents of Sulfides Associated with Intraplate Magmatism:A Synthesis. Canadian Journal of Earth Sciences, 34(4):337-351. https://doi.org/10.1139/e17-030
    Barnes, S.-J., Naldrett, A. J., Gorton, M. P., 1985. The Origin of the Fractionation of Platinum-Group Elements in Terrestrial Magmas. Chemical Geology, 53(3/4):303-323. https://doi.org/10.1016/0009-2541(85)90076-2 doi: 10.1016-0009-2541(85)90076-2/
    Barrett, F. M., Binns, R. A., Groves, D. I., et al., 1977. Structural History and Metamorphic Modification of Archean Volcanic-Type Nickel Deposits, Yilgarn Block, Western Australia. Economic Geology, 72(7):1195-1223. https://doi.org/10.2113/gsecongeo.72.7.1195
    Bédard, P., Barnes, S.-J., 2002. A Comparison of the Capacity of FAICP-MS and FA-INAA to Determine Platinum-Group Elements and Gold in Geological Samples. Journal of Radioanalytical and Nuclear Chemistry, 254:319-329. https://doi.org/10.1023/a:1021632118200 doi: 10.1023/A:1021632118200
    Boer, R. H., Meyer, F. M., Cawthorn, R. G., 1994. Stable Isotopic Evidence for Crustal Contamination and Desulfidation of the Cupriferous Koperberg Suite, Namaqualand, South Africa. Geochimica et Cosmochimica Acta, 58(12):2677-2687. https://doi.org/10.1016/0016-7037(94)90137-6
    Boray, A., 1973. The Structure and Metamorphism of the Bitlis Area, Southeast Turkey: [Dissertation]. Londra University, England. 233
    Boyd, R., Mathiesen C. O., 1979. The Nickel Mineralization of the Rana Mafic Intrusion, Nordland, Norway. The Canadian Mineralogist, 17(2):287-298 https://www.researchgate.net/publication/288352825_The_nickel_mineralization_of_the_Rana_mafic_intrusion_Nordland_Norway
    Boyd, R., McDade, J. M., Millard, H. T., et al., 1987. Platinium Metal Geochemistry of the Bruvann Nickel-Copper Deposit, Rána, North Norway. Norsk Geologisk Tidsskrift, Oslo. 67: 205-213
    Çağatay, M. N., 1987. The Pancarli Nickel-Copper Sulfide Mineralization, Eastern Turkey. Mineralium Deposita, 22(3):163-171. https://doi.org/10.1007/bf00206605
    Casquet, C., Galindo, C., Tornos, F., et al., 2001. The Aguablanca Cu-Ni Ore Deposit (Extremadura, Spain), a Case of Synorogenic Orthomagmatic Mineralization:Age and Isotope Composition of Magmas (Sr, Nd) and Ore (S). Ore Geology Reviews, 18(3/4):237-250. https://doi.org/10.1016/s0169-1368(01)00033-6
    Cawthorn, R. G., Meyer, F. M., 1993. Petrochemistry of the Okiep Copper District Basic Intrusive Bodies, Northwestern Cape Province, South Africa. Economic Geology, 88(3):590-605. https://doi.org/10.2113/gsecongeo.88.3.590
    Crocket, J. H., 2002. Platinum-Group Element Geochemistry of Mafic and Ultramafic Rocks. Canadian Institute Mining Metallurgy and Petroleum, 54:177-210 doi: 10.1016-0301-9268(91)90045-C/
    Distler, V. V., Malesvsky, A. Y., Laputina, I. P., 1977. Distribution of Platinoids between Pyrrhotite and Pentlandite in Crystallization of a Sulfide Melt. Geochemica International, 14:30-40 https://www.researchgate.net/publication/285008791_Distribution_of_platinoids_between_pyrrhotite_and_pentlandite_in_crystallization_of_a_sulfide_melt
    Durazzo, A., Taylor, L. A., 1982. Exsolution in the Mss-Pentlandite System:Textural and Genetic Implications for Ni-Sulfide Ores. Mineralium Deposita, 17(3):313-332. https://doi.org/10.1007/bf00204463
    Eckstrand, O. R., Hulbert, L. J., 1987. Selenium and the Source of Sulfur in Magmatic Nickel and Platinum Deposits. Geol. Assoc. Can.-Min. Assoc. Can. Abstr. Programs 12.40
    Fleet, M. E., Chryssoulis, S. L., Stone, W. E., et al., 1993. Partitioning of Platinum-Group Elements and Au in the Fe-Ni-Cu-S System:Experiments on the Fractional Crystallization of Sulfide Melt. Contributions to Mineralogy and Petrology, 115(1):36-44. https://doi.org/10.1007/bf00712976 doi: 10.1007/BF00712976
    Genç, S., 1977. Geological Evolution of the Southern Margin of the Bitlis Massif, Lice-Kulp District, SE Turkey: [Dissertation]. Wales University, Cardiff. 281
    Genç, S., 1985. Discussion on the Parent Problem of Gneisses and Amphibolites in the Lice-Kulp (Diyarbakir) and Çö kekyazi-Gö kay Areas of the Bitlis Massif. Geological Engineering, 23:31-38
    Genç, S., 1990. Petrography, Metamorphism, and Genesis of Metamorphics in the Çö kekyazi Gö kay (Hizan, Bitlis) Area of the Bitlis Massif. Geological Bulletin of Turkey, 33:1-14
    Göncüoğlu, M. C., Turhan, N., 1984. Geology of the Bitlis Metamorphic Belt. In: Tekeli, O., Gö ncüoğlu, M. C., eds., International Symposium on Geology of the Taurus Belt Proceedings. Mineral Research and Exploration Institute of Turkey, Ankara. 237-244
    Hall, R., 1976. Ophiolite Emplacement and the Evolution of the Taurus Suture Zone, Southeastern Turkey. Geological Society of America Bulletin, 87(7):1078. https://doi.org/10.1130/0016-7606(1976)87<1078:oeateo>2.0.co; 2 doi: 10.1130/0016-7606(1976)87<1078:OEATEO>2.0.CO;2
    Helvaci, C., Griffin, W. L., 1984. Rb-Sr Geochronology of the Bitlis Massif, Avnik (Bingö l) Area, S.E. Turkey. Geological Society, London, Special Publications, 17(1):403-413. https://doi.org/10.1144/gsl.sp.1984.017.01.28 doi: 10.1144/GSL.SP.1984.017.01.28
    Hirano, H., Boyali, I., 1980. Geology of the Nickel-Copper Deposits in Pancarli Area (Bitlis Massif, Eastern Turkey). General Directorate of Mineral Research and Exploration Report No. 1746.33 Ankara
    Hoatson, D. M., Blake, D. H., 2000. Geology and Economic Potential of the Palaeoproterozoic Layered Mafic-Ultramafic Intrusions in the East Kimberley, Western Australia. Australian Geological Survey Organization, Canberra. 246-469
    Hoffman, E. L., Naldrett, A. J., Alcock, R. A., et al., 1979. The Noble Metal Content of Ore in the Levack West and Little Stobie Mines, Ontario. Canadian Mineralogist, 17:437-451 https://www.researchgate.net/publication/292288038_The_noble_metal_content_of_ore_in_the_Levack_West_and_Little_Stobie_mines_Ontario
    Huang, S. F., Wang, W., 2019. Origin of the Fanjingshan Mafic-Ultramafic Rocks, Western Jiangnan Orogen, South China:Implications for PGE Fractionation and Mineralization. Journal of Earth Science, 30(2):258-271. https://doi.org/10.1007/s12583-018-1201-x
    Konnunaho, J. P., Hanski, E. J., Bekker, A., et al., 2013. The Archean Komatiite-Hosted, PGE-Bearing Ni-Cu Sulfide Deposit at Vaara, Eastern Finland:Evidence for Assimilation of External Sulfur and Post-Depositional Desulfurization. Mineralium Deposita, 48(8):967-989. https://doi.org/10.1007/s00126-013-0469-0
    Li, C., Barnes, S.-J., Makovicky, E., et al., 1996. Partitioning of Nickel, Copper, Iridium, Rhenium, Platinum, and Palladium between Monosulphide Solid Solution and Sulphide Liquid:Effects of Composition and Temperature. Geochimica et Cosmochimica Acta, 60:1231-1238. https://doi.org/10.1016/0016-7037(96)00009-9
    Li, C., Naldrett, A. J., 1999. Geology and Petrology of the Voisey's Bay Intrusion:Reaction of Olivine with Silicate and Sulfide Liquids. Lithos, 47(1/2):1-13. https://doi.org/10.1016/s0024-4937(99)00005-5 doi: 10.1016-S0024-4937(99)00005-5/
    Maier, W. D., 2000. Platinum-Group Elements in Cu-Sulphide Ores at Carolusberg and East Okiep, Namaqualand, South Africa. Mineralium Deposita, 35(5):422-429. https://doi.org/10.1007/s001260050253
    Maier, W. D., Andreoli, M. A. G., Groves, D. I., et al., 2012. Petrogenesis of Cu-Ni Sulphide Ores from O'okiep and Kliprand, Namaqualand, South Africa:Constraints from Chalcophile Metal Contents. South African Journal of Geology, 115(4):499-514. https://doi.org/10.2113/gssajg.115.4.499
    Maier, W. D., Barnes, S.-J., 1996. Unusually High Concentrations of Magnetite at Caraiba and Other Cu-Sulfide Deposits in the Curaçá Valley, Bahia, Brazil. The Canadian Mineralogist, 34:717-731
    Maier, W. D., Barnes, S.-J., 1999. The Origin of Cu Sulfide Deposits in the Curaca Valley, Bahia, Brazil:Evidence from Cu, Ni, Se, and Platinum- Group Element Concentrations. Economic Geology, 94(2):165-183. https://doi.org/10.2113/gsecongeo.94.2.165
    Maier, W. D., Barnes, S.-J., Chinyepi, G., et al., 2008. The Composition of Magmatic Ni-Cu-(PGE) Sulfide Deposits in the Tati and Selebi-Phikwe Belts of Eastern Botswana. Mineralium Deposita, 43(3):373-373. https://doi.org/10.1007/s00126-007-0169-8
    Makkonen, H., 2015. Ni Deposits of the Vammala and Kotalahti Belt. In: Maier, W. D., O'Brien, H., Lahtinen, R., eds., Mineral Deposits of Finland. Elsevier, Amsterdam. 253-285
    Manor, M. J., 2014. Convergent Margin Ni-Cu-PGE Deposits: Geology, Geochronology, and Geochemistry of the Giant Mascot Magmatic Sulfide Deposit, Hope, British Columbia: [Dissertation]. University of British Columbia, Vancouver. 371
    Mavrogenes, J. A., O'Neill, H. S. C., 1999. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas. Geochimica et Cosmochimica Acta, 63(7/8):1173-1180. https://doi.org/10.1016/s0016-7037(98)00289-0 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5760f07732690020881e6fa759990323
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_fb4dd133285d7a6db94ef688ee319429
    MTA, 2002. Geological Map of Turkey, Scale 1/500 000. Mineral Research and Exploration, Ankara
    Mungall, J. E., Hanley, J. J., Arndt, N. T., et al., 2006. Evidence from Meimechites and Other Low-Degree Mantle Melts for Redox Controls on Mantle-Crust Fractionation of Platinum-Group Elements. Proceedings of the National Academy of Sciences, 103(34):12695-12700. https://doi.org/10.1073/pnas.0600878103
    Naldrett, A. J., 1989. Magmatic Sulphide Deposits. Oxford Monographs on Geology and Geophysics, No. 14. Oxford University Press, New York, Oxford. 186
    Naldrett, A. J., 2004. Magmatic Sulfide Deposits. Springer, Berlin, Heidelberg, New York. 727
    Naldrett, A. J., Asif, M., Krstic, S., et al., 2000. The Composition of Mineralization at the Voisey's Bay Ni-Cu Sulfide Deposit, with Special Reference to Platinum-Group Elements. Economic Geology, 95(4):845-865. https://doi.org/10.2113/gsecongeo.95.4.845 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e96dbee790457ceb2b61f98c00f441a
    Oberhänsli, R., Koralay, E., Candan, O., et al., 2013. Late Cretaceous Eclogitic High-Pressure Relics in the Bitlis Massif. Geodinamica Acta, 26(3/4):175-190. https://doi.org/10.1080/09853111.2013.858951 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=06f596c252dc904b7cbea6ef0905d1c2
    Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. In:Valley J. W., Taylor, H. P. Jr., O'Neil, J. R., eds., Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy and Geochemistry, 16:491-559 http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201801010
    Okay, A. I., Arman, M. B., Göncüoğlu, M. C., 1985. Petrology and Phase Relations of the Kyanite-Eclogites from Eastern Turkey. Contributions to Mineralogy and Petrology, 91(2):196-204. https://doi.org/10.1007/bf00377767 doi: 10.1007/BF00377767
    Paktunc, A. D., 1990. Comparative Geochemistry of Platinum-Group Elements of Nickel-Copper Sulfide Occurrences Associated with Mafic-Ultramafic Intrusions in the Appalachian Orogen. Journal of Geochemical Exploration, 37(1):101-111. https://doi.org/10.1016/0375-6742(90)90085-o doi: 10.1016/0375-6742(90)90085-O
    Peltonen, P., 2005. Mafic-Ultramafic Intrusions of the Svecofennian Orogeny. In: Lehtinen, M., Nurmi, P. A., Rä mö, O. T., eds., Precambrian of Finland-A Key to the Evolution of the Fennoscandian Shield. Elsevier, Amsterdam. 413-447
    Perinçek, D., 1980. Volcanics of Triassic Age in Bitlis Metamorphic Rocks. Geological Bulletin of Turkey, 23:201-211
    Piña, R., Lunar, R., Ortega, L., et al., 2006. Petrology and Geochemistry of Mafic-Ultramafic Fragments from the Aguablanca Ni-Cu Ore Breccia, Southwest Spain. Economic Geology, 101(4):865-881. https://doi.org/10.2113/gsecongeo.101.4.865
    Queffurus, M., Barnes, S.-J., 2015. A Review of Sulfur to Selenium Ratios in Magmatic Nickel-Copper and Platinum-Group Element Deposits. Ore Geology Reviews, 69:301-324. https://doi.org/10.1016/j.oregeorev.2015.02.019
    Ripley, E. M., 1999. Systematics of Sulphur and Oxygen Isotopes in Mafic Igneous Rocks and Related Cu-Ni-PGE Mineralization. In: Keays, R. R., Lesher, C. M., Lightfoot, P. C., et al., eds., Dynamic Processes in Magmatic Ore Deposits and Their Application in Mineral Exploration. Geological Association of Canada, Short Course Notes, Volume 13.133-158
    Ripley, E. M., Li, C. S., 2013. Sulfide Saturation in Mafic Magmas:Is External Sulfur Required for Magmatic Ni-Cu-(PGE) Ore Genesis?. Economic Geology, 108(1):45-58. https://doi.org/10.2113/econgeo.108.1.45
    Ripley, E. M., Li, C., Shin, D., 2002. Paragneiss Assimilation in the Genesis of Magmatic Ni-Cu-Co Sulfide Mineralization at Voisey's Bay, Labrador: 34S, 13C, and Se/S Evidence. Economic Geology, 97(6):1307-1318. https://doi.org/10.2113/gsecongeo.97.6.1307
    Ripley, E. M., Lightfoot, P. C., Li, C. S., et al., 2003. Sulfur Isotopic Studies of Continental Flood Basalts in the Noril'sk Region:Implications for the Association between Lavas and Ore-Bearing Intrusions. Geochimica et Cosmochimica Acta, 67(15):2805-2817. https://doi.org/10.1016/s0016-7037(03)00102-9 doi: 10.1016/S0016-7037(03)00102-9
    Ripley, E. M., Park, Y. R., Li, C. S., et al., 1999. Sulfur and Oxygen Isotopic Evidence of Country Rock Contamination in the Voisey's Bay Ni-Cu-Co Deposit, Labrador, Canada. Lithos, 47(1/2):53-68. https://doi.org/10.1016/s0024-4937(99)00007-9
    Ripley, E. M., Sarkar, A., Li, C., 2005. Mineralogic and Stable Isotope Studies of Hydrothermal Alteration at the Jinchuan Ni-Cu Deposit, China. Economic Geology, 100(7):1349-1361. https://doi.org/10.2113/gsecongeo.100.7.1349
    Schulz, K. J., Chandler, V. W., Suzanne, W., et al., 2010. Magmatic Sulfide Rich Nickel-Copper Deposits Related to Picrite and (or) Tholeiitic Basalt Dike Sill Complexes: A Preliminary Deposit Model. U.S. Geological Survey Open-File Report 2010-1179.25
    Seat, Z., Beresford, S. W., Grguric, B. A., et al., 2009. Reevaluation of the Role of External Sulfur Addition in the Genesis of Ni-Cu-PGE Deposits:Evidence from the Nebo-Babel Ni-Cu-PGE Deposit, West Musgrave, Western Australia. Economic Geology, 104(4):521-538. https://doi.org/10.2113/gsecongeo.104.4.521
    Şengün, M., 1993. The Metamorphism and the Relationship between Infra and Suprastructures of the Bitlis Massif-Turkey. Bull. Min. Res. Expl., 115:1-13
    Şengün, M., Ç ağlayan, A., Sevin, M., 1991. The Bitlis Massif: Geology of Bitlis-Tatvan-Hizan-Şirvan Area. General Directorate of the Mineral Research and Exploration Report No. 9105.200
    Su, B. X., Qin, K. Z., Sun, H., et al., 2012. Olivine Compositional Mapping of Mafic-Ultramafic Complexes in Eastern Xinjiang (NW China):Implications for Cu-Ni Mineralization and Tectonic Dynamics. Journal of Earth Science, 23(1):41-53. https://doi.org/10.1007/s12583-012-0232-y
    Thakurta, J., Ripley, E. M., Li, C., 2014. Platinum Group Element Geochemistry of Sulfide-Rich Horizons in the Ural-Alaskan-Type Ultramafic Complex of Duke Island, Southeastern Alaska. Economic Geology, 109(3):643-659. https://doi.org/10.2113/econgeo.109.3.643
    Thompson, J. F. H., Naldrett, A. J., 1984. Sulphide-Silicate Reactions as a Guide to Ni-Cu-Co Mineralization in Central Maine. Inst. Min. and Metall., London
    Tornos, F., Casquet, C., Galindo, C., et al., 2001. A New Style of Ni-Cu Mineralization Related to Magmatic Breccia Pipes in a Transpressional Magmatic Arc, Aguablanca, Spain. Mineralium Deposita, 36(7):700-706. https://doi.org/10.1007/s001260100204
    Tornos, F., Galindo, C., Casquet, C., et al., 2006. The Aguablanca Ni-(Cu) Sulfide Deposit, SW Spain:Geologic and Geochemical Controls and the Relationship with a Midcrustal Layered Mafic Complex. Mineralium Deposita, 41(8):737-769. https://doi.org/10.1007/s00126-006-0090-6
    Türkünal, S., 1980. Geology of the Eastern and Southeastern Anatolia. Chamber of Geophysical Engineers, Ankara, 8.64
    Ustaömer, P. A., Ustaömer, T., Collins, A. S., et al., 2009. Cadomian (Ediacaran- Cambrian) Arc Magmatism in the Bitlis Massif, SE Turkey:Magmatism along the Developing Northern Margin of Gondwana. Tectonophysics, 473(1/2):99-112. https://doi.org/10.1016/j.tecto.2008.06.010
    Ustaömer, P. A., Ustaömer, T., Gerdes, A., et al., 2012. Evidence of Precambrian Sedimentation/Magmatism and Cambrian Metamorphism in the Bitlis Massif, SE Turkey Utilising Whole-Rock Geochemistry and U-Pb LA-ICP-MS Zircon Dating. Gondwana Research, 21(4):1001-1018. https://doi.org/10.1016/j.gr.2011.07.012
    Yildirim, N., Gö ren, B., Dö nmez, C., et al., 2016. Magmatic Ni-Sulfide Mineralization in the Precambrian Massif, Eastern Turkey (Bitlis- Pancarli). 69th Geological Congress of Turkey, MTA Ankara
    Yilmaz, O., Michel, R., Vialette, Y., et al., 1981. Réinterprétation des Données Isotopiques Rb-Sr Obtenues Sur Les Métamorphites de La Partie Méridionale Du Massif de Bitlis (Turquie). Sciences Géologiques Bulletin, 34(1):59-73. https://doi.org/10.3406/sgeol.1981.1590
    Yilmaz, Y., Yiğitbaş, E., Genç, Ş. C., 1993. Ophiolitic and Metamorphic Assemblages of Southeast Anatolia and Their Significance in the Geological Evolution of the Orogenic Belt. Tectonics, 12(5):1280-1297. https://doi.org/10.1029/93tc00597 doi: 10.1029/93TC00597
    Zientek, M. L., Likhachev, A. P., Kunilov, V. E., et al., 1994. Cumulus Processes and the Composition of Magmatic Ore Deposits: Examples from the Talnakh District, Russia. Ontario Geological Survey Special Publication, Ontario. 5: 373-392
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(497) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return