Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 3
Jul 2020
Turn off MathJax
Article Contents
Xiaoyan Li, Chao Zhang, Lianxun Wang, Harald Behrens, Francois Holtz. Experiments on the Saturation of Fluorite in Magmatic Systems: Implications for Maximum F Concentration and Fluorine-Cation Bonding in Silicate Melt. Journal of Earth Science, 2020, 31(3): 456-467. doi: 10.1007/s12583-020-1305-y
Citation: Xiaoyan Li, Chao Zhang, Lianxun Wang, Harald Behrens, Francois Holtz. Experiments on the Saturation of Fluorite in Magmatic Systems: Implications for Maximum F Concentration and Fluorine-Cation Bonding in Silicate Melt. Journal of Earth Science, 2020, 31(3): 456-467. doi: 10.1007/s12583-020-1305-y

Experiments on the Saturation of Fluorite in Magmatic Systems: Implications for Maximum F Concentration and Fluorine-Cation Bonding in Silicate Melt

doi: 10.1007/s12583-020-1305-y
More Information
  • Corresponding author: Chao Zhang, ORCID:0000-0001-7019-5075.E-mail:zhangchao@nwu.edu.cn
  • Received Date: 05 Mar 2020
  • Accepted Date: 18 Apr 2020
  • Publish Date: 01 Jun 2020
  • The effects of melt composition, temperature and pressure on the solubility of fluorite (CaF2), i.e., fluorine concentration in silicate melts in equilibrium with fluorite, are summarized in this paper. The authors present a statistic study based on experimental data in literature and propose a predictive model to estimate F concentration in melt at the saturation of fluorite (CF in meltFl-sat). The modeling indicates that the compositional effect of melt cations on the variation in CF in meltFl-sat can be expressed quantitatively as one parameter FSI (fluorite saturation index):FSI=(3AlNM+Fe2++6Mg+Ca+1.5Na-K)/(Si+Ti+AlNF+Fe3+), in which all cations are in mole, and AlNF and AlNM are Al as network-forming and network-modifying cations, respectively. The dependence of CF in meltFl-sat on FSI is regressed as:CF in meltFl-sat=1.130-2.014·exp (1 000/T)+2.747·exp (P/T)+0.111·CmeltH2O+17.641·FSI, in which T is temperature in Kelvin, P is pressure in MPa, CmeltH2O is melt H2O content in wt.%, and CF in meltFl-sat is in wt.% (normalized to anhydrous basis). The reference dataset used to establish the expression for conditions within 540-1 010 ℃, 50-500 MPa, 0-7 wt.% melt H2O content, 0.4 to 1.7 for A/CNK, 0.3 wt.%-7.0 wt.% for CF in meltFl-sat. The discrepancy of CF in meltFl-sat between calculated and measured values is less than ±0.62 wt.% with a confidence interval of 95%. The expression of FSI and its effect on CF in meltFl-sat indicate that fluorine incorporation in silicate melts is largely controlled by bonding with network-modifying cations, favorably with Mg, AlNM, Na, Ca and Fe2+ in a decreasing order. The proposed model for predicting CF in meltFl-sat is also supported by our new experiments saturated with magmatic fluorite performed at 100-200 MPa and 800-900 ℃. The modeling of magma fractional crystallization emphasizes that the saturation of fluorite is dependent on both the compositions of primary magmas and their initial F contents.KEY WORDS:fluorine, fluorite solubility, silicate melt, experimental petrology.

     

  • loading
  • Ahmed, H. A., Ma, C. Q., Wang, L. X., et al., 2018. Petrogenesis and Tectonic Implications of Peralkaline A-Type Granites and Syenites from the Suizhou-Zaoyang Region, Central China. Journal of Earth Science, 29(5):1181-1202. https://doi.org/10.1007/s12583-018-0877-2
    Aiuppa, A., Baker, D. R., Webster, J. D., 2009. Halogens in Volcanic Systems. Chemical Geology, 263(1/2/3/4):1-18. https://doi.org/10.1016/j.chemgeo.2008.10.005
    Aseri, A. A., Linnen, R. L., Che, X. D., et al., 2015. Effects of Fluorine on the Solubilities of Nb, Ta, Zr and Hf Minerals in Highly Fluxed Water-Saturated Haplogranitic Melts. Ore Geology Reviews, 64:736-746. https://doi.org/10.1016/j.oregeorev.2014.02.014
    Baasner, A., Schmidt, B. C., Dupree, R., et al., 2014. Fluorine Speciation as a Function of Composition in Peralkaline and Peraluminous Na2O-CaO-Al2O3-SiO2 Glasses:A Multinuclear NMR Study. Geochimica et Cosmochimica Acta, 132:151-169. https://doi.org/10.1016/j.gca.2014.01.041
    Baasner, A., Schmidt, B. C., Webb, S. L., 2013. The Effect of Chlorine, Fluorine and Water on the Viscosity of Aluminosilicate Melts. Chemical Geology, 357:134-149. https://doi.org/10.1016/j.chemgeo.2013.08.020
    Badanina, E. V., Trumbull, R. B., Dulski, P., et al., 2006. The Behavior of Rare-Earth and Lithophile Trace Elements in Rare-Metal Granites:A Study of Fluorite, Melt Inclusions and Host Rocks from the Khangilay Complex, Transbaikalia, Russia. The Canadian Mineralogist, 44(3):667-692. https://doi.org/10.2113/gscanmin.44.3.667
    Bailey, J. C., 1977. Fluorine in Granitic Rocks and Melts:A Review. Chemical Geology, 19(1/2/3/4):1-42. https://doi.org/10.1016/0009-2541(77)90002-x
    Baker, D. R., Vaillancourt, J., 1995. The Low Viscosities of F+H2O-Bearing Granitic Melts and Implications for Melt Extraction and Transport. Earth and Planetary Science Letters, 132(1/2/3/4):199-211. https://doi.org/10.1016/0012-821x(95)00054-g
    Bao, B., Webster, J. D., Zhang, D. H., et al., 2016. Compositions of Biotite, Amphibole, Apatite and Silicate Melt Inclusions from the Tongchang Mine, Dexing Porphyry Deposit, SE China:Implications for the Behavior of Halogens in Mineralized Porphyry Systems. Ore Geology Reviews, 79:443-462. https://doi.org/10.1016/j.oregeorev.2016.05.024
    Bartels, A., Behrens, H., Holtz, F., et al., 2013. The Effect of Fluorine, Boron and Phosphorus on the Viscosity of Pegmatite Forming Melts. Chemical Geology, 346:184-198. https://doi.org/10.1016/j.chemgeo.2012.09.024
    Berndt, J., Liebske, C., Holtz, F., et al., 2002. A Combined Rapid-Quench and H2-Membrane Setup for Internally Heated Pressure Vessels:Description and Application for Water Solubility in Basaltic Melts. American Mineralogist, 87(11/12):1717-1726. https://doi.org/10.2138/am-2002-11-1222
    Botcharnikov, R. E., Holtz, F., Almeev, R. R., et al., 2008. Storage Conditions and Evolution of Andesitic Magma Prior to the 1991-95 Eruption of Unzen Volcano:Constraints from Natural Samples and Phase Equilibria Experiments. Journal of Volcanology and Geothermal Research, 175(1/2):168-180. https://doi.org/10.1016/j.jvolgeores.2008.03.026
    Chelle-Michou, C., Chiaradia, M., 2017. Amphibole and Apatite Insights into the Evolution and Mass Balance of Cl and S in Magmas Associated with Porphyry Copper Deposits. Contributions to Mineralogy and Petrology, 172(11/12):105. https://doi.org/10.1007/s00410-017-1417-2
    Chevychelov, V. Y., Botcharnikov, R. E., Holtz, F., 2008. Experimental Study of Fluorine and Chlorine Contents in Mica (Biotite) and Their Partitioning between Mica, Phonolite Melt, and Fluid. Geochemistry International, 46(11):1081-1089. https://doi.org/10.1134/s0016702908110025
    Dalou, C. L., Le Losq, C., Mysen, B. O., et al., 2015. Solubility and Solution Mechanisms of Chlorine and Fluorine in Aluminosilicate Melts at High Pressure and High Temperature. American Mineralogist, 100(10):2272-2283. https://doi.org/10.2138/am-2015-5201
    Dingwell, D. B., Mysen, B. O., 1985. Effects of Water and Fluorine on the Viscosity of Albite Melt at High Pressure:A Preliminary Investigation. Earth and Planetary Science Letters, 74(2/3):266-274. https://doi.org/10.1016/0012-821x(85)90026-3
    Doherty, A. L., Webster, J. D., Goldoff, B. A., et al., 2014. Partitioning Behavior of Chlorine and Fluorine in Felsic Melt-Fluid(s)-Apatite Systems at 50 MPa and 850-950 ℃. Chemical Geology, 384:94-111. https://doi.org/10.1016/j.chemgeo.2014.06.023
    Dolejš, D., Baker, D. R., 2006. Fluorite Solubility in Hydrous Haplogranitic Melts at 100 MPa. Chemical Geology, 225(1/2):40-60. https://doi.org/10.1016/j.chemgeo.2005.08.007
    Gabitov, R. I., Price, J. D., Watson, E. B., 2005. Solubility of Fluorite in Haplogranitic Melt of Variable Alkalis and Alumina Content at 800-1 000 ℃ and 100 MPa. Geochemistry, Geophysics, Geosystems, 6(3):Q03007. https://doi.org/10.1029/2004gc000870
    Giesting, P. A., Filiberto, J., 2014. Quantitative Models Linking Igneous Amphibole Composition with Magma Cl and OH Content. American Mineralogist, 99(4):852-865. https://doi.org/10.2138/am.2014.4623
    Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V., et al., 2012. Rhyolite-MELTS:A Modified Calibration of MELTS Optimized for Silica-Rich, Fluid-Bearing Magmatic Systems. Journal of Petrology, 53(5):875-890. https://doi.org/10.1093/petrology/egr080
    Holtz, F., Sato, H., Lewis, J., et al., 2005. Experimental Petrology of the 1991-1995 Unzen Dacite, Japan. Part I:Phase Relations, Phase Composition and Pre-Eruptive Conditions. Journal of Petrology, 46(2):319-337. https://doi.org/10.1093/petrology/egh077
    Hou, T., Charlier, B., Namur, O., et al., 2017. Experimental Study of Liquid Immiscibility in the Kiruna-Type Vergenoeg Iron-Fluorine Deposit, South Africa. Geochimica et Cosmochimica Acta, 203:303-322. https://doi.org/10.1016/j.gca.2017.01.025
    Huang, H., Wang, T., Zhang, Z. C., et al., 2018. Highly Differentiated Fluorine-Rich, Alkaline Granitic Magma Linked to Rare Metal Mineralization:A Case Study from the Boziguo'er Rare Metal Granitic Pluton in South Tianshan Terrane, Xinjiang, NW China. Ore Geology Reviews, 96:146-163. https://doi.org/10.1016/j.oregeorev.2018.04.021
    Icenhower, J. P., London, D., 1997. Partitioning of Fluorine and Chlorine between Biotite and Granitic Melt:Experimental Calibration at 200 MPa H2O. Contributions to Mineralogy and Petrology, 127(1/2):17-29. https://doi.org/10.1007/s004100050262
    Iveson, A. A., Webster, J. D., Rowe, M. C., et al., 2017. Major Element and Halogen (F, Cl) Mineral-Melt-Fluid Partitioning in Hydrous Rhyodacitic Melts at Shallow Crustal Conditions. Journal of Petrology, 58(12):2465-2492. https://doi.org/10.1093/petrology/egy011
    Jiang, W. C., Li, H., Wu, J. H., et al., 2018. A Newly Found Biotite Syenogranite in the Huangshaping Polymetallic Deposit, South China:Insights into Cu Mineralization. Journal of Earth Science, 29(3):537-555. https://doi.org/10.1007/s12583-017-0974-7
    Keppler, H., 1993. Influence of Fluorine on the Enrichment of High Field Strength Trace Elements in Granitic Rocks. Contributions to Mineralogy and Petrology, 114(4):479-488. https://doi.org/10.1007/bf00321752
    Keppler, H., Wyllie, P. J., 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between Melt and Aqueous Fluid in the Systems Haplogranite-H2O-HCl and Haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109(2):139-150. https://doi.org/10.1016/j.gca.2017.03.015
    Kohn, S., Dupree, R., Mortuza, M., et al., 1991. NMR Evidence for Five- and Six-Coordinated Aluminum Fluoride Complexes in F-Bearing Aluminosilicate Glasses. American Mineralogist, 76(1/2):309-312
    Kress, V. C., Carmichael, I. S. E., 1991. The Compressibility of Silicate Liquids Containing Fe2O3 and the Effect of Composition, Temperature, Oxygen Fugacity and Pressure on Their Redox States. Contributions to Mineralogy and Petrology, 108(1/2):82-92. https://doi.org/10.1007/bf00307328
    Li, H. J., Hermann, J., 2015. Apatite as an Indicator of Fluid Salinity:An Experimental Study of Chlorine and Fluorine Partitioning in Subducted Sediments. Geochimica et Cosmochimica Acta, 166:267-297. https://doi.org/10.1016/j.gca.2015.06.029
    Li, X. Y., Zhang, C., Behrens, H., et al., 2018. Fluorine Partitioning between Titanite and Silicate Melt and Its Dependence on Melt Composition:Experiments at 50-200 MPa and 875-925 ℃. European Journal of Mineralogy, 30(1):33-44. https://doi.org/10.1127/ejm/2017/0029-2689
    Lukkari, S., Holtz, F., 2007. Phase Relations of a F-Enriched Peraluminous Granite:An Experimental Study of the Kymi Topaz Granite Stock, Southern Finland. Contributions to Mineralogy and Petrology, 153(3):273-288. https://doi.org/10.1007/s00410-006-0146-8
    Manning, D. A. C., 1981. The Effect of Fluorine on Liquidus Phase Relationships in the System Qz-Ab-Or with Excess Water at 1 kb. Contributions to Mineralogy and Petrology, 76(2):206-215. https://doi.org/10.1007/bf00371960
    Mathez, E. A., Webster, J. D., 2005. Partitioning Behavior of Chlorine and Fluorine in the System Apatite-Silicate Melt-Fluid. Geochimica et Cosmochimica Acta, 69(5):1275-1286. https://doi.org/10.1016/j.gca.2004.08.035
    McCubbin, F. M., Vander Kaaden, K. E., Tartèse, R., et al., 2015. Experimental Investigation of F, Cl, and OH Partitioning between Apatite and Fe-Rich Basaltic Melt at 1.0-1.2 GPa and 950-1 000 ℃. American Mineralogist, 100(8/9):1790-1802. https://doi.org/10.2138/am-2015-5233
    Mysen, B. O., Cody, G. D., Smith, A., 2004. Solubility Mechanisms of Fluorine in Peralkaline and Meta-Aluminous Silicate Glasses and in Melts to Magmatic Temperatures. Geochimica et Cosmochimica Acta, 68(12):2745-2769. https://doi.org/10.1016/j.gca.2003.12.015
    Pichavant, M., Manning, D., 1984. Petrogenesis of Tourmaline Granites and Topaz Granites; The Contribution of Experimental Data. Physics of the Earth and Planetary Interiors, 35(1/2/3):31-50. https://doi.org/10.1016/0031-9201(84)90032-3
    Price, J. D., Hogan, J. P., Gilbert, M. C., et al., 1999. Experimental Study of Titanite-Fluorite Equilibria in the A-Type Mount Scott Granite:Implications for Assessing F Contents of Felsic Magma. Geology, 27(10):951-954. https://doi.org/10.1130/0091-7613(1999)027<0951:esotfe>2.3.co; 2 doi: 10.1130/0091-7613(1999)027<0951:esotfe>2.3.co;2
    Scaillet, B., Macdonald, R., 2003. Experimental Constraints on the Relationships between Peralkaline Rhyolites of the Kenya Rift Valley. Journal of Petrology, 44(10):1867-1894. https://doi.org/10.1093/petrology/egg062
    Scaillet, B., Macdonald, R., 2004. Fluorite Stability in Silicic Magmas. Contributions to Mineralogy and Petrology, 147(3):319-329. https://doi.org/10.1007/s00410-004-0559-1
    Schwab, R., Küstner, D., 1981. The Equilibrium Fugacities of Important Oxygen Buffers in Technology and Petrology. Neues Jahrbuch für Mineralogie, 140:112-142
    Stebbins, J. F., Zeng, Q., 2000. Cation Ordering at Fluoride Sites in Silicate Glasses:A High-Resolution 19F NMR Study. Journal of Non-Crystalline Solids, 262(1/2/3):1-5. https://doi.org/10.1016/s0022-3093(99)00695-x
    Tossell, J., 1993. Theoretical Studies of the Speciation of Al in F-Bearing Aluminosilicate Glasses. American Mineralogist, 78(1/2):16-22
    Van den Bleeken, G., Koga, K. T., 2015. Experimentally Determined Distribution of Fluorine and Chlorine Upon Hydrous Slab Melting, and Implications for F-Cl Cycling through Subduction Zones. Geochimica et Cosmochimica Acta, 171:353-373. https://doi.org/10.1016/j.gca.2015.09.030
    Veksler, I. V., Dorfman, A. M., Kamenetsky, M., et al., 2005. Partitioning of Lanthanides and Y between Immiscible Silicate and Fluoride Melts, Fluorite and Cryolite and the Origin of the Lanthanide Tetrad Effect in Igneous Rocks. Geochimica et Cosmochimica Acta, 69(11):2847-2860. https://doi.org/10.1016/j.gca.2004.08.007
    Veksler, I. V., Thomas, R., Schmidt, C., 2002. Experimental Evidence of Three Coexisting Immiscible Fluids in Synthetic Granitic Pegmatite. American Mineralogist, 87(5/6):775-779. https://doi.org/10.2138/am-2002-5-621
    Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- and A-Type Granites from Jiuhuashan Region (South China):Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478:164-182. https://doi.org/10.1016/j.chemgeo.2017.09.033
    Wang, L. X., Marks, M. A. W., Wenzel, T., et al., 2016. Halogen-Bearing Minerals from the Tamazeght Complex (Morocco):Constraints on Halogen Distribution and Evolution in Alkaline to Peralkaline Magmatic Systems. The Canadian Mineralogist, 54(6):1347-1368. https://doi.org/10.3749/canmin.1600007
    Webster, J. D., Goldoff, B. A., Flesch, R. N., et al., 2017. Hydroxyl, Cl, and F Partitioning between High-Silica Rhyolitic Melts-Apatite-Fluid(s) at 50-200 MPa and 700-1 000 ℃. American Mineralogist, 102(1):61-74. https://doi.org/10.2138/am-2017-5746
    Webster, J. D., Tappen, C. M., Mandeville, C. W., 2009. Partitioning Behavior of Chlorine and Fluorine in the System Apatite-Melt-Fluid. II: Felsic Silicate Systems at 200 MPa. Geochimica et Cosmochimica Acta, 73(3): 559-581. https://doi.org/10.1016/j.gca.2008.10.034
    Wengorsch, T., 2013. Experimental Constraints on the Storage Conditions of a Tephriphonolite from the Cumbre Vieja Volcano (La Palma, Canary Islands) at 200 and 400 MPa: [Dissertation]. Leibniz Universität Hannover, Hannover. 97
    Xiong, X. L., Rao, B., Chen, F. R., et al., 2002. Crystallization and Melting Experiments of a Fluorine-Rich Leucogranite from the Xianghualing Pluton, South China, at 150 MPa and H2O-Saturated Conditions. Journal of Asian Earth Sciences, 21(2):175-188. https://doi.org/10.1016/s1367-9120(02)00030-5
    Zeng, Q., Stebbins, J. F., 2000. Fluoride Sites in Aluminosilicate Glasses:High-Resolution19F NMR Results. American Mineralogist, 85(5/6):863-867. https://doi.org/10.2138/am-2000-5-630
    Zhang, C., Holtz, F., Ma, C. Q., et al., 2012. Tracing the Evolution and Distribution of F and Cl in Plutonic Systems from Volatile-Bearing Minerals:A Case Study from the Liujiawa Pluton (Dabie Orogen, China). Contributions to Mineralogy and Petrology, 164(5):859-879. https://doi.org/10.1007/s00410-012-0778-9
    Zhang, C., Koepke, J., Albrecht, M., et al., 2017. Apatite in the Dike-Gabbro Transition Zone of Mid-Ocean Ridge:Evidence for Brine Assimilation by Axial Melt Lens. American Mineralogist, 102(3):558-570. https://doi.org/10.2138/am-2017-5906
    Zhang, C., Koepke, J., Wang, L. X., et al., 2016. A Practical Method for Accurate Measurement of Trace Level Fluorine in Mg- and Fe-Bearing Minerals and Glasses Using Electron Probe Microanalysis. Geostandards and Geoanalytical Research, 40(3):351-363. https://doi.org/10.1111/j.1751-908x.2015.00390.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views(746) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return