Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 3
Jul 2020
Turn off MathJax
Article Contents
Vasilii I. Leontev, Sergey G. Skublov, Nadezhda V. Shatova, Alexey V. Berezin. Zircon U-Pb Geochronology Recorded Late Cretaceous Fluid Activation in the Central Aldan Gold Ore District, Aldan Shield, Russia: First Data. Journal of Earth Science, 2020, 31(3): 481-491. doi: 10.1007/s12583-020-1304-z
Citation: Vasilii I. Leontev, Sergey G. Skublov, Nadezhda V. Shatova, Alexey V. Berezin. Zircon U-Pb Geochronology Recorded Late Cretaceous Fluid Activation in the Central Aldan Gold Ore District, Aldan Shield, Russia: First Data. Journal of Earth Science, 2020, 31(3): 481-491. doi: 10.1007/s12583-020-1304-z

Zircon U-Pb Geochronology Recorded Late Cretaceous Fluid Activation in the Central Aldan Gold Ore District, Aldan Shield, Russia: First Data

doi: 10.1007/s12583-020-1304-z
More Information
  • Corresponding author: Vasilii I. Leontev, ORCID:0000-0001-7183-4772.E-mail:vsllntv@gmail.com
  • Received Date: 14 Jan 2020
  • Accepted Date: 16 Apr 2020
  • Publish Date: 01 Jun 2020
  • The gold mineralization in the Central Aldan ore district is genetically related to potassic calc-alkaline and alkaline magmatism dated at 115-150 Ma. The objective of this study is to establish the age of hydrothermal processes that accompanied the formation of Au-Te mineralization at the Samolazovsky Deposit. Based on the isotope-geochemical study of zircons from quartz-feldspar metasomatic rocks of the deposit, the granitoids and charnokites of the Nimnyr Complex (1 900-1 960 Ma) at the contact with the Yukhta monzonite-syenite massif (~127 Ma) were studied. Zircon U-Pb dating was performed on a SHRIMP-II ion microprobe, and rare-earth and trace elements analyses of zircon were carried out in the same craters by secondary-ion mass spectrometry on a Cameca IMS-4f ion microprobe. It is revealed that the studied zircons have heterogeneous structures:dark core and lighter rim, which differ greatly in isotope-geochemical parameters. Zircon rims are cut by a network of fractures, extending into the central part of zircon grains. The rims yield a subconcordant age of 1 937±24 Ma, with an average total REE content of 550 ppm, which corresponds to the formation age of the Nimnyr Complex. All zircon cores yield a discordant age of 83±11 Ma and are characterized by a higher total REE content (~1 812 ppm), as well as higher contents of U and non-formula elements (Ca, Sr, and Y) with respect to rims, due to the effect of fluid on zircons. Despite the limited number of zircon grains, the additional geochronological study of zircons from syenites of the ore-bearing Ryabinovy Massif has revealed the presence of two distinct age clusters:~125-138 and 76-83 Ма. The older ages of zircons from syenites are typical for the Central Aldan ore district. Until now, there is still no explanation for an age range (76-83 Ma) of single zircon grains from ore-bearing syenites of the Ryabinovy Massif. The obtained data suggest that the processes of activation (the effect of fluid) within the Central Aldan ore district continued until Late Mesozoic. With regards to the equivocal geotectonic position of the Mesozoic potassic magmatism in the study area and its high metallogenic potential, there exists an absolute necessity to determine the geochronological age of the rock formations. Therefore this study presents the Late Cretaceous geochronological data for the first time which can constrain the time-frame for the formation of gold-bearing magmatic and metasomatic rocks of the Aldan ore district.

     

  • loading
  • Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7
    Black, L. P., Kamo, S. L., Allen, C. M., et al., 2003. TEMORA 1:A New Zircon Standard for Phanerozoic U-Pb Geochronology. Chemical Geology, 200(1/2):155-170. https://doi.org/10.1016/s0009-2541(03)00165-7
    Borisenko, I. D., Borovikov, A. A., Borisenko, A. S., et al., 2017. Physicochemical Conditions of Ore Formation in the Samolazovskoe Gold Deposit (Central Aldan). Russian Geology and Geophysics, 58(12):1518-1529. https://doi.org/10.1016/j.rgg.2016.12.014
    Bröcker, M., Löwen, K., Rodionov, N., 2014. Unraveling Protolith Ages of Meta-Gabbros from Samos and the Attic-Cycladic Crystalline Belt, Greece:Results of a U-Pb Zircon and Sr-Nd Whole Rock Study. Lithos, 198/199:234-248. https://doi.org/10.1016/j.lithos.2014.03.029
    Dokukina, K. A., Kaulina, T. V., Konilov, A. N., et al., 2014. Archaean to Palaeoproterozoic High-Grade Evolution of the Belomorian Eclogite Province in the Gridino Area, Fennoscandian Shield:Geochronological Evidence. Gondwana Research, 25(2):585-613. https://doi.org/10.1016/j.gr.2013.02.014
    Fedotova, A. A., Bibikova, E. V., Simakin, S. G., 2008. Ion-Microprobe Zircon Geochemistry as an Indicator of Mineral Genesis during Geochronological Studies. Geochemistry International, 46(9):912-927. https://doi.org/10.1134/s001670290809005x
    Fu, B., Mernagh, T. P., Kita, N. T., et al., 2009. Distinguishing Magmatic Zircon from Hydrothermal Zircon:A Case Study from the Gidginbung High-Sulphidation Au-Ag-(Cu) Deposit, SE Australia. Chemical Geology, 259(3/4):131-142. https://doi.org/10.1016/j.chemgeo.2008.10.035
    Geisler, T., Schleicher, H., 2000. Improved U-Th-Total Pb Dating of Zircons by Electron Microprobe Using a Simple New Background Modeling Procedure and Ca as a Chemical Criterion of Fluid-Induced U-Th-Pb Discordance in Zircon. Chemical Geology, 163(1/2/3/4):269-285. https://doi.org/10.1016/s0009-2541(99)00099-6
    Glebovitskii, V. A., Sedova, I. S., Berezhnaya, N. G., et al., 2010. Isotope-Geochronological Timing of Metamorphic Events in the Boundary Zone between the Aldan Shield and the Dzhugdzhuro-Stanovoi Folded Area. Doklady Earth Sciences, 430(1):34-39. https://doi.org/10.1134/s1028334x10010071
    Glebovitskii, V. A., Sedova, I. S., Berezhnaya, N. G., et al., 2012a. U-Pb Age of Autochthonous Paleoproterozoic Charnockite in the Aldan Shield. Doklady Earth Sciences, 443(2):451-457. https://doi.org/10.1134/s1028334x12040198
    Glebovitskii, V. A., Sedova, I. S., Berezhnaya, N. G., et al., 2012b. New Data on the Age of Ultrametamorphic Granitoids of the Aldan Granulite Area (Eastern Siberia), Consequences of Metamorphic Processes and Possibilities of Regional Correlations of Geological Events. Stratigraphy and Geological Correlation, 20(2):139-165. https://doi.org/10.1134/s0869593812020049
    Hinton, R. W., Upton, B. G. J., 1991. The Chemistry of Zircon:Variations within and between Large Crystals from Syenite and Alkali Basalt Xenoliths. Geochimica et Cosmochimica Acta, 55(11):3287-3302. https://doi.org/10.1016/0016-7037(91)90489-r
    Jiang, W. C., Li, H., Evans, N. J., et al., 2019. Zircon Records Multiple Magmatic-Hydrothermal Processes at the Giant Shizhuyuan W-Sn-Mo-Bi Polymetallic Deposit, South China. Ore Geology Reviews, 115:103160. https://doi.org/10.1016/j.oregeorev.2019.103160
    Jochum, K. P., Dingwell, D. B., Rocholl, A., et al., 2000. The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for in-situ Microanalysis. Geostandards and Geoanalytical Research, 24(1):87-133. https://doi.org/10.1111/j.1751-908x.2000.tb00590.x
    Jochum, K. P., Stoll, B., Herwig, K., et al., 2006. MPI-DING Reference Glasses for in situ Microanalysis:New Reference Values for Element Concentrations and Isotope Ratios. Geochemistry, Geophysics, Geosystems, 7(2). https://doi.org/10.1029/2005gc001060
    Kazansky, V. I., 2004. The Unique Central Aldan Gold-Uranium Ore District (Russia). Geology of Ore Deposits, 46:167-181
    Khomich, V. G., Boriskina, N. G., Santosh, M., 2014. A Geodynamic Perspective of World-Class Gold Deposits in East Asia. Gondwana Research, 26(3/4):816-833. https://doi.org/10.1016/j.gr.2014.05.007
    Khomich, V. G., Boriskina, N. G., Santosh, M., 2015. Geodynamics of Late Mesozoic PGE, Au, and U Mineralization in the Aldan Shield, North Asian Craton. Ore Geology Reviews, 68:30-42. https://doi.org/10.1016/j.oregeorev.2015.01.007
    Kononova, V. A., Pervov, V. A., Bogatikov, O. A., et al., 1995. Mesozoic Potassium-Rich Magmatism of the Central Aldan:Geodynamics and Genesis. Geotectonics, 3:35-45
    Kukuschkin, K. A., Molchanov, A. V., Radkov, V. V., et al., 2015. Towards Differentiation of the Mesozoic Intrusive Rocks in the Central Aldan District (South Yakutia). Regional Geology and Metallogeny, 64:48-58 (in Russian)
    Leontev, V. I., Bushuev, Y. Y., 2017. Ore Mineralization in Adular-Fluorite Metasomatites:Evidence of the Podgolechnoe Alkalic-Type Epithermal Gold Deposit (Central Aldan Ore District, Russia). Key Engineering Materials, 743:417-421. https://doi.org/10.4028/www.scientific.net/kem.743.417
    Leontev, V. I., Bushuev, Y. Y., Chernigovtsev, K. A., 2018. Samolazovskoe Gold Deposit (Central Aldan Ore District):Geological Structure and Mineralization of Deep Horizons. Regional Geology and Metallogeny, 75:90-103 (in Russian)
    Leontev, V. I., Chernigovtsev, K., 2018. Ore Mineralization of the Epithermal Samolazovskoe Gold-Ore Deposit, Aldan Shield (Russia). Key Engineering Materials, 769:213-219. https://doi.org/10.4028/www.scientific.net/kem.769.213
    Li, G. M., Qin, K. Z., Li, J. X., et al., 2017. Cretaceous Magmatism and Metallogeny in the Bangong-Nujiang Metallogenic Belt, Central Tibet:Evidence from Petrogeochemistry, Zircon U-Pb Ages, and Hf-O Isotopic Compositions. Gondwana Research, 41:110-127. https://doi.org/10.1016/j.gr.2015.09.006
    Li, H., Li, J. W., Algeo, T. J., et al., 2018a. Zircon Indicators of Fluid Sources and Ore Genesis in a Multi-Stage Hydrothermal System:The Dongping Au Deposit in North China. Lithos, 314/315:463-478. https://doi.org/10.1016/j.lithos.2018.06.025
    Li, H., Myint, A. Z., Yonezu, K., et al., 2018b. Geochemistry and U-Pb Geochronology of the Wagone and Hermyingyi A-Type Granites, Southern Myanmar:Implications for Tectonic Setting, Magma Evolution and Sn-W Mineralization. Ore Geology Reviews, 95:575-592. https://doi.org/10.1016/j.oregeorev.2018.03.015
    Li, H., Wu, J. H., Evans, N. J., et al., 2018c. Zircon Geochronology and Geochemistry of the Xianghualing A-Type Granitic Rocks:Insights into Multi-Stage Sn-Polymetallic Mineralization in South China. Lithos, 312/313:1-20. https://doi.org/10.1016/j.lithos.2018.05.001
    Li, H., Cao, J. Y., Algeo, T. J., et al., 2019a. Zircons Reveal Multi-Stage Genesis of the Xiangdong (Dengfuxian) Tungsten Deposit, South China. Ore Geology Reviews, 111:102979. https://doi.org/10.1016/j.oregeorev.2019.102979
    Li, H., Sun, H. S., Algeo, T. J., et al., 2019b. Mesozoic Multi-Stage W-Sn Polymetallic Mineralization in the Nanling Range, South China:An Example from the Dengfuxian-Xitian Ore Field. Geological Journal, 54(6):3755-3785. https://doi.org/10.1002/gj.3369
    Li, H., Sun, H. S., Evans, N. J., et al., 2019c. Geochemistry and Geochronology of Zircons from Granite-Hosted Gold Mineralization in the Jiaodong Peninsula, North China:Implications for Ore Genesis. Ore Geology Reviews, 115:103188. https://doi.org/10.1016/j.oregeorev.2019.103188
    Li, H., Zhou, Z. K., Evans, N. J., et al., 2019d. Fluid-Zircon Interaction during Low-Temperature Hydrothermal Processes:Implications for the Genesis of the Banxi Antimony Deposit, South China. Ore Geology Reviews, 114:103137. https://doi.org/10.1016/j.oregeorev.2019.103137
    Ludwig, K. R., 2001. SQUID 1.02, A User Manual, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Spec. Publ., Berkeley
    Ludwig, K. R., 2003. Userʼs Manual for Isoplot/Ex, Version 3.00, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Spec. Publ., Berkeley
    Maximov, E. P., Uyutov, V. I., Nikitin, V. M., 2010. The Central Aldan Gold-Uranium Ore Magmatogenic System, Aldan-Stanovoy Shield, Russia. Russian Journal of Pacific Geology, 4(2):95-115. https://doi.org/10.1134/s1819714010020016
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
    Page, F. Z., Fu, B., Kita, N. T., et al., 2007. Zircons from Kimberlite:New Insights from Oxygen Isotopes, Trace Elements, and Ti in Zircon Thermometry. Geochimica et Cosmochimica Acta, 71(15):3887-3903. https://doi.org/10.1016/j.gca.2007.04.031
    Pelleter, E., Cheilletz, A., Gasquet, D., et al., 2007. Hydrothermal Zircons:A Tool for Ion Microprobe U-Pb Dating of Gold Mineralization (Tamlalt-Menhouhou Gold Deposit-Morocco). Chemical Geology, 245(3/4):135-161. https://doi.org/10.1016/j.chemgeo.2007.07.026
    Polin, V. F., Glebovitskii, V. A., Mitsuk, V. V., et al., 2014. Two-Stage Formation of the Alcaline Volcano-Plutonic Complexes in the Ketkap-Yuna Igneous Province of the Aldan Shield:New Isotopic Data. Doklady Earth Sciences, 459(1):1322-1327. https://doi.org/10.1134/s1028334x14110051
    Polin, V. F., Mitsuk, V. V., Khanchuk, A. I., et al., 2012. Geochronological Limits of Subalkaline Magmatism in the Ket-Kap-Yuna Igneous Province, Aldan Shield. Doklady Earth Sciences, 442(1):17-23. https://doi.org/10.1134/s1028334x12010096
    Prokopyev, I. R., Doroshkevich, A. G., Ponomarchuk, A. V., et al., 2019. U-Pb SIMS and Ar-Ar Geochronology, Petrography, Mineralogy and Gold Mineralization of the Late Mesozoic Amga Alkaline Rocks (Aldan Shield, Russia). Ore Geology Reviews, 109:520-534. https://doi.org/10.1016/j.oregeorev.2019.05.011
    Prokopyev, I. R., Kravchenko, A. A., Ivanov, A. I., et al., 2018. Geochronology and Ore Mineralization of the Dzheltula Alkaline Massif (Aldan Shield, South Yakutia). Russian Journal of Pacific Geology, 12(1):34-45. https://doi.org/10.1134/s1819714018010062
    Rocholl, A. B. E., Simon, K., Jochum, K. P., et al., 1997. Chemical Characterisation of NIST Silicate Glass Certified Reference Material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostandards Newsletter, 21(1):101-114. https://doi.org/10.1111/j.1751-908x.1997.tb00537.x
    Rodionov, N. V., Belyatsky, B. V., Antonov, A. V., et al., 2012. Comparative in-situ U-Th-Pb Geochronology and Trace Element Composition of Baddeleyite and Low-U Zircon from Carbonatites of the Palaeozoic Kovdor Alkaline-Ultramafic Complex, Kola Peninsula, Russia. Gondwana Research, 21(4):728-744. https://doi.org/10.1016/j.gr.2011.10.005
    Rodionov, S. M., Fredericksen, R. S., Berdnikov, N. V., et al., 2014. The Kuranakh Epithermal Gold Deposit (Aldan Shield, East Russia). Ore Geology Reviews, 59:55-65. https://doi.org/10.1016/j.oregeorev.2013.12.004
    Schaltegger, U., 2007. Hydrothermal Zircon. Elements, 3(1):51-79. https://doi.org/10.2113/gselements.3.1.51
    Shatov, V. V., Molchanov, A. V., Shatova, N. V., et al., 2012. Petrography, Geochemistry and Isotopic (U-Pb and Rb-Sr) Dating of Alkaline Magmatic Rocks of the Ryabinovy Massif (South Yakutia). Regional Geology and Metallogeny, 51:62-78 (in Russian)
    Shatova, N. V., Skublov, S. G., Melnik, А. Е., et al., 2017. Geochronology of Alkaline Magmatic Rocks and Metasomatites of the Ryabinovy Stock (South Yakutia) Based on Zircon Isotopic and Geochemical (U-Pb, REE) Investigations. Regional Geology and Metallogeny, 69:33-48 (in Russian)
    Skublov, S. G., Berezin, A. V., Berezhnaya, N. G., 2012. General Relations in the Trace-Element Composition of Zircons from Eclogites with Implications for the Age of Eclogites in the Belomorian Mobile Belt. Petrology, 20(5):427-449. https://doi.org/10.1134/s0869591112050062
    Soloviev, S. G., 2014. The Metallogeny of Shoshonitic Magmatism. Vol. 2. Scientific World, Moscow. 472 (in Russian)
    Terekhov, A. V., Molchanov, A. V., Shatov, V. V., et al., 2013. Fluid Characteristic of Formation Ore-Bearing Alteration Rocks of Elkon Gold-Uranium Ore Cluster. Journal of Mining Institute, 200:321-326
    Ushikubo, T., Kita, N. T., Cavosie, A. J., et al., 2008. Lithium in Jack Hills Zircons:Evidence for Extensive Weathering of Earthʼs Earliest Crust. Earth and Planetary Science Letters, 272(3/4):666-676. https://doi.org/10.1016/j.epsl.2008.05.032
    Vetluzhskikh, V. G., Kazansky, V. I., Kochetkov, A. Y., et al., 2002. Central Aldan Gold Deposits. Geology of Ore Deposits, 44:405-434 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027044372/
    Wang, Y., He, H. Y., Ivanov, A. V., et al., 2014. Age and Origin of Charoitite, Malyy Murun Massif, Siberia, Russia. International Geology Review, 56(8):1007-1019. https://doi.org/10.1080/00206814.2014.914860
    Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4):413-433. https://doi.org/10.1007/s00410-006-0068-5
    Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1):1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x
    Williams, I. S., McKibben, M. A., Shanks, W. C. III, et al., 1998. U-Th-Pb Geochronology by Ion Microprobe. In: Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews of Economic Geology, 7: 1-35
    Yang, W. B., Niu, H. C., Shan, Q., et al., 2014. Geochemistry of Magmatic and Hydrothermal Zircon from the Highly Evolved Baerzhe Alkaline Granite:Implications for Zr-REE-Nb Mineralization. Mineralium Deposita, 49(4):451-470. https://doi.org/10.1007/s00126-013-0504-1
    Yarmolyuk, V. V., Nikiforov, A. V., Kozlovsky, A. M., et al., 2019. Late Mesozoic East Asian Magmatic Province:Structure, Magmatic Signature, Formation Conditions. Geotectonics, 53(4):500-516. https://doi.org/10.1134/s0016852119040071
    Zhang, L., Zhu, J. J., Xia, B., et al., 2019. Metamorphism and Zircon Geochronological Studies of Metagabbro Vein in the Yushugou Granulite-Peridotite Complex from South Tianshan, China. Journal of Earth Science, 30(6):1215-1229. https://doi.org/10.1007/s12583-019-1254-5
    Zorin, Y. A., Turutanov, E. K., 2005. Plumes and Geodynamics of the Baikal Rift Zone. Russian Geology and Geophysics, 46:685-699
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(435) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return