Acreman, M., Holden, J., 2013. How Wetlands Affect Floods. Wetlands, 33(5): 773-786. https://doi.org/10.1007/s13157-013-0473-2 |
Barthel, R., Banzhaf, S., 2015. Groundwater and Surface Water Interaction at the Regional-Scale--A Review with Focus on Regional Integrated Models. Water Resources Management, 30(1): 1-32. https://doi.org/10.1007/s11269-015-1163-z |
Battin, T. J., Besemer, K., Bengtsson, M. M., et al., 2016. The Ecology and Biogeochemistry of Stream Biofilms. Nature Reviews Microbiology, 14(4): 251-263. https://doi.org/10.1038/nrmicro.2016.15 |
Battin, T. J., Kaplan, L. A., Findlay, S., et al., 2009. Erratum: Biophysical Controls on Organic Carbon Fluxes in Fluvial Networks. Nature Geoscience, 2(8): 595-595. https://doi.org/10.1038/ngeo101 |
Befus, K. M., Cardenas, M. B., Ong, J. B., et al., 2012. Classification and Delineation of Groundwater-Lake Interactions in the Nebraska Sand Hills (USA) Using Electrical Resistivity Patterns. Hydrogeology Journal, 20(8): 1483-1495. https://doi.org/10.1007/s10040-012-0891-x |
Bertrand, G., Goldscheider, N., Gobat, J. M., et al., 2011. Review: From Multi-Scale Conceptualization to a Classification System for Inland Groundwater-Dependent Ecosystems. Hydrogeology Journal, 20(1): 5-25. https://doi.org/10.1007/s10040-011-0791-5 |
Boano, F., Harvey, J. W., Marion, A., et al., 2014. Hyporheic Flow and Transport Processes: Mechanisms, Models, and Biogeochemical Implications. Reviews of Geophysics, 52(4): 603-679. https://doi.org/10.1002/2012rg000417 |
Boulton, A. J., Fenwick, G. D., Hancock, P. J., et al., 2008. Biodiversity, Functional Roles and Ecosystem Services of Groundwater Invertebrates. Invertebrate Systematics, 22(2): 103-116. https://doi.org/10.1071/is07024 |
Boyer, A., Hatat-Fraile, M., Passeport, E., et al., 2018. Biogeochemical Controls on Strontium Fate at the Sediment-Water Interface of Two Groundwater-Fed Wetlands with Contrasting Hydrologic Regimes. Environmental Science & Technology, 52(15): 8365-8372. https://doi.org/10.1021/acs.est.8b01876 |
Brunner, P., Therrien, R., Renard, P., et al., 2017. Advances in Understanding River-Groundwater Interactions. Reviews of Geophysics, 55(3): 818-854. https://doi.org/10.1002/2017rg000556 |
Buendia, C., Gibbins, C. N., Vericat, D., et al., 2013. Detecting the Structural and Functional Impacts of Fine Sediment on Stream Invertebrates. Ecological Indicators, 25: 184-196. https://doi.org/10.1016/j.ecolind.2012.09.027 |
Bullock, A., Acreman, M., 2003. The Role of Wetlands in the Hydrological Cycle. Hydrology and Earth System Sciences, 7(3): 358-389. https://doi.org/10.5194/hess-7-358-2003 |
Busato, L., Boaga, J., Perri, M. T., et al., 2019. Hydrogeophysical Characterization and Monitoring of the Hyporheic and Riparian Zones: The Vermigliana Creek Case Study. Science of the Total Environment, 648: 1105-1120. https://doi.org/10.1016/j.scitotenv.2018.08.179 |
Cardenas, M. B., Markowski, M. S., 2011. Geoelectrical Imaging of Hyporheic Exchange and Mixing of River Water and Groundwater in a Large Regulated River. Environmental Science & Technology, 45(4): 1407-1411. https://doi.org/10.1021/es103438a |
Clarke, S. J., 2002. Vegetation Growth in Rivers: Influences upon Sediment and Nutrient Dynamics. Progress in Physical Geography, 26(2): 159-172. https://doi.org/10.1191/0309133302pp324ra |
Clinton, S. M., Edwards, R. T., Findlay, S. E. G., 2010. Exoenzyme Activities as Indicators of Dissolved Organic Matter Composition in the Hyporheic Zone of a Floodplain River. Freshwater Biology, 55(8): 1603-1615. https://doi.org/10.1111/j.1365-2427.2009.02383.x |
Coban, O., Kuschk, P., Wells, N. S., et al., 2015. Microbial Nitrogen Transformation in Constructed Wetlands Treating Contaminated Groundwater. Environmental Science Pollution Research, 22(17): 12829-12839. https://doi.org/10.1007/s11356-014-3575-3 |
Crosbie, R. S., McEwan, K. L., Jolly, I. D., et al., 2009. Salinization Risk in Semi-Arid Floodplain Wetlands Subjected to Engineered Wetting and Drying Cycles. Hydrological Processes, 23(24): 3440-3452. https://doi.org/10.1002/hyp.7445 |
Datry, T., 2012. Benthic and Hyporheic Invertebrate Assemblages along a Flow Intermittence Gradient: Effects of Duration of Dry Events. Freshwater Biology, 57(3): 563-574. https://doi.org/10.1111/j.1365-2427.2011.02725.x |
Davidson, N. C., 2014. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Marine and Freshwater Research, 65(10): 934-941. https://doi.org/10.1071/MF14173 |
Day-Lewis, F. D., White, E. A., Johnson, C. D., et al., 2006. Continuous Resistivity Profiling to Delineate Submarine Groundwater Discharge-Examples and Limitations. The Leading Edge, 25(6): 724-728. https://doi.org/10.1190/1.2210056 |
Desta, H., Lemma, B., Fetene, A., 2012. Aspects of Climate Change and Its Associated Impacts on Wetland Ecosystem Functions--A Review. Journal of American Science, 8(10): 582-596 http://www.researchgate.net/publication/285684260_Aspects_of_climate_change_and_its_associated_impacts_on_wetland_ecosystem_functions_-_a_review |
Dole-Olivier, M. J., 2011. The Hyporheic Refuge Hypothesis Reconsidered: A Review of Hydrological Aspects. Marine and Freshwater Research, 62(11): 1281-1302. https://doi.org/10.1071/mf11084 |
Du, Y., Ma, T., Deng, Y., et al., 2017a. Hydro-Biogeochemistry of Hyporheic Zone: Principles, Methods and Ecological Significance. Earth Science, 42(5): 661-673 (in Chinese with English Abstract) https://doi.org/10.3799/dqkx.2017.054 |
Du, Y., Ma, T., Deng, Y., et al., 2017b. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science: Processes & Impacts, 19(2): 161-172. https://doi.org/10.1039/c6em00531d |
Eamus, D., Zolfaghar, S., Villalobos-Vega, R., et al., 2015. Groundwater-Dependent Ecosystems: Recent Insights from Satellite and Field-Based Studies. Hydrology and Earth System Sciences, 19(10): 4229-4256. https://doi.org/10.5194/hess-19-4229-2015 |
Fan, W., Zhang, G., Li, R., 2012. Review of Groundwater-Surface Water Interactions in Wetland. Advances in Earth Science, 27(4): 413-423 (in Chinese with English Abstract) |
Feris, K. P., Ramsey, P. W., Frazar, C., et al., 2003. Structure and Seasonal Dynamics of Hyporheic Zone Microbial Communities in Free-Stone Rivers of the Estern United States. Microbial Ecology, 46(2): 200-215. https://doi.org/10.1007/bf03036883 |
Ficklin, D. L., Stewart, I. T., Maurer, E. P., 2013. Climate Change Impacts on Streamflow and Subbasin-Scale Hydrology in the Upper Colorado River Basin. PLoS ONE, 8(8): e71297. https://doi.org/10.1371/journal.pone.0071297 |
Fuller, C. C., Harvey, J. W., 2000. Reactive Uptake of Trace Metals in the Hyporheic Zone of a Mining-Contaminated Stream, Pinal Creek, Arizona. Environmental Science & Technology, 34(7): 1150-1155. https://doi.org/10.1021/es990714d |
Gafni, A., Brooks, K. N., 1990. Hydraulic Characteristics of Four Peatlands in MinnesoTA. Canadian Journal of Soil Science, 70(2): 239-253. https://doi.org/10.4141/cjss90-025 |
Hancock, P. J., Boulton, A. J., Humphreys, W. F., 2005. Aquifers and Hyporheic Zones: Towards an Ecological Understanding of Groundwater. Hydrogeology Journal, 13(1): 98-111. https://doi.org/10.1007/s10040-004-0421-6 |
Hanson, R. T., Flint, L. E., Flint, A. L., et al., 2012. A Method for Physically Based Model Analysis of Conjunctive Use in Response to Potential Climate Changes. Water Resources Research, 48(6): W00L08. https://doi.org/10.1029/2011wr010774 |
Harvell, D., Altizer, S., Cattadori, I. M., et al., 2009. Climate Change and Wildlife Diseases: When Does the Host Matter the Most?. Ecology, 90(4): 912-920. https://doi.org/10.1890/08-0616.1 |
Harvey, J. W., Böhlke, J. K., Voytek, M. A., et al., 2013. Hyporheic Zone Denitrification: Controls on Effective Reaction Depth and Contribution to Whole-Stream Mass Balance. Water Resources Research, 49(10): 6298-6316. https://doi.org/10.1002/wrcr.20492 |
Havril, T., Tóth, Á., Molson, J. W., et al., 2018. Impacts of Predicted Climate Change on Groundwater Flow Systems: Can Wetlands Disappear Due to Recharge Reduction?. Journal of Hydrology, 563: 1169-1180. https://doi.org/10.1016/j.jhydrol.2017.09.020 |
House, A. R., Sorensen, J. P. R., Gooddy, D. C., et al., 2015. Discrete Wetland Groundwater Discharges Revealed with a Three-Dimensional Temperature Model and Botanical Indicators (Boxford, UK). Hydrogeology Journal, 23(4): 775-787. https://doi.org/10.1007/s10040-015-1242-5 |
Hu, S. J., Niu, Z. G., Chen, Y. F., et al., 2017. Global Wetlands: Potential Distribution, Wetland Loss, and Status. Science of the Total Environment, 586: 319-327. https://doi.org/10.1016/j.scitotenv.2017.02.001 |
Johansen, O. M., Pedersen, M. L., Jensen, J. B., 2011. Effect of Groundwater Abstraction on Fen Ecosystems. Journal of Hydrology, 402(3/4): 357-366. https://doi.org/10.1016/j.jhydrol.2011.03.031 |
Jolly, I. D., McEwan, K. L., Holland, K. L., 2008. A Review of Groundwater-Surface Water Interactions in Arid/Semi-Arid Wetlands and the Consequences of Salinity for Wetland Ecology. Ecohydrology, 1(1): 43-58. https://doi.org/10.1002/eco.6 |
Kalbus, E., Reinstorf, F., Schirmer, M., 2006. Measuring Methods for Groundwater--Surface Water Interactions: A Review. Hydrology and Earth System Sciences, 10(6): 873-887. https://doi.org/10.5194/hess-10-873-2006 |
Kløve, B., Ala-Aho, P., Bertrand, G., et al., 2014. Climate Change Impacts on Groundwater and Dependent Ecosystems. Journal of Hydrology, 518: 250-266. https://doi.org/10.1016/j.jhydrol.2013.06.037 |
Krause, S., Hannah, D. M., Fleckenstein, J. H., et al., 2011. Inter-Disciplinary Perspectives on Processes in the Hyporheic Zone. Ecohydrology, 4(4): 481-499. https://doi.org/10.1002/eco.176 |
Lagomasino, D., Price, R. M., Herrera-Silveira, J., et al., 2015. Connecting Groundwater and Surface Water Sources in Groundwater Dependent Coastal Wetlands and Estuaries: Sian Ka'an Biosphere Reserve, Quintana Roo, Mexico. Estuaries and Coasts, 38(5): 1744-1763 doi: 10.1007/s12237-014-9892-4 |
Lee, C. G., Fletcher, T. D., Sun, G., 2009. Nitrogen Removal in Constructed Wetland Systems. Engineering in Life Sciences, 9(1): 11-22. https://doi.org/10.1002/elsc.200800049 |
Lee, S. Y., Dunn, R. J. K., Young, R. A., et al., 2006. Impact of Urbanization on Coastal Wetland Structure and Function. Austral Ecology, 31(2): 149-163. https://doi.org/10.1111/j.1442-9993.2006.01581.x |
Leigh, C., Stubbington, R., Sheldon, F., et al., 2013. Hyporheic Invertebrates as Bioindicators of Ecological Health in Temporary Rivers: A Meta-Analysis. Ecological Indicators, 32: 62-73. https://doi.org/10.1016/j.ecolind.2013.03.006 |
Lewandowski, J., Putschew, A., Schwesig, D., et al., 2011. Fate of Organic Micropollutants in the Hyporheic Zone of a Eutrophic Lowland Stream: Results of a Preliminary Field Study. Science of the Total Environment, 409(10): 1824-1835. https://doi.org/10.1016/j.scitotenv.2011.01.028 |
Liao, Z. J., Lemke, D., Osenbrück, K., et al., 2013. Modeling and Inverting Reactive Stream Tracers Undergoing Two-Site Sorption and Decay in the Hyporheic Zone. Water Resources Research, 49(6): 3406-3422. https://doi.org/10.1002/wrcr.20276 |
Luo, M., Huang, J. F., Zhu, W. F., et al., 2017. Impacts of Increasing Salinity and Inundation on Rates and Pathways of Organic Carbon Mineralization in Tidal Wetlands: A Review. Hydrobiologia, 827(1): 31-49. https://doi.org/10.1007/s10750-017-3416-8 |
Luo, X., Jiao, J. J., Wang, X. S., et al., 2017. Groundwater Discharge and Hydrologic Partition of the Lakes in Desert Environment: Insights from Stable 18O/2H and Radium Isotopes. Journal of Hydrology, 546: 189-203. https://doi.org/10.1016/j.jhydrol.2017.01.017 |
Ma, J., Liu, Y., Yu, G. B., et al., 2016. Temporal Dynamics of Urbanization-Driven Environmental Changes Explored by Metal Contamination in Surface Sediments in a Restoring Urban Wetland Park. Journal of Hazardous Materials, 309: 228-235. https://doi.org/10.1016/j.jhazmat.2016.02.017 |
Mateos, D. M., 2017. Wetland Restoration and Creation: An Overview. In: Mateos, D. M., ed., Wetlands, Infobase Publishing, New York |
Maxwell, R. M., Condon, L. E., 2016. Connections between Groundwater Flow and Transpiration Partitioning. Science, 353(6297): 377-380. https://doi.org/10.1126/science.aaf7891 |
Maxwell, R. M., Condon, L. E., Kollet, S. J., 2015. A High-Resolution Simulation of Groundwater and Surface Water over Most of the Continental US with the Integrated Hydrologic Model ParFlow V3. Geoscientific Model Development, 8(3): 923-937. https://doi.org/10.5194/gmd-8-923-2015 |
Millar, D. J., Cooper, D. J., Ronayne, M. J., 2018. Groundwater Dynamics in Mountain Peatlands with Contrasting Climate, Vegetation, and Hydrogeological Setting. Journal of Hydrology, 561: 908-917. https://doi.org/10.1016/j.jhydrol.2018.04.050 |
Mitsch, W. J., Bernal, B., Nahlik, A. M., et al., 2012. Wetlands, Carbon, and Climate Change. Landscape Ecology, 28(4): 583-597. https://doi.org/10.1007/s10980-012-9758-8 |
Moore, P. D., 2007. Wetlands, In: Kentula, M. E., ed., United States Geological Survey Water Supply Paper 2425, Infobase Publishing, Corvallis |
Moore, S., Evans, C. D., Page, S. E., et al., 2013. Deep Instability of Deforested Tropical Peatlands Revealed by Fluvial Organic Carbon Fluxes. Nature, 493(7434): 660-663. https://doi.org/10.1038/nature11818 |
Moreno, D., Pedrocchi, C., Comín, F. A., et al., 2007. Creating Wetlands for the Improvement of Water Quality and Landscape Restoration in Semi-Arid Zones Degraded by Intensive Agricultural Use. Ecological Engineering, 30(2): 103-111. https://doi.org/10.1016/j.ecoleng.2006.07.001 |
Moreno-Mateos, D., Comin, F. A., 2010. Integrating Objectives and Scales for Planning and Implementing Wetland Restoration and Creation in Agricultural Landscapes. Journal of Environmental Management, 91(11): 2087-2095. https://doi.org/10.1016/j.jenvman.2010.06.002 |
Nachshon, U., Ireson, A., van der Kamp, G., et al., 2014. Impacts of Climate Variability on Wetland Salinization in the North American Prairies. Hydrology and Earth System Sciences, 18(4): 1251-1263. https://doi.org/10.5194/hess-18-1251-2014 |
Négrel, P., Millot, R., Brenot, A., et al., 2010. Lithium Isotopes as Tracers of Groundwater Circulation in a Peat Land. Chemical Geology, 276(1/2): 119-127. https://doi.org/10.1016/j.chemgeo.2010.06.008 |
Nielsen, D. L., Brock, M. A., 2009. Modified Water Regime and Salinity as a Consequence of Climate Change: Prospects for Wetlands of Southern Australia. Climatic Change, 95(3/4): 523-533. https://doi.org/10.1007/s10584-009-9564-8 |
Nivala, J., Knowles, P., Dotro, G., et al., 2012. Clogging in Subsurface-Flow Treatment Wetlands: Measurement, Modeling and Management. Water Research, 46(6): 1625-1640. https://doi.org/10.1016/j.watres.2011.12.051 |
Nyquist, J. E., Freyer, P. A., Toran, L., 2008. Stream Bottom Resistivity Tomography to Map Ground Water Discharge. Ground Water, 46(4): 561-569. https://doi.org/10.1111/j.1745-6584.2008.00432.x |
O'Grady, A. P., Eamus, D., Cook, P. G., et al., 2006. Groundwater Use by Riparian Vegetation in the Wet-Dry Tropics of Northern Australia. Australian Journal of Botany, 54(2): 145-154. https://doi.org/10.1071/bt04164 |
Okkonen, J., Kløve, B., 2010. A Conceptual and Statistical Approach for the Analysis of Climate Impact on Ground Water Table Fluctuation Patterns in Cold Conditions. Journal of Hydrology, 388(1/2): 1-12. https://doi.org/10.1016/j.jhydrol.2010.02.015 |
Okkonen, J., Kløve, B., 2011. A Sequential Modelling Approach to Assess Groundwater-Surface Water Resources in a Snow Dominated Region of Finland. Journal of Hydrology, 411(1/2): 91-107. https://doi.org/10.1016/j.jhydrol.2011.09.038 |
Orellana, F., Verma, P., Loheide, S. P. Ⅱ, et al., 2012. Monitoring and Modeling Water-Vegetation Interactions in Groundwater-Dependent Ecosystems. Reviews of Geophysics, 50(3): RG3003. https://doi.org/10.1029/2011rg000383 |
Patten, D. T., 2009. Restoration of Wetland and Riparian Systems: The Role of Science, Adaptive Management, History, and Values. Journal of Contemporary Water Research & Education, 134(1): 9-18. https://doi.org/10.1111/j.1936-704x.2006.mp134001003.x |
Peralta-Maraver, I., Reiss, J., Robertson, A. L., 2018. Interplay of Hydrology, Community Ecology and Pollutant Attenuation in the Hyporheic Zone. Science of the Total Environment, 610-611: 267-275. https://doi.org/10.1016/j.scitotenv.2017.08.036 |
Peyrard, D., Delmotte, S., Sauvage, S., et al., 2011. Longitudinal Transformation of Nitrogen and Carbon in the Hyporheic Zone of an N-Rich Stream: A Combined Modelling and Field Study. Physics and Chemistry of the Earth, Parts A/B/C, 36(12): 599-611. https://doi.org/10.1016/j.pce.2011.05.003 |
Phillips, D. P., Human, L. R. D., Adams, J. B., 2015. Wetland Plants as Indicators of Heavy Metal Contamination. Marine Pollution Bulletin, 92(1/2): 227-232. https://doi.org/10.1016/j.marpolbul.2014.12.038 |
Price, J. S., 1996. Hydrology and Microclimate of a Partly Restored Cutover Bog, Québec. Hydrological Processes, 10(10): 1263-1272. https://doi.org/10.1002/(sici)1099-1085(199610)10:10 < 1263::aid-hyp458 > 3.0.co; 2-1 doi: 10.1002/(sici)1099-1085(199610)10:10<1263::aid-hyp458>3.0.co;2-1 |
Radke, M., Lauwigi, C., Heinkele, G., et al., 2009. Fate of the Antibiotic Sulfamethoxazole and Its Two Major Human Metabolites in a Water Sediment Test. Environmental Science & Technology, 43(9): 3135-3141. https://doi.org/10.1021/es900300u |
Rasmussen, T. C., Deemy, J. B., Long, S. L., 2087. Wetland Hydrology. The Wetland Book, Volume I: Structure and Function, Management and Methods. In: Finlayson, C. M., Everard, M., Irvine, K., eds., The Wetland Book, Springer, Berlin |
Richardson, C. J., Flanagan, N. E., Ho, M., et al., 2011. Integrated Stream and Wetland Restoration: A Watershed Approach to Improved Water Quality on the Landscape. Ecological Engineering, 37(1): 25-39. https://doi.org/10.1016/j.ecoleng.2010.09.005 |
Robertson, A. L., Wood, P. J., 2010. Ecology of the Hyporheic Zone: Origins, Current Knowledge and Future Directions. Fundamental and Applied Limnology, 176(4): 279-289. https://doi.org/10.1127/1863-9135/2010/0176-0279 |
Scheurer, K., Alewell, C., Bänninger, D., et al., 2009. Climate and Land-Use Changes Affecting River Sediment and Brown Trout in Alpine Countries-A Review. Environmental Science and Pollution Research, 16(2): 232-242. https://doi.org/10.1007/s11356-008-0075-3 |
Seeger, E. M., Kuschk, P., Fazekas, H., et al., 2011. Bioremediation of Benzene-, MTBE- and Ammonia-Contaminated Groundwater with Pilot-Scale Constructed Wetlands. Environmental Pollution, 159(12): 3769-3776. https://doi.org/10.1016/j.envpol.2011.07.019 |
Singha, K., Pidlisecky, A., Day-Lewis, F. D., et al., 2008. Electrical Characterization of Non-Fickian Transport in Groundwater and Hyporheic Systems. Water Resources Research, 44(4): W00D07. https://doi.org/10.1029/2008wr007048 |
Smolders, A. J. P., Lucassen, E. C. H. E. T., Bobbink, R., et al., 2009. How Nitrate Leaching from Agricultural Lands Provokes Phosphate Eutrophication in Groundwater Fed Wetlands: The Sulphur Bridge. Biogeochemistry, 98(1/2/3): 1-7. https://doi.org/10.1007/s10533-009-9387-8 |
Sophocleous, M., 2002. Interactions between Groundwater and Surface Water: The State of the Science. Hydrogeology Journal, 10(1): 52-67. https://doi.org/10.1007/s10040-001-0170-8 |
Storey, R. G., Fulthorpe, R. R., Williams, D. D., 1999. Perspectives and Predictions on the Microbial Ecology of the Hyporheic Zone. Freshwater Biology, 41(1): 119-130. https://doi.org/10.1046/j.1365-2427.1999.00377.x |
Stubbington, R., Wood, P. J., Boulton, A. J., 2009. Low Flow Controls on Benthic and Hyporheic Macroinvertebrate Assemblages during Supra-Seasonal Drought. Hydrological Processes, 23(15): 2252-2263. https://doi.org/10.1002/hyp.7290 |
Su, X. S., Cui, G., Du, S. H., et al., 2016. Using Multiple Environmental Methods to Estimate Groundwater Discharge into an Arid Lake (Dakebo Lake, Inner Mongolia, China). Hydrogeology Journal, 24(7): 1707-1722. https://doi.org/10.1007/s10040-016-1439-2 |
Thangarajan, R., Bolan, N. S., Tian, G. L., et al., 2013. Role of Organic Amendment Application on Greenhouse Gas Emission from Soil. Science of the Total Environment, 465: 72-96. https://doi.org/10.1016/j.scitotenv.2013.01.031 |
Triska, F. J., Kennedy, V. C., Avanzino, R. J., et al., 1989. Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes. Ecology, 70(6): 1893-1905. https://doi.org/10.2307/1938120 |
Vymazal, J., 2018. Does Clogging Affect Long-Term Removal of Organics and Suspended Solids in Gravel-Based Horizontal Subsurface Flow Constructed Wetlands?. Chemical Engineering Journal, 331: 663-674. https://doi.org/10.1016/j.cej.2017.09.048 |
Wang, C. Y., Sample, D. J., Day, S. D., et al., 2015. Floating Treatment Wetland Nutrient Removal through Vegetation Harvest and Observations from a Field Study. Ecological Engineering, 78: 15-26. https://doi.org/10.1016/j.ecoleng.2014.05.018 |
Wang, R. C., Wang, H. M., Xiang, X., et al., 2018. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 29(4): 969-976. https://doi.org/10.1007/s12583-017-0818-5 |
Wang, W., Gong, C., Zhang, Z., et al., 2018. Research Status and Prospect of the Subsurface Hydrology and Ecological Effect in Arid Regions. Advances in Earth Science, 33(7): 702-718 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201807004 |
Wu, X. C., Dong, W. H., Lin, X. Y., et al., 2017. Evolution of Wetland in Honghe National Nature Reserve from the View of Hydrogeology. Science of the Total Environment, 609: 1370-1380. https://doi.org/10.1016/j.scitotenv.2017.07.260 |
Xu, Y., Wang, H. M., Xiang, X., et al., 2019. Vertical Variation of Nitrogen Fixers and Ammonia Oxidizers along a Sediment Profile in the Dajiuhu Peatland, Central China. Journal of Earth Science, 30(2): 397-406. https://doi.org/10.1007/s12583-018-0982-2 |
Yu, Z. C., 2012. Northern Peatland Carbon Stocks and Dynamics: A Review. Biogeosciences, 9(10): 4071-4085. https://doi.org/10.5194/bg-9-4071-2012 |
Zedler, J. B., Kercher, S., 2005. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Annual Review of Environment and Resources, 30(1): 39-74. https://doi.org/10.1146/annurev.energy.30.050504.144248 |
Zeglin, L. H., Dahm, C. N., Barrett, J. E., et al., 2011. Bacterial Community Structure along Moisture Gradients in the Parafluvial Sediments of Two Ephemeral Desert Streams. Microbial Ecology, 61(3): 543-556. https://doi.org/10.1007/s00248-010-9782-7 |
Zhang, J., Su, L., Wang, L. P., et al., 2019. The Effect of Vegetation Cover on Ecological Stoichiometric Ratios of Soil Carbon, Nitrogen and Phosphorus: A Case Study of the Dunhuang Yangguan Wetland. Acta Ecologica Sinica, 39(2): 580-589. https://doi.org/10.5846/stxb201712132239 |
Zhou, N. Q., Zhao, S., Shen, X. P., 2014. Nitrogen Cycle in the Hyporheic Zone of Natural Wetlands. Chinese Science Bulletin, 59(24): 2945-2956. https://doi.org/10.1007/s11434-014-0224-7 |
Zhou, S. B., Yuan, X. Z., Peng, S. C., et al., 2014. Groundwater-Surface Water Interactions in the Hyporheic Zone under Climate Change Scenarios. Environmental Science and Pollution Research, 21(24): 13943-13955. https://doi.org/10.1007/s11356-014-3255-3 |