Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 3
Jul 2020
Turn off MathJax
Article Contents
Zhenjiang Wang, Zhenmin Jin. Reaction Infiltration Instabilities in Partially Molten Peridotite and Implications for Driving the Transport of Sulfide Liquid. Journal of Earth Science, 2020, 31(3): 447-455. doi: 10.1007/s12583-020-1301-2
Citation: Zhenjiang Wang, Zhenmin Jin. Reaction Infiltration Instabilities in Partially Molten Peridotite and Implications for Driving the Transport of Sulfide Liquid. Journal of Earth Science, 2020, 31(3): 447-455. doi: 10.1007/s12583-020-1301-2

Reaction Infiltration Instabilities in Partially Molten Peridotite and Implications for Driving the Transport of Sulfide Liquid

doi: 10.1007/s12583-020-1301-2
More Information
  • Corresponding author: Zhenjiang Wang, ORCID:0000-0001-7783-6648.E-mail:zhenjiangwang@cug.edu.cn
  • Received Date: 26 Jan 2020
  • Accepted Date: 25 Feb 2020
  • Publish Date: 01 Jun 2020
  • Reaction infiltration instability (RII) can cause the formation of melt channels and potentially facilitate the physical transport of sulfide liquid, which contributes to the geochemical evolution of chalcophile elements in the lithospheric mantle. This study conducted some two-layer reaction experiments to explore the feasibility of reaction-driven sulfide migration along high-velocity silicate-melt channels. With increasing duration, the formation of more silicate-melt channels and the transport of more sulfide droplets into a depleted peridotite were observed due to the increase of the local permeability. However, at a longer duration, the presence of some melt-channel relics implies that melt channels are temporary and ultimately closed when the reaction infiltration of silicate melt reached equilibrium in the depleted peridotite. Furthermore, theoretical calculations indicate that the RII of the system is suppressed, which impedes the formation of melt channels. The homogeneous distribution of silicate melt in a sulfide-free experiment implies that the Zener pinning of sulfide probably enhances the RII, thereby facilitating the formation of temporary melt channels. Therefore, this study demonstrates that sufficient silicate melt disequilibrium with solid phases in a liquid source potentially promotes the mechanical extraction of sulfides during reaction infiltration of silicate melt.

     

  • loading
  • Aharonov, E., Whitehead, J. A., Kelemen, P. B., et al., 1995. Channeling Instability of Upwelling Melt in the Mantle. Journal of Geophysical Research:Solid Earth, 100(B10):20433-20450. https://doi.org/10.1029/95jb01307
    Bagdassarov, N., Golabek, G. J., Solferino, G., et al., 2009. Constraints on the Fe-S Melt Connectivity in Mantle Silicates from Electrical Impedance Measurements. Physics of the Earth and Planetary Interiors, 177(3/4):139-146. https://doi.org/10.1016/j.pepi.2009.08.003
    Bockrath, C., Ballhaus, C., Holzheid, A., 2004. Fractionation of the Platinum-Group Elements during Mantle Melting. Science, 305(5692):1951-1953. https://doi.org/10.1126/science.1100160
    Bruhn, D., Groebner, N., Kohlstedt, D. L., 2000. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation. Nature, 403(6772):883-886. https://doi.org/10.1038/35002558
    Bulau, J. R., Waff, H. S., Tyburczy, J. A., 1979. Mechanical and Thermodynamic Constraints on Fluid Distribution in Partial Melts. Journal of Geophysical Research, 84(B11):6102-6108. https://doi.org/10.1029/jb084ib11p06102
    Chadam, J., Hoff, D., Merino, E., et al., 1986. Reactive Infiltration Instabilities. IMA Journal of Applied Mathematics, 36(3):207-221. https://doi.org/10.1093/imamat/36.3.207
    Daines, M. J., Kohlstedt, D. L., 1994. The Transition from Porous to Channelized Flow due to Melt/rock Reaction during Melt Migration. Geophysical Research Letters, 21(2):145-148. https://doi.org/10.1029/93gl03052
    Du, W., Li, L., Weidner, D. J., 2018. Time Scale of Partial Melting of KLB-1 Peridotite:Constrained from Experimental Observation and Thermodynamic Models. Journal of Earth Science, 29(2):245-254. https://doi.org/10.1007/s12583-018-0839-8
    Edwards, B. R., Russell, J. K., 1996. A Review and Analysis of Silicate Mineral Dissolution Experiments in Natural Silicate Melts. Chemical Geology, 130(3/4):233-245. https://doi.org/10.1016/0009-2541(96)00025-3
    Faul, U. H., 1997. Permeability of Partially Molten Upper Mantle Rocks from Experiments and Percolation Theory. Journal of Geophysical Research:Solid Earth, 102(B5):10299-10311. https://doi.org/10.1029/96jb03460
    Groebner, N., Kohlstedt, D. L., 2006. Deformation-Induced Metal Melt Networks in Silicates:Implications for Core-Mantle Interactions in Planetary Bodies. Earth and Planetary Science Letters, 245(3/4):571-580. https://doi.org/10.1016/j.epsl.2006.03.029
    Holtzman, B. K., Kohlstedt, D. L., 2007. Stress-Driven Melt Segregation and Strain Partitioning in Partially Molten Rocks:Effects of Stress and Strain. Journal of Petrology, 48(12):2379-2406. https://doi.org/10.1093/petrology/egm065
    Hsiang, H. I., Hsi, C. S., Lin, R. L., et al., 2015. Addition of a Minor Amount of Co2Y Effects on the Microstructure, Magnetic Properties and DC-Bias Superposition Characteristics of Low-Fire NiCuZn Ferrites. Materials Chemistry and Physics, 151:295-300. https://doi.org/10.1016/j.matchemphys.2014.11.069
    Jiang, H., Jiang, S. Y., Li, W. Q., et al., 2019. Timing and Source of the Hermyingyi W-Sn Deposit in Southern Myanmar, SE Asia:Evidence from Molybdenite Re-Os Age and Sulfur Isotopic Composition. Journal of Earth Science, 30(1):70-79. https://doi.org/10.1007/s12583-018-0860-y
    Jones, D. W. R., Katz, R. F., 2018. Reaction-Infiltration Instability in a Compacting Porous Medium. Journal of Fluid Mechanics, 852:5-36. https://doi.org/10.1017/jfm.2018.524
    Jugo, P. J., 2009. Sulfur Content at Sulfide Saturation in Oxidized Magmas. Geology, 37(5):415-418. https://doi.org/10.1130/g25527a.1
    Kelemen, P. B., Whitehead, J. A., Aharonov, E., et al., 1995. Experiments on Flow Focusing in Soluble Porous Media, with Applications to Melt Extraction from the Mantle. Journal of Geophysical Research:Solid Earth, 100(B1):475-496. https://doi.org/10.1029/94jb02544
    Kress, V., Greene, L. E., Ortiz, M. D., et al., 2008. Thermochemistry of Sulfide Liquids IV:Density Measurements and the Thermodynamics of O-S-Fe-Ni- Cu Liquids at Low to Moderate Pressures. Contributions to Mineralogy and Petrology, 156(6):785-797. https://doi.org/10.1007/s00410-008-0315-z
    Laumonier, M., Farla, R., Frost, D. J., et al., 2017. Experimental Determination of Melt Interconnectivity and Electrical Conductivity in the Upper Mantle. Earth and Planetary Science Letters, 463:286-297. https://doi.org/10.1016/j.epsl.2017.01.037
    Le Vaillant, M., Barnes, S. J., Mungall, J. E., et al., 2017. Role of Degassing of the Noril'sk Nickel Deposits in the Permian-Triassic Mass Extinction Event. Proceedings of the National Academy of Sciences, 114(10):2485-2490. https://doi.org/10.1073/pnas.1611086114
    Lorand, J. P., Alard, O., Luguet, A., 2010. Platinum-Group Element Micronuggets and Refertilization Process in Lherz Orogenic Peridotite (Northeastern Pyrenees, France). Earth and Planetary Science Letters, 289(1/2):298-310. https://doi.org/10.1016/j.epsl.2009.11.017
    Lorand, J. P., Luguet, A., Alard, O., 2013. Platinum-Group Element Systematics and Petrogenetic Processing of the Continental Upper Mantle:A Review. Lithos, 164-167:2-21. https://doi.org/10.1016/j.lithos.2012.08.017
    McKenzie, D., 1989. Some Remarks on the Movement of Small Melt Fractions in the Mantle. Earth and Planetary Science Letters, 95(1/2):53-72. https://doi.org/10.1016/0012-821x(89)90167-2
    Miller, K. J., Zhu, W. L., Montési, L. G. J., et al., 2016. Experimental Evidence for Melt Partitioning between Olivine and Orthopyroxene in Partially Molten Harzburgite. Journal of Geophysical Research:Solid Earth, 121(8):5776-5793. https://doi.org/10.1002/2016jb013122
    Miller, K. J., Zhu, W. L., Montési, L. G. J., et al., 2014. Experimental Quantification of Permeability of Partially Molten Mantle Rock. Earth and Planetary Science Letters, 388:273-282. https://doi.org/10.1016/j.epsl.2013.12.003
    Morgan, Z., Liang, Y., 2003. An Experimental and Numerical Study of the Kinetics of Harzburgite Reactive Dissolution with Applications to Dunite Dike Formation. Earth and Planetary Science Letters, 214(1/2):59-74. https://doi.org/10.1016/s0012-821x(03)00375-3
    Mungall, J. E., Brenan, J. M., 2014. Partitioning of Platinum-Group Elements and Au between Sulfide Liquid and Basalt and the Origins of Mantle-Crust Fractionation of the Chalcophile Elements. Geochimica et Cosmochimica Acta, 125:265-289. https://doi.org/10.1016/j.gca.2013.10.002
    Nash, W. M., Smythe, D. J., Wood, B. J., 2019. Compositional and Temperature Effects on Sulfur Speciation and Solubility in Silicate Melts. Earth and Planetary Science Letters, 507:187-198. https://doi.org/10.1016/j.epsl.2018.12.006
    Osselin, F., Kondratiuk, P., Budek, A., et al., 2016. Microfluidic Observation of the Onset of Reactive-Infitration Instability in an Analog Fracture. Geophysical Research Letters, 43(13):6907-6915. https://doi.org/10.1002/2016gl069261
    Pec, M., Holtzman, B. K., Zimmerman, M., et al., 2015. Reaction Infiltration Instabilities in Experiments on Partially Molten Mantle Rocks. Geology, 43(7):575-578. https://doi.org/10.1130/g36611.1
    Pec, M., Holtzman, B. K., Zimmerman, M. E., et al., 2017. Reaction Infiltration Instabilities in Mantle Rocks:An Experimental Investigation. Journal of Petrology, 58(5):979-1003. https://doi.org/10.1093/petrology/egx043
    Soustelle, V., Walte, N. P., Manthilake, M. A. G. M., et al., 2014. Melt Migration and Melt-Rock Reactions in the Deforming Earth's Upper Mantle:Experiments at High Pressure and Temperature. Geology, 42(1):83-86. https://doi.org/10.1130/g34889.1
    Spiegelman, M., Kelemen, P. B., Aharonov, E., 2001. Causes and Consequences of Flow Organization during Melt Transport:The Reaction Infiltration Instability in Compactible Media. Journal of Geophysical Research:Solid Earth, 106(B2):2061-2077. https://doi.org/10.1029/2000jb900240
    Stokes, G. G., 1851. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Vol. 9. Pitt Press, Cambridge
    Szymczak, P., Ladd, A. J. C., 2014. Reactive-Infiltration Instabilities in Rocks. Part 2. Dissolution of a Porous Matrix. Journal of Fluid Mechanics, 738:591-630. https://doi.org/10.1017/jfm.2013.586
    Szymczak, P., Ladd, A. J. C., 2013. Interacting Length Scales in the Reactive-Infiltration Instability. Geophysical Research Letters, 40(12):3036-3041. https://doi.org/10.1002/grl.50564
    Terasaki, H., Frost, D. J., Rubie, D. C., et al., 2005. The Effect of Oxygen and Sulphur on the Dihedral Angle between Fe-O-S Melt and Silicate Minerals at High Pressure:Implications for Martian Core Formation. Earth and Planetary Science Letters, 232(3/4):379-392. https://doi.org/10.1016/j.epsl.2005.01.030
    von Bargen, N., Waff, H. S., 1986. Permeabilities, Interfacial Areas and Curvatures of Partially Molten Systems:Results of Numerical Computations of Equilibrium Microstructures. Journal of Geophysical Research, 91(B9):9261. https://doi.org/10.1029/jb091ib09p09261
    Wang, Z. J., Jin, Z. M., Mungall, J. E., et al., 2020. Transport of Coexisting Ni-Cu Sulfide Liquid and Silicate Melt in Partially Molten Peridotite. Earth and Planetary Science Letters, 536:116162. https://doi.org/10.1016/j.epsl.2020.116162
    Wark, D. A., Watson, E. B., 1998. Grain-Scale Permeabilities of Texturally Equilibrated, Monomineralic Rocks. Earth and Planetary Science Letters, 164(3/4):591-605. https://doi.org/10.1016/s0012-821x(98)00252-0
    Yoshino, T., Walter, M. J., Katsura, T., 2003. Core Formation in Planetesimals Triggered by Permeable Flow. Nature, 422(6928):154-157. https://doi.org/10.1038/nature01459
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(458) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return