Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 5
Oct 2020
Turn off MathJax
Article Contents
Anatoly Kuzmich Rybin, Elena Anatol'evna Bataleva, SeKseniia Nepeina Nepeina, Pavel Alexandrovich Kaznacheev, Pavel Alexandrovich Matiukov, Pavel Nikolaevich Aleksandrov. Definition of the Seismic Field of the Underground Sources in the Ambient Seismic Noise in the Tien Shan Region Using a Three-Component Gradient System. Journal of Earth Science, 2020, 31(5): 988-992. doi: 10.1007/s12583-020-1327-5
Citation: Anatoly Kuzmich Rybin, Elena Anatol'evna Bataleva, SeKseniia Nepeina Nepeina, Pavel Alexandrovich Kaznacheev, Pavel Alexandrovich Matiukov, Pavel Nikolaevich Aleksandrov. Definition of the Seismic Field of the Underground Sources in the Ambient Seismic Noise in the Tien Shan Region Using a Three-Component Gradient System. Journal of Earth Science, 2020, 31(5): 988-992. doi: 10.1007/s12583-020-1327-5

Definition of the Seismic Field of the Underground Sources in the Ambient Seismic Noise in the Tien Shan Region Using a Three-Component Gradient System

doi: 10.1007/s12583-020-1327-5
More Information
  • Corresponding author: Kseniia Sergeevna Nepeina, ORCID: 0000-0003-0725-8023, nepeina.k@mail.ru
  • Received Date: 24 May 2019
  • Accepted Date: 09 Apr 2020
  • Publish Date: 20 Oct 2020
  • This paper considers a new approach to solving the problem of quantitative estimation of the microseism energy for underground sources that is based on the synthesis of noise interferometry and the passive seismic method of the gradient system. The selection of a seismic field of the underground sources is considered in an experiment conducted in the Tien Shan region. The peculiarities of approach include the separation of vertical microseisms in the ambient seismic noise field structure according to the data of the seismic gradient system and a passive noise interferometry diagram, where microseisms from the underground sources are used as the seismic signal source. It is shown that the use of noise interferometry and passive seismic gradient system allows using the synchronous microseism recordings in a small number of points for passive medium sensing, and leads to the restoration of unknown energy parameters of the seismic field of underground sources.

     

  • loading
  • Aleksandrov, P. N., 2009. The Theory of Seismic and Electromagnetic Monitoring of the Modern Geodynamic Processes. Bulletin of Kamchatka Regional Association:Earth Sciences, 2(14):49-58 (in Russian with English Abstract)
    Bataleva, E. A., Przhiyalgovskii, E. S., Batalev, V. Y., et al., 2017. New Data on the Deep Structure of the South Kochkor Zone of Concentrated Deformation. Doklady Earth Sciences, 475(2):930-934. https://doi.org/10.1134/s1028334x1708013x
    Buslov, M. M., De Grave, J., Bataleva, E. A. V., et al., 2007. Cenozoic Tectonic and Geodynamic Evolution of the Kyrgyz Tien Shan Mountains:A Review of Geological, Thermochronological and Geophysical Data. Journal of Asian Earth Sciences, 29(2/3):205-214. https://doi.org/10.1016/j.jseaes.2006.07.001
    Karplus, M., Schmandt, B., 2018. Preface to the Focus Section on Geophone Array Seismology. Seismological Research Letters, 89(5):1597-1600. https://doi.org/10.1785/0220180212
    Kaznacheev, P. A., Matiukov, V. E., Aleksandrov, P. N., et al., 2019. Development of a Three-Axis Gradient System for Seismoacoustic Data Acquisition in Geodynamically Active Regions. Seismic Instruments, 55(5):535-543. https://doi.org/10.3103/s0747923919050062
    Khavroshkin, O. B., 1999. Some Problems of Nonlinear Seismology. OIFZ RAS, 286 (in Russian)
    Korn, G. A., Korn, T. M., 1968. Mathematical Handbook:For Scientists and Engineers. McGraw-Hill Book Company, New York
    Langston, C. A., 2007. Wave Gradiometry in the Time Domain. Bulletin of the Seismological Society of America, 97(3):926-933. https://doi.org/10.1785/0120060152
    Lin, F. C., Li, D., Clayton, R. W., et al., 2013. High-Resolution 3D Shallow Crustal Structure in Long Beach, California:Application of Ambient Noise Tomography on a Dense Seismic Array. Geophysics, 78:45-56. https://doi.org/10.1190/geo2012-0453.1
    Maeda, T., Nishida, K., Takagi, R., et al., 2016. Reconstruction of a 2D Seismic Wavefield by Seismic Gradiometry. Progress in Earth and Planetary Science, 3(1):31. https://doi.org/10.1186/s40645-016-0107-4
    Moura, R. M., Senos Matias, M. J., 2012. Geophones on Blocks:A Prototype Towable Geophone System for Shallow Land Seismic Investigations. Geophysical Prospecting, 60(1):192-200. https://doi.org/10.1111/j.1365-2478.2011.00963.x
    Picozzi, M., Parolai, S., Bindi, D., et al., 2009. Characterization of Shallow Geology by High-Frequency Seismic Noise Tomography. Geophysical Journal International, 176(1):164-174. https://doi.org/10.1111/j.1365-246x.2008.03966.x
    Schmelzbach, C., Donner, S., Igel, H., et al., 2018. Advances in 6C Seismology:Applications of Combined Translational and Rotational Motion Measurements in Global and Exploration Seismology. Geophysics, 83(3):WC53-WC69. https://doi.org/10.1190/geo2017-0492.1
    Sobolev, G. A., Ponomarev, A. V., Kol'tsov, A. V., et al., 2001. Excitation of Acoustic Emission by Elastic Impulses. Izvestiya-Physics of the Solid Earth, 37(1):73-77 http://www.researchgate.net/publication/290200218_Excitation_of_acoustic_emission_by_elastic_impulses
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(296) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return