Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 5
Oct 2021
Turn off MathJax
Article Contents
Wei Yang, Sheng He, Gangyi Zhai, Ze Tao, Xiaoqing Yuan, Sile Wei. Maturity Assessment of the Lower Cambrian and Sinian Shales Using Multiple Technical Approaches. Journal of Earth Science, 2021, 32(5): 1262-1277. doi: 10.1007/s12583-020-1329-3
Citation: Wei Yang, Sheng He, Gangyi Zhai, Ze Tao, Xiaoqing Yuan, Sile Wei. Maturity Assessment of the Lower Cambrian and Sinian Shales Using Multiple Technical Approaches. Journal of Earth Science, 2021, 32(5): 1262-1277. doi: 10.1007/s12583-020-1329-3

Maturity Assessment of the Lower Cambrian and Sinian Shales Using Multiple Technical Approaches

doi: 10.1007/s12583-020-1329-3
More Information
  • Corresponding author: Sheng He, shenghe@cug.edu.cn
  • Received Date: 17 Nov 2019
  • Accepted Date: 13 Apr 2020
  • Publish Date: 01 Oct 2021
  • The Lower Cambrian Niutitang and Sinian Doushantuo shales are the most important and widespread source rocks and target layers in South China. Reliable data of the thermal maturity of organic matter (OM) is widely used to assess hydrocarbon generation and is a key property used in determining the viability and hydrocarbon potential of these new shales. Nevertheless, traditional thermal maturity indicators are no longer suited to the vitrinite-lack marine shales. This study aims to combine high throughput Raman and infrared spectroscopy analysis to confirm and validate the thermal maturity in comparison with the bitumen reflectance (Rb). Raman parameters such as the differences between the positions of the two bands (VG-VD) are strong parameters for calculating the thermal maturity in a large vitrinite reflectance (Ro) ranging from 1.60% to 3.80%. The infrared spectroscopy analysis indicates that the aromatic C=C bands and CH2/CH3 aliphatic groups both are closely correlated with thermal maturity. The calculated Ro results from Raman and infrared spectroscopy are in strong coincidence with the Rb. The relationships between Rb and pore volumes/surface areas (calculated from N2 adsorption) indicate that the sample with Rb of 3.40% has the lowest pore volumes and surface areas. Focused ion beam scanning electron microscopy (FIB-SEM) observations of OM pores indicate that Ro of approximately 3.60% may be an upper limit for OM porosity development. Obviously, kerogen Raman and infrared spectroscopy can indicate methods for reducing the risk in assessing maturity with practical, low-cost accurate results. Exploration of shale gas in the high maturity (>3.40%-3.60%) region carries huge risks.

     

  • loading
  • Abarghani, A., Ostadhassan, M., Gentzis, T., et al., 2019. Correlating Rock-Eval™ Tmax with Bitumen Reflectance from Organic Petrology in the Bakken Formation. International Journal of Coal Geology, 205: 87-104. https://doi.org/10.1016/j.coal.2019.03.003
    Akiyama, M., Nakashima, S., Jin, C., 1992. FT-IR Microspectroscopy Analysis of Kerogen. Researches in Organic Geochemistry, 8: 17-19 http://www.jstage.jst.go.jp/article/rog/8/0/8_KJ00006913134/_pdf
    Bai, B. J., Elgmati, M., Zhang, H., et al., 2013. Rock Characterization of Fayetteville Shale Gas Plays. Fuel, 105: 645-652. https://doi.org/10.1016/j.fuel.2012.09.043
    Beyssac, O., Goffé, B., Chopin, C., et al., 2002. Raman Spectra of Carbonaceous Material in Metasediments: A New Geothermometer. Journal of Metamorphic Geology, 20(9): 859-871. https://doi.org/10.1046/j.1525-1314.2002.00408.x
    Bray, E. E., Evans, D. E., 1965. Hydrocarbons in Non-Reservoir-Rock Source Beds. AAPG Bulletin, 49(3): 248-257. https://doi.org/10.1306/a663352e-16c0-11d7-8645000102c1865d
    Cao, T. T., Song, Z. G., Wang, S. B., et al., 2015. A Comparative Study of the Specific Surface Area and Pore Structure of Different Shales and their Kerogens. Science China Earth Sciences, 58(4): 510-522. https://doi.org/10.1007/s11430-014-5021-2
    Chalmers, G. R. L., Bustin, R. M., 2017. A Multidisciplinary Approach in Determining the Maceral (Kerogen Type) and Mineralogical Composition of Upper Cretaceous Eagle Ford Formation: Impact on Pore Development and Pore Size Distribution. International Journal of Coal Geology, 171: 93-110. https://doi.org/10.1016/j.coal.2017.01.004
    Chen, X., Zhang, G., Hu, Y., 2016. Deposit Environment of the Ediacaran Doushantuo Formation in Yichang Area, Western Hubei Province, China and Its Geological Significance for Shale Gas. Geology and Mineral Resources of South China, 32(2): 106-116 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC201602002.htm
    Cloutis, E. A., 1989. Spectral Reflectance Properties of Hydrocarbons: Remote-Sensing Implications. Science, 245(4914): 165-168. https://doi.org/10.1126/science.245.4914.165
    Correia, M., 1971. Diagenesis of Sporopollenin and Other Comparable Organic Substances: Application to Hydrocarbon Research. Proceedings of a Symposium Held at the Geology Department, Imperial College, September 23-25, London
    Craddock, P. R., le Doan, T. V., Bake, K., et al., 2015. Evolution of Kerogen and Bitumen during Thermal Maturation via Semi-Open Pyrolysis Investigated by Infrared Spectroscopy. Energy & Fuels, 29(4): 2197-2210. https://doi.org/10.1021/ef5027532
    Craddock, P. R., Prange, M. D., Pomerantz, A. E., 2017. Kerogen Thermal Maturity and Content of Organic-Rich Mudrocks Determined Using Stochastic Linear Regression Models Applied to Diffuse Reflectance IR Fourier Transform Spectroscopy (DRIFTS). Organic Geochemistry, 110: 122-133. https://doi.org/10.1016/j.orggeochem.2017.05.005
    Curtis, J. B., 2002. Fractured Shale-Gas Systems. American Association of Petroleum Geologists Bulletin, 86: 1921-1938 http://www.nrcresearchpress.com/servlet/linkout?suffix=refg13/ref13&dbid=16&doi=10.1139%2Fcjes-2014-0188&key=10.1306%2F61EEDDBE-173E-11D7-8645000102C1865D
    Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26-31. https://doi.org/10.1016/j.coal.2012.08.004
    Curtis, M. E., Sondergeld, C. H., Rai, C. S., 2013. Investigation of the Microstructure of Shales in the Oil Window. In: Unconventional Resources Technology Conference, August 12-14, Denver
    Dai, J. X., Zou, C. N., Liao, S. M., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin. Organic Geochemistry, 74: 3-12. https://doi.org/10.1016/j.orggeochem.2014.01.018
    Fan, J., Li, C., Hou, X., 2018. The International Chronostratigraphic Chart. Journal of Stratigraphy, 42(4): 365-370 (in Chinese with English Abstract)
    Feng, G., Chen, S., 1988. Relationship between the Reflectance of Bitumen and Vitrinite in Rock. Natural Gas Industry, 8(3): 20-25 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG198803006.htm
    Ferralis, N., Matys, E. D., Knoll, A. H., et al., 2016. Rapid, Direct and Non-Destructive Assessment of Fossil Organic Matter via MicroRaman Spectroscopy. Carbon, 108: 440-449. https://doi.org/10.1016/j.carbon.2016.07.039
    Fishman, N., Guthrie, J. M., Honarpour, M., 2013. The Stratigraphic Distribution of Hydrocarbon Storage and Its Effect on Producible Hydrocarbons in the Eagle Ford Formation, South Texas. In: URTec1579007 Unconventional Resources Technology Conference, August 12-14, Denver
    Ganz, H. H., Kalkreuth, W., 1991. IR Classification of Kerogen Type, Thermal Maturation, Hydrocarbon Potential and Lithological Characteristics. Journal of Southeast Asian Earth Sciences, 5(1/2/3/4): 19-28. https://doi.org/10.1016/0743-9547(91)90007-k
    Gonçalves, P. A., Mendonça Filho, J. G., da Silva, F. S., et al., 2015. Solid Bitumen Occurrences in the Arruda Sub-Basin (Lusitanian Basin, Portugal): Petrographic Features. International Journal of Coal Geology, 131: 239-249. https://doi.org/10.1016/j.coal.2014.06.023
    Gregg, S. J., Sing, K. S. W., 1982. Adsorption, Surface Area and Porosity. Academic Press, London http://www.onacademic.com/detail/journal_1000037966919110_cfba.html
    Grobe, A., Urai, J. L., Littke, R., et al., 2016. Hydrocarbon Generation and Migration under a Large Overthrust: The Carbonate Platform under the Semail Ophiolite, Jebel Akhdar, Oman. International Journal of Coal Geology, 168: 3-19. https://doi.org/10.1016/j.coal.2016.02.007
    Ground Water Protection Council, 2009. Modern Shale Gas Development in the United States: A Primer. (2012-3-19). https://www.energy.gov/sites/prod/files/2013/03/f0/ShaleGasPrimer_Online_4-2009.pdf
    Guedes, A., Valentim, B., Prieto, A. C., et al., 2012. Raman Spectroscopy of Coal Macerals and Fluidized Bed Char Morphotypes. Fuel, 97: 443-449. https://doi.org/10.1016/j.fuel.2012.02.054
    Guo, T. L., Zhang, H. R., 2014. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin. Petroleum Exploration and Development, 41(1): 31-40. https://doi.org/10.1016/s1876-3804(14)60003-3
    Han, Y. J., Horsfield, B., Wirth, R., et al., 2017. Oil Retention and Porosity Evolution in Organic-Rich Shales. AAPG Bulletin, 101(6): 807-827. https://doi.org/10.1306/09221616069
    Hill, D. G., Nelson, C. R., 2000. Gas Productive Fractured Shales-An Overview and Update. Gas TIPS, 6(2): 4-13
    Hinrichs, R., Brown, M. T., Vasconcellos, M. A. Z., et al., 2014. Simple Procedure for an Estimation of the Coal Rank Using Micro-Raman Spectroscopy. International Journal of Coal Geology, 136: 52-58. https://doi.org/10.1016/j.coal.2014.10.013
    Hou, Y. G., Liang, Y. Q., He, S., et al., 2017. Distribution and Thermal Maturity of Devonian Carbonate Reservoir Solid Bitumen in Desheng Area of Guizhong Depression, South China. Geofluids, 2017(6): 1-15. https://doi.org/10.1155/2017/4580416
    Hu, K., Liu, Y. J., Willeins, R. W. T., 1993. Raman Spectral Studies of Sedimentary Organic Matter. Acta Sedimentologica Sinica, 11(3): 64-71 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199303009.htm
    Jacob, H., 1989. Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen ("Migrabitumen"). International Journal of Coal Geology, 11(1): 65-79. https://doi.org/10.1016/0166-5162(89)90113-4
    Jennings, D. S., Antia, J., 2013. Petrographic Characterization of the Eagle Ford Shale, South Texas: Mineralogy, Common Constituents, and Distribution of Nanometerscale Pore Types. In: Camp, W., Diaz, E., Wawak, B., eds., Electron Microscopy of Shale Hydrocarbon Reservoirs. American Association of Petroleum Geologists Memoir, 102: 101-113
    Kelemen, S. R., Fang, H. L., 2001. Maturity Trends in Raman Spectra from Kerogen and Coal. Energy & Fuels, 15(3): 653-658. https://doi.org/10.1021/ef0002039
    Khatibi, S., Ostadhassan, M., Tuschel, D., et al., 2018. Evaluating Molecular Evolution of Kerogen by Raman Spectroscopy: Correlation with Optical Microscopy and Rock-Eval Pyrolysis. Energies, 11(6): 1406. https://doi.org/10.3390/en11061406
    Labus, M., Lempart, M., 2018. Studies of Polish Paleozoic Shale Rocks Using FTIR and TG/DSC Methods. Journal of Petroleum Science and Engineering, 161: 311-318. https://doi.org/10.1016/j.petrol.2017.11.057
    Liu, D. H., Xiao, X. M., Tian, H., et al., 2013. Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics: Methodology and Geological Applications. Chinese Science Bulletin, 58(11): 1285-1298. https://doi.org/10.1007/s11434-012-5535-y
    Liu, Y., Yin, C., Gao, L., et al., 2003. Advances in the Study of Sedimentary Facies of the Sinian Candidate Stratotype in the Eastern Areas of the Three Gorges, Hubei. Geological Review, 49(2): 187-194 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200302014.htm
    Liu, Z. X., Yan, D. T., Niu, X., 2020. Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China. Journal of Earth Science, 31(1): 169-180. https://doi.org/10.1007/s12583-020-1259-0
    Löhr, S. C., Baruch, E. T., Hall, P. A., et al., 2015. Is Organic Pore Development in Gas Shales Influenced by the Primary Porosity and Structure of Thermally Immature Organic Matter?. Organic Geochemistry, 87: 119-132. https://doi.org/10.1016/j.orggeochem.2015.07.010
    Lomando, A. J., 1992. The Influence of Solid Reservoir Bitumen on Reservoir Quality (1). AAPG Bulletin, 76: 1137-1152. https://doi.org/10.1306/bdff8984-1718-11d7-8645000102c1865d
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
    Lünsdorf, N. K., 2016. Raman Spectroscopy of Dispersed Vitrinite-Methodical Aspects and Correlation with Reflectance. International Journal of Coal Geology, 153: 75-86. https://doi.org/10.1016/j.coal.2015.11.010
    Lupoi, J. S., Fritz, L. P., Hackley, P. C., et al., 2018. Quantitative Evaluation of Vitrinite Reflectance and Atomic O/C in Coal Using Raman Spectroscopy and Multivariate Analysis. Fuel, 230: 1-8. https://doi.org/10.1016/j.fuel.2018.04.172
    Mastalerz, M., Drobniak, A., Stankiewicz, A. B., 2018. Origin, Properties, and Implications of Solid Bitumen in Source-Rock Reservoirs: A Review. International Journal of Coal Geology, 195: 14-36. https://doi.org/10.1016/j.coal.2018.05.013
    Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643. https://doi.org/10.1306/04011312194
    Milliken, K. L., Ko, L. T., Pommer, M., et al., 2014. Sem Petrography of Eastern Mediterranean Sapropels: Analogue Data for Assessing Organic Matter in Oil and Gas Shales. Journal of Sedimentary Research, 84(11): 961-974. https://doi.org/10.2110/jsr.2014.75
    National Energy Administration, 2012. Method of Determining Microscopically the Reflectance of Vitrinite in Sedimentary[SY/T 5124-2012]. Petroleum Industry Press, Beijing
    Peng, N., He, S., Hao, F., et al., 2017. The Pore Structure and Difference between Wufeng and Longmaxi Shales in Pengshui Area, Southeastern Sichuan. Earth Science, 42(7): 1134-1146 (in Chinese with English Abstract)
    Pommer, M., Milliken, K., 2015. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713-1744. https://doi.org/10.1306/03051514151
    Quirico, E., Rouzaud, J. N., Bonal, L., et al., 2005. Maturation Grade of Coals as Revealed by Raman Spectroscopy: Progress and Problems. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(10): 2368-2377. https://doi.org/10.1016/j.saa.2005.02.015
    Reed, R. M., Loucks, R. G., Ruppel, S. C., 2014. Comment on "Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin)" by Bernard et al. (2012). International Journal of Coal Geology, 127: 111-113. https://doi.org/10.1016/j.coal.2013.11.012
    Schiffbauer, J. D., Wallace, A. F., Hunter, J. L. Jr, et al., 2012. Thermally-Induced Structural and Chemical Alteration of Organic-Walled Microfossils: An Experimental Approach to Understanding Fossil Preservation in Metasediments. Geobiology, 10(5): 402-423. https://doi.org/10.1111/j.1472-4669.2012.00332.x
    Schito, A., Romano, C., Corrado, S., et al., 2017. Diagenetic Thermal Evolution of Organic Matter by Raman Spectroscopy. Organic Geochemistry, 106: 57-67. https://doi.org/10.1016/j.orggeochem.2016.12.006
    Schmidt Mumm, A., İnan, S., 2016. Microscale Organic Maturity Determination of Graptolites Using Raman Spectroscopy. International Journal of Coal Geology, 162: 96-107. https://doi.org/10.1016/j.coal.2016.05.002
    Staplin, F. L., 1969. Sedimentary Organic Matter, Organic Metamorphism, and Oil and Gas Occurrence. Bulletin of Canadian Petroleum Geology, 17(1): 47-66 http://www.onacademic.com/detail/journal_1000039733050810_ea2a.html
    Stasiuk, L. D., 1997. The Origin of Pyrobitumens in Upper Devonian Leduc Formation Gas Reservoirs, Alberta, Canada: An Optical and EDS Study of Oil to Gas Transformation. Marine and Petroleum Geology, 14(7/8): 915-929. https://doi.org/10.1016/s0264-8172(97)00031-7
    Tissot, B. P., Pelet, R., Ungerer, P., 1987. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG Bulletin, 71(12): 1445-1466. https://doi.org/10.1306/703c80e7-1707-11d7-8645000102c1865d
    Vandenbroucke, M., Largeau, C., 2007. Kerogen Origin, Evolution and Structure. Organic Geochemistry, 38(5): 719-833. https://doi.org/10.1016/j.orggeochem.2007.01.001
    Varma, A. K., Mishra, D. K., Samad, S. K., et al., 2018. Geochemical and Organo-Petrographic Characterization for Hydrocarbon Generation from Barakar Formation in Auranga Basin, India. International Journal of Coal Geology, 186: 97-114. https://doi.org/10.1016/j.coal.2017.12.002
    Wang, M., Xiao, X., Wei, Q., et al., 2015. Thermal Maturation of Solid Bitumen in Shale as Revealed by Raman Spectroscopy. Natural Gas Geoscience, 26(9): 1712-1718 (in Chinese with English Abstract) http://210.77.95.121/atticle/D15/D15027.pdf
    Wang, R. Y., Ding, W. L., Zhang, Y. Q., et al., 2016. Analysis of Developmental Characteristics and Dominant Factors of Fractures in Lower Cambrian Marine Shale Reservoirs: A Case Study of Niutitang Formation in Cen'gong Block, Southern China. Journal of Petroleum Science and Engineering, 138: 31-49. https://doi.org/10.1016/j.petrol.2015.12.004
    Wang, Y., 2009. An Overview on the Maturation Indicators of Organic Matter. Science Paper Online, 2(9): 900-911 (in Chinese with English Abstract)
    Washburn, K. E., Birdwell, J. E., Foster, M., et al., 2015. Detailed Description of Oil Shale Organic and Mineralogical Heterogeneity via Fourier Transform Infrared Microscopy. Energy & Fuels, 29(7): 4264-4271. https://doi.org/10.1021/acs.energyfuels.5b00807
    Wei, L., Wang, Y. Z., Mastalerz, M., 2016. Comparative Optical Properties of Macerals and Statistical Evaluation of Mis-Identification of Vitrinite and Solid Bitumen from Early Mature Middle Devonian-Lower Mississippian New Albany Shale: Implications for Thermal Maturity Assessment. International Journal of Coal Geology, 168: 222-236. https://doi.org/10.1016/j.coal.2016.11.003
    Wei, S. L., He, S., Pan, Z. J., et al., 2019. Models of Shale Gas Storage Capacity during Burial and Uplift: Application to Wufeng-Longmaxi Shales in the Fuling Shale Gas Field. Marine and Petroleum Geology, 109: 233-244. https://doi.org/10.1016/j.marpetgeo.2019.06.012
    Wilkins, R. W. T., Boudou, R., Sherwood, N., et al., 2014. Thermal Maturity Evaluation from Inertinites by Raman Spectroscopy: The 'RaMM' Technique. International Journal of Coal Geology, 128/129: 143-152. https://doi.org/10.1016/j.coal.2014.03.006
    Wilkins, R. W. T., Wang, M., Gan, H. J., et al., 2015. A RaMM Study of Thermal Maturity of Dispersed Organic Matter in Marine Source Rocks. International Journal of Coal Geology, 150-151: 252-264. https://doi.org/10.1016/j.coal.2015.09.007
    Wilkins, R. W. T., Wilmshurst, J. R., Russell, N. J., et al., 1992. Fluorescence Alteration and the Suppression of Vitrinite Reflectance. Organic Geochemistry, 18(5): 629-640. https://doi.org/10.1016/0146-6380(92)90088-f
    Wu, S. T., Zhu, R. K., Cui, J. G., et al., 2015. Characteristics of Lacustrine Shale Porosity Evolution, Triassic Chang 7 Member, Ordos Basin, NW China. Petroleum Exploration and Development, 42(2): 185-195. https://doi.org/10.1016/s1876-3804(15)30005-7
    Wu, Z. R., He, S., Han, Y. J., et al., 2020. Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. Journal of Earth Science, 31(2): 368-384. https://doi.org/10.1007/s12583-019-1237-6
    Xu, X., Sun, W., Wang, S., et al., 2019. Maturity Evaluation of Marine Shale in the Lower Paleozoic in South China. Earth Science, 44(11): 3717-3724 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911011.htm
    Yang, R., Hao, F., He, S., et al., 2017. Experimental Investigations on the Geometry and Connectivity of Pore Space in Organic-Rich Wufeng and Longmaxi Shales. Marine and Petroleum Geology, 84: 225-242. https://doi.org/10.1016/j.marpetgeo.2017.03.033
    Yang, R., He, S., Yi, J. Z., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
    Yang, R., Hu, Q. H., He, S., et al., 2019. Wettability and Connectivity of Overmature Shales in the Fuling Gas Field, Sichuan Basin (China). AAPG Bulletin, 103(3): 653-689. https://doi.org/10.1306/09051817138
    Yang, W., He, S., Iglauer, S., et al., 2020a. Porosity Characteristics of Different Lithofacies in Marine Shale: A Case Study of Neoproterozoic Sinian Doushantuo Formation in Yichang Area, China. Journal of Petroleum Science and Engineering, 187: 106856. https://doi.org/10.1016/j.petrol.2019.106856
    Yang, W., He, S., Zhai, G. Y., et al., 2020b. Pore Characteristics of the Lower Sinian Doushantuo Shale in the Mid-Yangtze Yichang Area of China: Insights into a Distinct Shale Gas Reservoir in the Neoproterozoic Formation. Journal of Natural Gas Science and Engineering, 73: 103085. https://doi.org/10.1016/j.jngse.2019.103085
    Yang, W., He, S., Zhai, G., et al., 2019. Shale-Gas Accumulation and Pore Structure Characteristics in the Lower Cambrian Niutitang Shales, Cen-Gong Block, South China. Australian Journal of Earth Sciences, 66(2): 289-303. https://doi.org/10.1080/08120099.2018.1544172
    Zargari, S., Canter, K. L., Prasad, M., 2015. Porosity Evolution in Oil-Prone Source Rocks. Fuel, 153: 110-117. https://doi.org/10.1016/j.fuel.2015.02.072
    Zeng, Y. S., Wu, C. D., 2007. Raman and Infrared Spectroscopic Study of Kerogen Treated at Elevated Temperatures and Pressures. Fuel, 86(7/8): 1192-1200. https://doi.org/10.1016/j.fuel.2005.03.036
    Zhang, B., Yan, D. T., Drawarh, H. J., et al., 2020. Formation Mechanism and Numerical Model of Quartz in Fine-Grained Organic-Rich Shales: A Case Study of Wufeng and Longmaxi Formations in Western Hubei Province, South China. Journal of Earth Science, 31(2): 354-367. https://doi.org/10.1007/s12583-019-1247-4
    Zhang M., Peng, S., Zhang, L., et al., 2016. New Recognition of Carbonate nodules Genesis in Sinian Doushantuo Formation in Zigui Area and Its Geological Implication. Earth Science, 41(12): 1977-1994 (in Chinese with English Abstract)
    Zhang, C., Xia, X., Yang, Y., et al., 2019. Raman Spectrum Characteristics of Organic Matter in Silurian Longmaxi Formation Shale of Well Anye-1 and Its Geological Significance. Rock and Mineral Analysis, 38(1): 26-34 (in Chinese with English Abstract) http://www.researchgate.net/publication/342780971_Raman_Spectrum_Characteristics_of_Organic_Matter_in_Silurian_Longmaxi_Formation_Shale_of_Well_Anye-1_and_Its_Geological_Significance
    Zhou, Q., Xiao, X. M., Pan, L., et al., 2014. The Relationship between Micro-Raman Spectral Parameters and Reflectance of Solid Bitumen. International Journal of Coal Geology, 121:19-25. https://doi.org/10.1016/j.coal.2013.10.013
    Zou, C. N., Yang, Z., Zhang, G. S., et al., 2014. Conventional and Unconventional Petroleum "Orderly Accumulation": Concept and Practical Significance. Petroleum Exploration and Development, 41(1): 14-30. https://doi.org/10.1016/s1876-3804(14)60002-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views(302) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return