Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 3
Jul 2020
Turn off MathJax
Article Contents
Maryam Mohamadizadeh, Seyed Hossein Mojtahedzadeh, Farimah Ayati. Ga-(Nb+Ta)-(Nb/Ta)(Zr/Hf) Ternary Diagram: An Excellent Tool for Discriminating Barren and Ta-Hosting Granite-Pegmatite Systems. Journal of Earth Science, 2020, 31(3): 551-558. doi: 10.1007/s12583-020-1302-1
Citation: Maryam Mohamadizadeh, Seyed Hossein Mojtahedzadeh, Farimah Ayati. Ga-(Nb+Ta)-(Nb/Ta)(Zr/Hf) Ternary Diagram: An Excellent Tool for Discriminating Barren and Ta-Hosting Granite-Pegmatite Systems. Journal of Earth Science, 2020, 31(3): 551-558. doi: 10.1007/s12583-020-1302-1

Ga-(Nb+Ta)-(Nb/Ta)(Zr/Hf) Ternary Diagram: An Excellent Tool for Discriminating Barren and Ta-Hosting Granite-Pegmatite Systems

doi: 10.1007/s12583-020-1302-1
More Information
  • Corresponding author: Seyed Hossein Mojtahedzadeh, ORCID:0000-0002-8035-3396, shmojtahed@gmail.com
  • Received Date: 23 Oct 2019
  • Accepted Date: 15 Feb 2020
  • Publish Date: 01 Mar 2020
  • Discriminating barren and fertile intrusions is one of the main challenges in the search for rare-element pegmatites. Diagrams comprising more than one element can make discrimination of productive and barren samples more valid. These diagrams distinguish samples by simultaneous means of positive and/or negative correlations between variables. A ternary diagram for S-type peraluminous granites has been obtained in this study. Firstly, a database composed of Ta-bearing and barren granitic systems was created, then geochemical behavior of trace elements was studied, and statistical investigations were done using GCDkit software, which resulted in the Ga-(Nb+Ta)-(Nb/Ta)(Zr/Hf) ternary diagram which can distinguish the non-mineralized granites from productive ones. The Ta-bearing samples, which are situated in the fertile field in the diagram, are those which have high Nb and Ta contents, elevated Ga content and the lowest Nb/Ta and Zr/Hf values.

     

  • loading
  • Amini, S., Mazhari, A., Ghalamghash, J., 2004. The Petrogenes of the Intrusions in the West of Baneh, Kordestan, Iran. Journal of Science, 5(3):601-618 (in Persian)
    Anderson, M. O., Lentz, D. R., McFarlane, C. R. M., et al., 2013. A Geological, Geochemical and Textural Study of an LCT Pegmatite:Implications for the Magmatic Versus Metasomatic Origin of Nb-Ta Mineralization in the Moose Ⅱ Pegmatite, Northwest Territories, Canada. Journal of Geosciences, 58:299-320. https://doi.org/10.3190/jgeosci.149
    Badanina, E. V., Syritso, L. F., Volkova, E. V., et al., 2010. Composition of Li-F Granite Melt and Its Evolution during the Formation of the Ore-Bearing Orlovka Massif in Eastern Transbaikalia. Petrology, 18(2):131-157. https://doi.org/10.1134/s0869591110020037 doi: 10.1134/S0869591110020037
    Ballouard, C., Boulvais, P., Poujol, M., et al., 2015. Tectonic Record, Magmatic History and Hydrothermal Alteration in the Hercynian Guérande Leucogranite, Armorican Massif, France. Lithos, 220-223:1-22. https://doi.org/10.1016/j.lithos.2015.01.027
    Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites:A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3):231-234. https://doi.org/10.1130/g37475.1 doi: 10.1130/G37475.1
    Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3):605-626. https://doi.org/10.1016/s0024-4937(98)00085-1 doi: 10.1016/S0024-4937(98)00085-1
    Bayati, M., Smaili, D., Fadavi, F., et al., 2015. Petrology, Geochmistry and Dynamic Origin of Kolah Ghazi Granitic Pluton, Southwestern Esfahan, Iran. Journal of Petrology, 26:45-64 (in Persian)
    Beus, A. A., Berengilova, V. V., Grabovskaya, L. I., et al., 1968. Geochemical Exploration for Endogenic Deposits of Rare Elements on the Example of Tantalum. Nedra, Moscow. 264 (in Russian)
    Beus, A. A., Grigorian, S. V., 1977. Geochemical Exploration Methods for Mineral Deposits. Applied Publishing Ltd., Wilmette, Illinois. 287 (in Russian)
    Breaks, F. W., Tindle, A. G., 1997. Rare-Metal Exploration Potential of the Separation Lake Area: An Emerging Target for Bikita-Type Mineralization in the Superior Province of Ontario. In: Summary of Field Work and Other Activities 1997. Ontario Geological Survey, Miscellaneous Paper. 168: 72-88
    Breiter, K., Gardenová, N., Kanický, V., et al., 2013. Gallium and Germanium Geochemistry during Magmatic Fractionation and Post-Magmatic Alteration in Different Types of Granitoids:A Case Study from the Bohemian Massif (Czech Republic). Geologica Carpathica, 64(3):171-180. https://doi.org/10.2478/geoca-2013-0018
    Cerny, P., 1989. Exploration Strategy and Methods for Pegmatite Deposits of Tantalum. In: Moller, P., Černý, P., Saupe, F., eds., Lanthanides, Tantalum, and Niobium. Springer-Verlag, New York. 274-302
    Cerny, P., Meintzer, R. E., 1988. Fertile Granites in the Archean and Proterozoic Fields of Rare-Element Pegmatites: Crustal Environment, Geochemistry and Petrogenetic Relationships. In: Taylor, R. P., Strong, D. F., Recent Advances in the Geology of Granite-Related Mineral Deposits. CIM Special, 39: 170-207
    Cuney, M., Marignac, C., Weisbrod, A., 1992. The Beauvoir Topaz-Lepidolite Albite Granite (Massif Central, France):The Disseminated Magmatic Sn-Li-Ta-Nb-Be Mineralization. Economic Geology, 87(7):1766-1794. https://doi.org/10.2113/gsecongeo.87.7.1766
    Currie, K. L., Whalen, J. B., Davis, W. J., et al., 1998. Geochemical Evolution of Peraluminous Plutons in Southern Nova Scotia, Canada-A Pegmatite-Poor Suite. Lithos, 44(3/4):117-140. https://doi.org/10.1016/s0024-4937(98)00051-6
    Dai, H. Z., Wang, D. H., Liu, L. J., et al., 2019. Geochronology and Geochemistry of Li(Be)-Bearing Granitic Pegmatites from the Jiajika Superlarge Li-Polymetallic Deposit in Western Sichuan, China. Journal of Earth Science, 30(4):707-727. https://doi.org/10.1007/s12583-019-1011-9
    Djouka-Fonkwé, M. L., Schulz, B., Schüssler, U., et al., 2008. Geochemistry of the Bafoussam Pan-African I- and S-Type Granitoids in Western Cameroon. Journal of African Earth Sciences, 50(2/3/4):148-167. https://doi.org/10.1016/j.jafrearsci.2007.09.015
    Dostal, J., Chatterjee, A. K., 2000. Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chemical Geology, 163(1/2/3/4):207-218. https://doi.org/10.1016/s0009-2541(99)00113-8
    Edem, G. O., Ekwueme, B. N., Ephraim, B. E., 2015. Geochemical Signatures and Mineralization Potentials of Precambrian Pegmatites of Southern Obudu. International Journal of Geophysics and Geochemistry, 2(3):53-67 http://cn.bing.com/academic/profile?id=711afd2527d3eca131f9eebd8b147f7f&encoded=0&v=paper_preview&mkt=zh-cn
    Ercit, T. S., 2005. REE-Enriched Granitic Pegmatites. In:Linnen, R. L., Samson, I. M., eds., Rare-Element Geochemistry and Mineral Deposits. Geological Association of Canada, GAC Short Course Notes, 17:175-199 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0c0a1ba3af50ebb58b3770d5bcb5dd5
    Eyal, M., Litvinovsky, B. A., Katzir, Y., et al., 2004. The Pan-African High-K Calc-Alkaline Peraluminous Elat Granite from Southern Israel:Geology, Geochemistry and Petrogenesis. Journal of African Earth Sciences, 40(3/4):115-136. https://doi.org/10.1016/j.jafrearsci.2004.11.005
    Gaafar, I., 2014. Geophysical Mapping, Geochemical Evidence and Mineralogy for Nuweibi Rare Metal Albite Granite, Eastern Desert, Egypt. Open Journal of Geology, 4(4):108-136. https://doi.org/10.4236/ojg.2014.44010
    Gaafar, I., Ali, G., 2015. Geophysical and Geochemical Signature of Rare-Metal Granites, Central Eastern Desert, Egypt:Implications for Tectonic Environment. Earth Sciences, 4(5):161-179. https://doi.org/10.11648/j.earth.20150405.12
    Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4):347-359. https://doi.org/10.1016/0009-2541(94)00145-x
    Gunn, G., 2014. Critical Metals Handbook. British Geological Survey. American Geophysical Union, Wiley. 451
    Hu, J., Zhang, S. T., Zhang, G. Z., et al., 2017. Geochemistry and Tectonic Setting of the Eshan Granites in the Southwestern Margin of the Yangtze Plate, Yunnan. Journal of Earth Science, 29(1):130-143. https://doi.org/10.1007/s12583-017-0747-3
    Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3/4):489-508. https://doi.org/10.1016/s0016-7037(99)00027-7
    Linnen, R. L., Keppler, H., 1997. Columbite Solubility in Granitic Melts:Consequences for the Enrichment and Fractionation of Nb and Ta in the Earth's Crust. Contributions to Mineralogy and Petrology, 128(2/3):213-227. https://doi.org/10.1007/s004100050304
    Linnen, R. L., 1998. The Solubility of Nb-Ta-Zr-Hf-W in Granitic Melts with Li and Li+F:Constraints for Mineralization in Rare Metal Granites and Pegmatites. Economic Geology, 93(7):1013-1025. https://doi.org/10.2113/gsecongeo.93.7.1013
    Linnen, R. L., Van Lichtervelde, M., Cerny, P., 2012. Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4):275-280. https://doi.org/10.2113/gselements.8.4.275
    London, D., 2004. Geochemistry of Alkali and Alkaline Earth Elements in Ore-Forming Granites, Pegmatites and Rhyolites. In: Linnen, R. L., Samson, I. M., eds., Rare Element Geochemistry and Ore Deposits. Geological Association of Canada, Short Course Notes. 17
    Mohammedyasin, M. S., Desta, Z., Getaneh, W., 2017. Petrography and Geochemistry of the Primary Ore Zone of the Kenticha Rare Metal Granite-Pegmatite Field, Adola Belt, Southern Ethiopia:Implications for Ore Genesis and Tectonic Setting. Journal of African Earth Sciences, 134:73-84. https://doi.org/10.1016/j.jafrearsci.2017.06.012
    Pollard, P. J., 1989. Geochemistry of Granites Associated with Tantalum and Niobium Mineralization. In: Moller, P., Cerny, P., Saupe, F., eds., Lanthanides, Tantalum and Niobium Mineralogy, Geochemistry, Characteristics of Primary Ore Deposits, Prospecting, Processing and Applications. Special Publication No. 7 of the Society for Geology Applied to Mineral Deposits, Berlin. 145-168
    Raimbault, L., Cuney, M., Azencott, C., et al., 1995. Geochemical Evidence for a Multistage Magmatic Genesis of Ta-Sn-Li Mineralization in the Granite at Beauvoir, French Massif Central. Economic Geology, 90(3):548-576. https://doi.org/10.2113/gsecongeo.90.3.548
    Ramirez, J. A., Menendez, L. G., 1999. A Geochemical Study of Two Peraluminous Granites from South-Central Iberia:The Nisa-Albuquerque and Jalama Batholiths. Mineralogical Magazine, 63(1):85-104. https://doi.org/10.1180/002646199548330
    Sarbajna, C., Pandey, U. K., Krishnamurthy, P., 2018. Geochemistry and Petrogenesis of 2.8 Ga Old Rare Metal Bearing Fertile Granite at Allapatna, Mandya District, Karnataka. Journal of the Geological Society of India, 91(1):67-75. https://doi.org/10.1007/s12594-018-0821-1
    Selway, J. B., Breaks, F. W., Tindle, A. G., 2005. A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Exploration and Mining Geology, 14(1/2/3/4):1-30. https://doi.org/10.2113/gsemg.14.1-4.1
    Sinclair, W. D., 1996. Granitic Pegmatites. Geology of Canadian Mineral Deposits, 8:503-512 http://d.old.wanfangdata.com.cn/Periodical/kcdz201706011
    Stepanov, A., A.Mavrogenes, J., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167(6):1009-1016. https://doi.org/10.1007/s00410-014-1009-3
    Stilling, A., Cerny, P., Vanstone, P. J., 2006. The Tanco Pegmatite at Bernic Lake, Manitoba. XVI. Zonal and Bulk Compositions and Their Petrogenetic Significance. The Canadian Mineralogist, 44(3):599-623. https://doi.org/10.2113/gscanmin.44.3.599
    Tartèse, R., Boulvais, P., 2010. Differentiation of Peraluminous Leucogranites "En Route" to the Surface. Lithos, 114(3/4):353-368. https://doi.org/10.1016/j.lithos.2009.09.011
    Whitworth, M. P., 1992. Petrogenetic Implications of Garnets Associated with Lithium Pegmatites from SE Ireland. Mineralogical Magazine, 56(382):75-83. https://doi.org/10.1180/minmag.1992.056.382.10
    Yin, L., Pollard, P. J., Hu, S. X., et al., 1995. Geologic and Geochemical Characteristics of the Yichun Ta-Nb-Li Deposit, Jiangxi Province, South China. Economic Geology, 90(3):577-585. https://doi.org/10.2113/gsecongeo.90.3.577
    Zaraisky, G. P., Aksyuk, A. M., Devyatova, V. N., et al., 2009. The Zr/Hf Ratio as a Fractionation Indicator of Rare-Metal Granites. Petrology, 17(1):25-45. https://doi.org/10.1134/s0869591109010020 doi: 10.1134/S0869591109010020
    Zaraisky, G. P., Aksyuk, A. M., Zel'tmann, R., et al., 2000. Evolution of Rare-Metal Granites and the Zr/Hf Ratio as Indicator of Degree of Crystallization Differentiation. In: Proceedings of 2nd All-Russian Petrographic Conference on Petrography in the Turn of 21st Century. Syktyvkar, Russia. 3: 47-50 (in Russian)
    Zhu, J. C., Li, R. K., Li, F. C., et al., 2001. Topaz-Albite Granites and Rare-Metal Mineralization in the Limu District, Guangxi Province, Southeast China. Mineralium Deposita, 36(5):393-405. https://doi.org/10.1007/s001260100160
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(837) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return