Abarghani, A., Ostadhassan, M., Gentzis, T., et al., 2019. Correlating Rock-Eval™ Tmax with Bitumen Reflectance from Organic Petrology in the Bakken Formation. International Journal of Coal Geology, 205: 87-104. https://doi.org/10.1016/j.coal.2019.03.003 |
Akiyama, M., Nakashima, S., Jin, C., 1992. FT-IR Microspectroscopy Analysis of Kerogen. Researches in Organic Geochemistry, 8: 17-19 http://www.jstage.jst.go.jp/article/rog/8/0/8_KJ00006913134/_pdf |
Bai, B. J., Elgmati, M., Zhang, H., et al., 2013. Rock Characterization of Fayetteville Shale Gas Plays. Fuel, 105: 645-652. https://doi.org/10.1016/j.fuel.2012.09.043 |
Beyssac, O., Goffé, B., Chopin, C., et al., 2002. Raman Spectra of Carbonaceous Material in Metasediments: A New Geothermometer. Journal of Metamorphic Geology, 20(9): 859-871. https://doi.org/10.1046/j.1525-1314.2002.00408.x |
Bray, E. E., Evans, D. E., 1965. Hydrocarbons in Non-Reservoir-Rock Source Beds. AAPG Bulletin, 49(3): 248-257. https://doi.org/10.1306/a663352e-16c0-11d7-8645000102c1865d |
Cao, T. T., Song, Z. G., Wang, S. B., et al., 2015. A Comparative Study of the Specific Surface Area and Pore Structure of Different Shales and their Kerogens. Science China Earth Sciences, 58(4): 510-522. https://doi.org/10.1007/s11430-014-5021-2 |
Chalmers, G. R. L., Bustin, R. M., 2017. A Multidisciplinary Approach in Determining the Maceral (Kerogen Type) and Mineralogical Composition of Upper Cretaceous Eagle Ford Formation: Impact on Pore Development and Pore Size Distribution. International Journal of Coal Geology, 171: 93-110. https://doi.org/10.1016/j.coal.2017.01.004 |
Chen, X., Zhang, G., Hu, Y., 2016. Deposit Environment of the Ediacaran Doushantuo Formation in Yichang Area, Western Hubei Province, China and Its Geological Significance for Shale Gas. Geology and Mineral Resources of South China, 32(2): 106-116 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC201602002.htm |
Cloutis, E. A., 1989. Spectral Reflectance Properties of Hydrocarbons: Remote-Sensing Implications. Science, 245(4914): 165-168. https://doi.org/10.1126/science.245.4914.165 |
Correia, M., 1971. Diagenesis of Sporopollenin and Other Comparable Organic Substances: Application to Hydrocarbon Research. Proceedings of a Symposium Held at the Geology Department, Imperial College, September 23-25, London |
Craddock, P. R., le Doan, T. V., Bake, K., et al., 2015. Evolution of Kerogen and Bitumen during Thermal Maturation via Semi-Open Pyrolysis Investigated by Infrared Spectroscopy. Energy & Fuels, 29(4): 2197-2210. https://doi.org/10.1021/ef5027532 |
Craddock, P. R., Prange, M. D., Pomerantz, A. E., 2017. Kerogen Thermal Maturity and Content of Organic-Rich Mudrocks Determined Using Stochastic Linear Regression Models Applied to Diffuse Reflectance IR Fourier Transform Spectroscopy (DRIFTS). Organic Geochemistry, 110: 122-133. https://doi.org/10.1016/j.orggeochem.2017.05.005 |
Curtis, J. B., 2002. Fractured Shale-Gas Systems. American Association of Petroleum Geologists Bulletin, 86: 1921-1938 http://www.nrcresearchpress.com/servlet/linkout?suffix=refg13/ref13&dbid=16&doi=10.1139%2Fcjes-2014-0188&key=10.1306%2F61EEDDBE-173E-11D7-8645000102C1865D |
Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26-31. https://doi.org/10.1016/j.coal.2012.08.004 |
Curtis, M. E., Sondergeld, C. H., Rai, C. S., 2013. Investigation of the Microstructure of Shales in the Oil Window. In: Unconventional Resources Technology Conference, August 12-14, Denver |
Dai, J. X., Zou, C. N., Liao, S. M., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin. Organic Geochemistry, 74: 3-12. https://doi.org/10.1016/j.orggeochem.2014.01.018 |
Fan, J., Li, C., Hou, X., 2018. The International Chronostratigraphic Chart. Journal of Stratigraphy, 42(4): 365-370 (in Chinese with English Abstract) |
Feng, G., Chen, S., 1988. Relationship between the Reflectance of Bitumen and Vitrinite in Rock. Natural Gas Industry, 8(3): 20-25 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG198803006.htm |
Ferralis, N., Matys, E. D., Knoll, A. H., et al., 2016. Rapid, Direct and Non-Destructive Assessment of Fossil Organic Matter via MicroRaman Spectroscopy. Carbon, 108: 440-449. https://doi.org/10.1016/j.carbon.2016.07.039 |
Fishman, N., Guthrie, J. M., Honarpour, M., 2013. The Stratigraphic Distribution of Hydrocarbon Storage and Its Effect on Producible Hydrocarbons in the Eagle Ford Formation, South Texas. In: URTec1579007 Unconventional Resources Technology Conference, August 12-14, Denver |
Ganz, H. H., Kalkreuth, W., 1991. IR Classification of Kerogen Type, Thermal Maturation, Hydrocarbon Potential and Lithological Characteristics. Journal of Southeast Asian Earth Sciences, 5(1/2/3/4): 19-28. https://doi.org/10.1016/0743-9547(91)90007-k |
Gonçalves, P. A., Mendonça Filho, J. G., da Silva, F. S., et al., 2015. Solid Bitumen Occurrences in the Arruda Sub-Basin (Lusitanian Basin, Portugal): Petrographic Features. International Journal of Coal Geology, 131: 239-249. https://doi.org/10.1016/j.coal.2014.06.023 |
Gregg, S. J., Sing, K. S. W., 1982. Adsorption, Surface Area and Porosity. Academic Press, London http://www.onacademic.com/detail/journal_1000037966919110_cfba.html |
Grobe, A., Urai, J. L., Littke, R., et al., 2016. Hydrocarbon Generation and Migration under a Large Overthrust: The Carbonate Platform under the Semail Ophiolite, Jebel Akhdar, Oman. International Journal of Coal Geology, 168: 3-19. https://doi.org/10.1016/j.coal.2016.02.007 |
Ground Water Protection Council, 2009. Modern Shale Gas Development in the United States: A Primer. (2012-3-19). https://www.energy.gov/sites/prod/files/2013/03/f0/ShaleGasPrimer_Online_4-2009.pdf |
Guedes, A., Valentim, B., Prieto, A. C., et al., 2012. Raman Spectroscopy of Coal Macerals and Fluidized Bed Char Morphotypes. Fuel, 97: 443-449. https://doi.org/10.1016/j.fuel.2012.02.054 |
Guo, T. L., Zhang, H. R., 2014. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin. Petroleum Exploration and Development, 41(1): 31-40. https://doi.org/10.1016/s1876-3804(14)60003-3 |
Han, Y. J., Horsfield, B., Wirth, R., et al., 2017. Oil Retention and Porosity Evolution in Organic-Rich Shales. AAPG Bulletin, 101(6): 807-827. https://doi.org/10.1306/09221616069 |
Hill, D. G., Nelson, C. R., 2000. Gas Productive Fractured Shales-An Overview and Update. Gas TIPS, 6(2): 4-13 |
Hinrichs, R., Brown, M. T., Vasconcellos, M. A. Z., et al., 2014. Simple Procedure for an Estimation of the Coal Rank Using Micro-Raman Spectroscopy. International Journal of Coal Geology, 136: 52-58. https://doi.org/10.1016/j.coal.2014.10.013 |
Hou, Y. G., Liang, Y. Q., He, S., et al., 2017. Distribution and Thermal Maturity of Devonian Carbonate Reservoir Solid Bitumen in Desheng Area of Guizhong Depression, South China. Geofluids, 2017(6): 1-15. https://doi.org/10.1155/2017/4580416 |
Hu, K., Liu, Y. J., Willeins, R. W. T., 1993. Raman Spectral Studies of Sedimentary Organic Matter. Acta Sedimentologica Sinica, 11(3): 64-71 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199303009.htm |
Jacob, H., 1989. Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen ("Migrabitumen"). International Journal of Coal Geology, 11(1): 65-79. https://doi.org/10.1016/0166-5162(89)90113-4 |
Jennings, D. S., Antia, J., 2013. Petrographic Characterization of the Eagle Ford Shale, South Texas: Mineralogy, Common Constituents, and Distribution of Nanometerscale Pore Types. In: Camp, W., Diaz, E., Wawak, B., eds., Electron Microscopy of Shale Hydrocarbon Reservoirs. American Association of Petroleum Geologists Memoir, 102: 101-113 |
Kelemen, S. R., Fang, H. L., 2001. Maturity Trends in Raman Spectra from Kerogen and Coal. Energy & Fuels, 15(3): 653-658. https://doi.org/10.1021/ef0002039 |
Khatibi, S., Ostadhassan, M., Tuschel, D., et al., 2018. Evaluating Molecular Evolution of Kerogen by Raman Spectroscopy: Correlation with Optical Microscopy and Rock-Eval Pyrolysis. Energies, 11(6): 1406. https://doi.org/10.3390/en11061406 |
Labus, M., Lempart, M., 2018. Studies of Polish Paleozoic Shale Rocks Using FTIR and TG/DSC Methods. Journal of Petroleum Science and Engineering, 161: 311-318. https://doi.org/10.1016/j.petrol.2017.11.057 |
Liu, D. H., Xiao, X. M., Tian, H., et al., 2013. Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics: Methodology and Geological Applications. Chinese Science Bulletin, 58(11): 1285-1298. https://doi.org/10.1007/s11434-012-5535-y |
Liu, Y., Yin, C., Gao, L., et al., 2003. Advances in the Study of Sedimentary Facies of the Sinian Candidate Stratotype in the Eastern Areas of the Three Gorges, Hubei. Geological Review, 49(2): 187-194 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200302014.htm |
Liu, Z. X., Yan, D. T., Niu, X., 2020. Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China. Journal of Earth Science, 31(1): 169-180. https://doi.org/10.1007/s12583-020-1259-0 |
Löhr, S. C., Baruch, E. T., Hall, P. A., et al., 2015. Is Organic Pore Development in Gas Shales Influenced by the Primary Porosity and Structure of Thermally Immature Organic Matter?. Organic Geochemistry, 87: 119-132. https://doi.org/10.1016/j.orggeochem.2015.07.010 |
Lomando, A. J., 1992. The Influence of Solid Reservoir Bitumen on Reservoir Quality (1). AAPG Bulletin, 76: 1137-1152. https://doi.org/10.1306/bdff8984-1718-11d7-8645000102c1865d |
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092 |
Lünsdorf, N. K., 2016. Raman Spectroscopy of Dispersed Vitrinite-Methodical Aspects and Correlation with Reflectance. International Journal of Coal Geology, 153: 75-86. https://doi.org/10.1016/j.coal.2015.11.010 |
Lupoi, J. S., Fritz, L. P., Hackley, P. C., et al., 2018. Quantitative Evaluation of Vitrinite Reflectance and Atomic O/C in Coal Using Raman Spectroscopy and Multivariate Analysis. Fuel, 230: 1-8. https://doi.org/10.1016/j.fuel.2018.04.172 |
Mastalerz, M., Drobniak, A., Stankiewicz, A. B., 2018. Origin, Properties, and Implications of Solid Bitumen in Source-Rock Reservoirs: A Review. International Journal of Coal Geology, 195: 14-36. https://doi.org/10.1016/j.coal.2018.05.013 |
Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643. https://doi.org/10.1306/04011312194 |
Milliken, K. L., Ko, L. T., Pommer, M., et al., 2014. Sem Petrography of Eastern Mediterranean Sapropels: Analogue Data for Assessing Organic Matter in Oil and Gas Shales. Journal of Sedimentary Research, 84(11): 961-974. https://doi.org/10.2110/jsr.2014.75 |
National Energy Administration, 2012. Method of Determining Microscopically the Reflectance of Vitrinite in Sedimentary[SY/T 5124-2012]. Petroleum Industry Press, Beijing |
Peng, N., He, S., Hao, F., et al., 2017. The Pore Structure and Difference between Wufeng and Longmaxi Shales in Pengshui Area, Southeastern Sichuan. Earth Science, 42(7): 1134-1146 (in Chinese with English Abstract) |
Pommer, M., Milliken, K., 2015. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713-1744. https://doi.org/10.1306/03051514151 |
Quirico, E., Rouzaud, J. N., Bonal, L., et al., 2005. Maturation Grade of Coals as Revealed by Raman Spectroscopy: Progress and Problems. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(10): 2368-2377. https://doi.org/10.1016/j.saa.2005.02.015 |
Reed, R. M., Loucks, R. G., Ruppel, S. C., 2014. Comment on "Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin)" by Bernard et al. (2012). International Journal of Coal Geology, 127: 111-113. https://doi.org/10.1016/j.coal.2013.11.012 |
Schiffbauer, J. D., Wallace, A. F., Hunter, J. L. Jr, et al., 2012. Thermally-Induced Structural and Chemical Alteration of Organic-Walled Microfossils: An Experimental Approach to Understanding Fossil Preservation in Metasediments. Geobiology, 10(5): 402-423. https://doi.org/10.1111/j.1472-4669.2012.00332.x |
Schito, A., Romano, C., Corrado, S., et al., 2017. Diagenetic Thermal Evolution of Organic Matter by Raman Spectroscopy. Organic Geochemistry, 106: 57-67. https://doi.org/10.1016/j.orggeochem.2016.12.006 |
Schmidt Mumm, A., İnan, S., 2016. Microscale Organic Maturity Determination of Graptolites Using Raman Spectroscopy. International Journal of Coal Geology, 162: 96-107. https://doi.org/10.1016/j.coal.2016.05.002 |
Staplin, F. L., 1969. Sedimentary Organic Matter, Organic Metamorphism, and Oil and Gas Occurrence. Bulletin of Canadian Petroleum Geology, 17(1): 47-66 http://www.onacademic.com/detail/journal_1000039733050810_ea2a.html |
Stasiuk, L. D., 1997. The Origin of Pyrobitumens in Upper Devonian Leduc Formation Gas Reservoirs, Alberta, Canada: An Optical and EDS Study of Oil to Gas Transformation. Marine and Petroleum Geology, 14(7/8): 915-929. https://doi.org/10.1016/s0264-8172(97)00031-7 |
Tissot, B. P., Pelet, R., Ungerer, P., 1987. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG Bulletin, 71(12): 1445-1466. https://doi.org/10.1306/703c80e7-1707-11d7-8645000102c1865d |
Vandenbroucke, M., Largeau, C., 2007. Kerogen Origin, Evolution and Structure. Organic Geochemistry, 38(5): 719-833. https://doi.org/10.1016/j.orggeochem.2007.01.001 |
Varma, A. K., Mishra, D. K., Samad, S. K., et al., 2018. Geochemical and Organo-Petrographic Characterization for Hydrocarbon Generation from Barakar Formation in Auranga Basin, India. International Journal of Coal Geology, 186: 97-114. https://doi.org/10.1016/j.coal.2017.12.002 |
Wang, M., Xiao, X., Wei, Q., et al., 2015. Thermal Maturation of Solid Bitumen in Shale as Revealed by Raman Spectroscopy. Natural Gas Geoscience, 26(9): 1712-1718 (in Chinese with English Abstract) http://210.77.95.121/atticle/D15/D15027.pdf |
Wang, R. Y., Ding, W. L., Zhang, Y. Q., et al., 2016. Analysis of Developmental Characteristics and Dominant Factors of Fractures in Lower Cambrian Marine Shale Reservoirs: A Case Study of Niutitang Formation in Cen'gong Block, Southern China. Journal of Petroleum Science and Engineering, 138: 31-49. https://doi.org/10.1016/j.petrol.2015.12.004 |
Wang, Y., 2009. An Overview on the Maturation Indicators of Organic Matter. Science Paper Online, 2(9): 900-911 (in Chinese with English Abstract) |
Washburn, K. E., Birdwell, J. E., Foster, M., et al., 2015. Detailed Description of Oil Shale Organic and Mineralogical Heterogeneity via Fourier Transform Infrared Microscopy. Energy & Fuels, 29(7): 4264-4271. https://doi.org/10.1021/acs.energyfuels.5b00807 |
Wei, L., Wang, Y. Z., Mastalerz, M., 2016. Comparative Optical Properties of Macerals and Statistical Evaluation of Mis-Identification of Vitrinite and Solid Bitumen from Early Mature Middle Devonian-Lower Mississippian New Albany Shale: Implications for Thermal Maturity Assessment. International Journal of Coal Geology, 168: 222-236. https://doi.org/10.1016/j.coal.2016.11.003 |
Wei, S. L., He, S., Pan, Z. J., et al., 2019. Models of Shale Gas Storage Capacity during Burial and Uplift: Application to Wufeng-Longmaxi Shales in the Fuling Shale Gas Field. Marine and Petroleum Geology, 109: 233-244. https://doi.org/10.1016/j.marpetgeo.2019.06.012 |
Wilkins, R. W. T., Boudou, R., Sherwood, N., et al., 2014. Thermal Maturity Evaluation from Inertinites by Raman Spectroscopy: The 'RaMM' Technique. International Journal of Coal Geology, 128/129: 143-152. https://doi.org/10.1016/j.coal.2014.03.006 |
Wilkins, R. W. T., Wang, M., Gan, H. J., et al., 2015. A RaMM Study of Thermal Maturity of Dispersed Organic Matter in Marine Source Rocks. International Journal of Coal Geology, 150-151: 252-264. https://doi.org/10.1016/j.coal.2015.09.007 |
Wilkins, R. W. T., Wilmshurst, J. R., Russell, N. J., et al., 1992. Fluorescence Alteration and the Suppression of Vitrinite Reflectance. Organic Geochemistry, 18(5): 629-640. https://doi.org/10.1016/0146-6380(92)90088-f |
Wu, S. T., Zhu, R. K., Cui, J. G., et al., 2015. Characteristics of Lacustrine Shale Porosity Evolution, Triassic Chang 7 Member, Ordos Basin, NW China. Petroleum Exploration and Development, 42(2): 185-195. https://doi.org/10.1016/s1876-3804(15)30005-7 |
Wu, Z. R., He, S., Han, Y. J., et al., 2020. Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. Journal of Earth Science, 31(2): 368-384. https://doi.org/10.1007/s12583-019-1237-6 |
Xu, X., Sun, W., Wang, S., et al., 2019. Maturity Evaluation of Marine Shale in the Lower Paleozoic in South China. Earth Science, 44(11): 3717-3724 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911011.htm |
Yang, R., Hao, F., He, S., et al., 2017. Experimental Investigations on the Geometry and Connectivity of Pore Space in Organic-Rich Wufeng and Longmaxi Shales. Marine and Petroleum Geology, 84: 225-242. https://doi.org/10.1016/j.marpetgeo.2017.03.033 |
Yang, R., He, S., Yi, J. Z., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019 |
Yang, R., Hu, Q. H., He, S., et al., 2019. Wettability and Connectivity of Overmature Shales in the Fuling Gas Field, Sichuan Basin (China). AAPG Bulletin, 103(3): 653-689. https://doi.org/10.1306/09051817138 |
Yang, W., He, S., Iglauer, S., et al., 2020a. Porosity Characteristics of Different Lithofacies in Marine Shale: A Case Study of Neoproterozoic Sinian Doushantuo Formation in Yichang Area, China. Journal of Petroleum Science and Engineering, 187: 106856. https://doi.org/10.1016/j.petrol.2019.106856 |
Yang, W., He, S., Zhai, G. Y., et al., 2020b. Pore Characteristics of the Lower Sinian Doushantuo Shale in the Mid-Yangtze Yichang Area of China: Insights into a Distinct Shale Gas Reservoir in the Neoproterozoic Formation. Journal of Natural Gas Science and Engineering, 73: 103085. https://doi.org/10.1016/j.jngse.2019.103085 |
Yang, W., He, S., Zhai, G., et al., 2019. Shale-Gas Accumulation and Pore Structure Characteristics in the Lower Cambrian Niutitang Shales, Cen-Gong Block, South China. Australian Journal of Earth Sciences, 66(2): 289-303. https://doi.org/10.1080/08120099.2018.1544172 |
Zargari, S., Canter, K. L., Prasad, M., 2015. Porosity Evolution in Oil-Prone Source Rocks. Fuel, 153: 110-117. https://doi.org/10.1016/j.fuel.2015.02.072 |
Zeng, Y. S., Wu, C. D., 2007. Raman and Infrared Spectroscopic Study of Kerogen Treated at Elevated Temperatures and Pressures. Fuel, 86(7/8): 1192-1200. https://doi.org/10.1016/j.fuel.2005.03.036 |
Zhang, B., Yan, D. T., Drawarh, H. J., et al., 2020. Formation Mechanism and Numerical Model of Quartz in Fine-Grained Organic-Rich Shales: A Case Study of Wufeng and Longmaxi Formations in Western Hubei Province, South China. Journal of Earth Science, 31(2): 354-367. https://doi.org/10.1007/s12583-019-1247-4 |
Zhang M., Peng, S., Zhang, L., et al., 2016. New Recognition of Carbonate nodules Genesis in Sinian Doushantuo Formation in Zigui Area and Its Geological Implication. Earth Science, 41(12): 1977-1994 (in Chinese with English Abstract) |
Zhang, C., Xia, X., Yang, Y., et al., 2019. Raman Spectrum Characteristics of Organic Matter in Silurian Longmaxi Formation Shale of Well Anye-1 and Its Geological Significance. Rock and Mineral Analysis, 38(1): 26-34 (in Chinese with English Abstract) http://www.researchgate.net/publication/342780971_Raman_Spectrum_Characteristics_of_Organic_Matter_in_Silurian_Longmaxi_Formation_Shale_of_Well_Anye-1_and_Its_Geological_Significance |
Zhou, Q., Xiao, X. M., Pan, L., et al., 2014. The Relationship between Micro-Raman Spectral Parameters and Reflectance of Solid Bitumen. International Journal of Coal Geology, 121:19-25. https://doi.org/10.1016/j.coal.2013.10.013 |
Zou, C. N., Yang, Z., Zhang, G. S., et al., 2014. Conventional and Unconventional Petroleum "Orderly Accumulation": Concept and Practical Significance. Petroleum Exploration and Development, 41(1): 14-30. https://doi.org/10.1016/s1876-3804(14)60002-1 |