Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 5
Oct 2020
Turn off MathJax
Article Contents
Xiancang Wu, Teng Ma, Yanxin Wang. Surface Water and Groundwater Interactions in Wetlands. Journal of Earth Science, 2020, 31(5): 1016-1028. doi: 10.1007/s12583-020-1333-7
Citation: Xiancang Wu, Teng Ma, Yanxin Wang. Surface Water and Groundwater Interactions in Wetlands. Journal of Earth Science, 2020, 31(5): 1016-1028. doi: 10.1007/s12583-020-1333-7

Surface Water and Groundwater Interactions in Wetlands

doi: 10.1007/s12583-020-1333-7
More Information
  • Corresponding author: Teng Ma, ORCID:0000-0003-2827-9579, mateng@cug.edu.cn
  • Received Date: 03 Dec 2019
  • Accepted Date: 15 Apr 2020
  • Publish Date: 20 Oct 2020
  • Wetland ecosystems are critical habitats for various types of wild lives and are important components of global ecosystem. However, with climate change and human activities, wetlands are facing with degradation. Surface water and groundwater (SW-GW) interactions play an essential role in matter and energy cycling in wetlands, and therefore affect the evolution and health of wetlands. But the role of groundwater in wetland ecosystems has been neglected or simplified. In this paper, we reviewed how surface water interacts with groundwater, and made a systematic summarization of the role of SW-GW interactions (such as maintaining water balance and biological diversity and removing pollution) in wetland ecological functions. We also reviewed the methods to investigate, simulate and quantify SW-GW interactions and related reactions. Finally, we illustrated how climate change and human activities affect SW-GW interactions and therefore affect wetland functions. We highlight the importance of groundwater in wetlands and the urgency to intensify the research in integrated multidisciplinary monitoring and simulation methods, dominant variables and thresholds and integrated water resources management of SW-GW interactions, and further aim to stimulate better protection and restoration of wetlands all over the world.

     

  • loading
  • Acreman, M., Holden, J., 2013. How Wetlands Affect Floods. Wetlands, 33(5): 773-786. https://doi.org/10.1007/s13157-013-0473-2
    Barthel, R., Banzhaf, S., 2015. Groundwater and Surface Water Interaction at the Regional-Scale--A Review with Focus on Regional Integrated Models. Water Resources Management, 30(1): 1-32. https://doi.org/10.1007/s11269-015-1163-z
    Battin, T. J., Besemer, K., Bengtsson, M. M., et al., 2016. The Ecology and Biogeochemistry of Stream Biofilms. Nature Reviews Microbiology, 14(4): 251-263. https://doi.org/10.1038/nrmicro.2016.15
    Battin, T. J., Kaplan, L. A., Findlay, S., et al., 2009. Erratum: Biophysical Controls on Organic Carbon Fluxes in Fluvial Networks. Nature Geoscience, 2(8): 595-595. https://doi.org/10.1038/ngeo101
    Befus, K. M., Cardenas, M. B., Ong, J. B., et al., 2012. Classification and Delineation of Groundwater-Lake Interactions in the Nebraska Sand Hills (USA) Using Electrical Resistivity Patterns. Hydrogeology Journal, 20(8): 1483-1495. https://doi.org/10.1007/s10040-012-0891-x
    Bertrand, G., Goldscheider, N., Gobat, J. M., et al., 2011. Review: From Multi-Scale Conceptualization to a Classification System for Inland Groundwater-Dependent Ecosystems. Hydrogeology Journal, 20(1): 5-25. https://doi.org/10.1007/s10040-011-0791-5
    Boano, F., Harvey, J. W., Marion, A., et al., 2014. Hyporheic Flow and Transport Processes: Mechanisms, Models, and Biogeochemical Implications. Reviews of Geophysics, 52(4): 603-679. https://doi.org/10.1002/2012rg000417
    Boulton, A. J., Fenwick, G. D., Hancock, P. J., et al., 2008. Biodiversity, Functional Roles and Ecosystem Services of Groundwater Invertebrates. Invertebrate Systematics, 22(2): 103-116. https://doi.org/10.1071/is07024
    Boyer, A., Hatat-Fraile, M., Passeport, E., et al., 2018. Biogeochemical Controls on Strontium Fate at the Sediment-Water Interface of Two Groundwater-Fed Wetlands with Contrasting Hydrologic Regimes. Environmental Science & Technology, 52(15): 8365-8372. https://doi.org/10.1021/acs.est.8b01876
    Brunner, P., Therrien, R., Renard, P., et al., 2017. Advances in Understanding River-Groundwater Interactions. Reviews of Geophysics, 55(3): 818-854. https://doi.org/10.1002/2017rg000556
    Buendia, C., Gibbins, C. N., Vericat, D., et al., 2013. Detecting the Structural and Functional Impacts of Fine Sediment on Stream Invertebrates. Ecological Indicators, 25: 184-196. https://doi.org/10.1016/j.ecolind.2012.09.027
    Bullock, A., Acreman, M., 2003. The Role of Wetlands in the Hydrological Cycle. Hydrology and Earth System Sciences, 7(3): 358-389. https://doi.org/10.5194/hess-7-358-2003
    Busato, L., Boaga, J., Perri, M. T., et al., 2019. Hydrogeophysical Characterization and Monitoring of the Hyporheic and Riparian Zones: The Vermigliana Creek Case Study. Science of the Total Environment, 648: 1105-1120. https://doi.org/10.1016/j.scitotenv.2018.08.179
    Cardenas, M. B., Markowski, M. S., 2011. Geoelectrical Imaging of Hyporheic Exchange and Mixing of River Water and Groundwater in a Large Regulated River. Environmental Science & Technology, 45(4): 1407-1411. https://doi.org/10.1021/es103438a
    Clarke, S. J., 2002. Vegetation Growth in Rivers: Influences upon Sediment and Nutrient Dynamics. Progress in Physical Geography, 26(2): 159-172. https://doi.org/10.1191/0309133302pp324ra
    Clinton, S. M., Edwards, R. T., Findlay, S. E. G., 2010. Exoenzyme Activities as Indicators of Dissolved Organic Matter Composition in the Hyporheic Zone of a Floodplain River. Freshwater Biology, 55(8): 1603-1615. https://doi.org/10.1111/j.1365-2427.2009.02383.x
    Coban, O., Kuschk, P., Wells, N. S., et al., 2015. Microbial Nitrogen Transformation in Constructed Wetlands Treating Contaminated Groundwater. Environmental Science Pollution Research, 22(17): 12829-12839. https://doi.org/10.1007/s11356-014-3575-3
    Crosbie, R. S., McEwan, K. L., Jolly, I. D., et al., 2009. Salinization Risk in Semi-Arid Floodplain Wetlands Subjected to Engineered Wetting and Drying Cycles. Hydrological Processes, 23(24): 3440-3452. https://doi.org/10.1002/hyp.7445
    Datry, T., 2012. Benthic and Hyporheic Invertebrate Assemblages along a Flow Intermittence Gradient: Effects of Duration of Dry Events. Freshwater Biology, 57(3): 563-574. https://doi.org/10.1111/j.1365-2427.2011.02725.x
    Davidson, N. C., 2014. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Marine and Freshwater Research, 65(10): 934-941. https://doi.org/10.1071/MF14173
    Day-Lewis, F. D., White, E. A., Johnson, C. D., et al., 2006. Continuous Resistivity Profiling to Delineate Submarine Groundwater Discharge-Examples and Limitations. The Leading Edge, 25(6): 724-728. https://doi.org/10.1190/1.2210056
    Desta, H., Lemma, B., Fetene, A., 2012. Aspects of Climate Change and Its Associated Impacts on Wetland Ecosystem Functions--A Review. Journal of American Science, 8(10): 582-596 http://www.researchgate.net/publication/285684260_Aspects_of_climate_change_and_its_associated_impacts_on_wetland_ecosystem_functions_-_a_review
    Dole-Olivier, M. J., 2011. The Hyporheic Refuge Hypothesis Reconsidered: A Review of Hydrological Aspects. Marine and Freshwater Research, 62(11): 1281-1302. https://doi.org/10.1071/mf11084
    Du, Y., Ma, T., Deng, Y., et al., 2017a. Hydro-Biogeochemistry of Hyporheic Zone: Principles, Methods and Ecological Significance. Earth Science, 42(5): 661-673 (in Chinese with English Abstract) https://doi.org/10.3799/dqkx.2017.054
    Du, Y., Ma, T., Deng, Y., et al., 2017b. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science: Processes & Impacts, 19(2): 161-172. https://doi.org/10.1039/c6em00531d
    Eamus, D., Zolfaghar, S., Villalobos-Vega, R., et al., 2015. Groundwater-Dependent Ecosystems: Recent Insights from Satellite and Field-Based Studies. Hydrology and Earth System Sciences, 19(10): 4229-4256. https://doi.org/10.5194/hess-19-4229-2015
    Fan, W., Zhang, G., Li, R., 2012. Review of Groundwater-Surface Water Interactions in Wetland. Advances in Earth Science, 27(4): 413-423 (in Chinese with English Abstract)
    Feris, K. P., Ramsey, P. W., Frazar, C., et al., 2003. Structure and Seasonal Dynamics of Hyporheic Zone Microbial Communities in Free-Stone Rivers of the Estern United States. Microbial Ecology, 46(2): 200-215. https://doi.org/10.1007/bf03036883
    Ficklin, D. L., Stewart, I. T., Maurer, E. P., 2013. Climate Change Impacts on Streamflow and Subbasin-Scale Hydrology in the Upper Colorado River Basin. PLoS ONE, 8(8): e71297. https://doi.org/10.1371/journal.pone.0071297
    Fuller, C. C., Harvey, J. W., 2000. Reactive Uptake of Trace Metals in the Hyporheic Zone of a Mining-Contaminated Stream, Pinal Creek, Arizona. Environmental Science & Technology, 34(7): 1150-1155. https://doi.org/10.1021/es990714d
    Gafni, A., Brooks, K. N., 1990. Hydraulic Characteristics of Four Peatlands in MinnesoTA. Canadian Journal of Soil Science, 70(2): 239-253. https://doi.org/10.4141/cjss90-025
    Hancock, P. J., Boulton, A. J., Humphreys, W. F., 2005. Aquifers and Hyporheic Zones: Towards an Ecological Understanding of Groundwater. Hydrogeology Journal, 13(1): 98-111. https://doi.org/10.1007/s10040-004-0421-6
    Hanson, R. T., Flint, L. E., Flint, A. L., et al., 2012. A Method for Physically Based Model Analysis of Conjunctive Use in Response to Potential Climate Changes. Water Resources Research, 48(6): W00L08. https://doi.org/10.1029/2011wr010774
    Harvell, D., Altizer, S., Cattadori, I. M., et al., 2009. Climate Change and Wildlife Diseases: When Does the Host Matter the Most?. Ecology, 90(4): 912-920. https://doi.org/10.1890/08-0616.1
    Harvey, J. W., Böhlke, J. K., Voytek, M. A., et al., 2013. Hyporheic Zone Denitrification: Controls on Effective Reaction Depth and Contribution to Whole-Stream Mass Balance. Water Resources Research, 49(10): 6298-6316. https://doi.org/10.1002/wrcr.20492
    Havril, T., Tóth, Á., Molson, J. W., et al., 2018. Impacts of Predicted Climate Change on Groundwater Flow Systems: Can Wetlands Disappear Due to Recharge Reduction?. Journal of Hydrology, 563: 1169-1180. https://doi.org/10.1016/j.jhydrol.2017.09.020
    House, A. R., Sorensen, J. P. R., Gooddy, D. C., et al., 2015. Discrete Wetland Groundwater Discharges Revealed with a Three-Dimensional Temperature Model and Botanical Indicators (Boxford, UK). Hydrogeology Journal, 23(4): 775-787. https://doi.org/10.1007/s10040-015-1242-5
    Hu, S. J., Niu, Z. G., Chen, Y. F., et al., 2017. Global Wetlands: Potential Distribution, Wetland Loss, and Status. Science of the Total Environment, 586: 319-327. https://doi.org/10.1016/j.scitotenv.2017.02.001
    Johansen, O. M., Pedersen, M. L., Jensen, J. B., 2011. Effect of Groundwater Abstraction on Fen Ecosystems. Journal of Hydrology, 402(3/4): 357-366. https://doi.org/10.1016/j.jhydrol.2011.03.031
    Jolly, I. D., McEwan, K. L., Holland, K. L., 2008. A Review of Groundwater-Surface Water Interactions in Arid/Semi-Arid Wetlands and the Consequences of Salinity for Wetland Ecology. Ecohydrology, 1(1): 43-58. https://doi.org/10.1002/eco.6
    Kalbus, E., Reinstorf, F., Schirmer, M., 2006. Measuring Methods for Groundwater--Surface Water Interactions: A Review. Hydrology and Earth System Sciences, 10(6): 873-887. https://doi.org/10.5194/hess-10-873-2006
    Kløve, B., Ala-Aho, P., Bertrand, G., et al., 2014. Climate Change Impacts on Groundwater and Dependent Ecosystems. Journal of Hydrology, 518: 250-266. https://doi.org/10.1016/j.jhydrol.2013.06.037
    Krause, S., Hannah, D. M., Fleckenstein, J. H., et al., 2011. Inter-Disciplinary Perspectives on Processes in the Hyporheic Zone. Ecohydrology, 4(4): 481-499. https://doi.org/10.1002/eco.176
    Lagomasino, D., Price, R. M., Herrera-Silveira, J., et al., 2015. Connecting Groundwater and Surface Water Sources in Groundwater Dependent Coastal Wetlands and Estuaries: Sian Ka'an Biosphere Reserve, Quintana Roo, Mexico. Estuaries and Coasts, 38(5): 1744-1763 doi: 10.1007/s12237-014-9892-4
    Lee, C. G., Fletcher, T. D., Sun, G., 2009. Nitrogen Removal in Constructed Wetland Systems. Engineering in Life Sciences, 9(1): 11-22. https://doi.org/10.1002/elsc.200800049
    Lee, S. Y., Dunn, R. J. K., Young, R. A., et al., 2006. Impact of Urbanization on Coastal Wetland Structure and Function. Austral Ecology, 31(2): 149-163. https://doi.org/10.1111/j.1442-9993.2006.01581.x
    Leigh, C., Stubbington, R., Sheldon, F., et al., 2013. Hyporheic Invertebrates as Bioindicators of Ecological Health in Temporary Rivers: A Meta-Analysis. Ecological Indicators, 32: 62-73. https://doi.org/10.1016/j.ecolind.2013.03.006
    Lewandowski, J., Putschew, A., Schwesig, D., et al., 2011. Fate of Organic Micropollutants in the Hyporheic Zone of a Eutrophic Lowland Stream: Results of a Preliminary Field Study. Science of the Total Environment, 409(10): 1824-1835. https://doi.org/10.1016/j.scitotenv.2011.01.028
    Liao, Z. J., Lemke, D., Osenbrück, K., et al., 2013. Modeling and Inverting Reactive Stream Tracers Undergoing Two-Site Sorption and Decay in the Hyporheic Zone. Water Resources Research, 49(6): 3406-3422. https://doi.org/10.1002/wrcr.20276
    Luo, M., Huang, J. F., Zhu, W. F., et al., 2017. Impacts of Increasing Salinity and Inundation on Rates and Pathways of Organic Carbon Mineralization in Tidal Wetlands: A Review. Hydrobiologia, 827(1): 31-49. https://doi.org/10.1007/s10750-017-3416-8
    Luo, X., Jiao, J. J., Wang, X. S., et al., 2017. Groundwater Discharge and Hydrologic Partition of the Lakes in Desert Environment: Insights from Stable 18O/2H and Radium Isotopes. Journal of Hydrology, 546: 189-203. https://doi.org/10.1016/j.jhydrol.2017.01.017
    Ma, J., Liu, Y., Yu, G. B., et al., 2016. Temporal Dynamics of Urbanization-Driven Environmental Changes Explored by Metal Contamination in Surface Sediments in a Restoring Urban Wetland Park. Journal of Hazardous Materials, 309: 228-235. https://doi.org/10.1016/j.jhazmat.2016.02.017
    Mateos, D. M., 2017. Wetland Restoration and Creation: An Overview. In: Mateos, D. M., ed., Wetlands, Infobase Publishing, New York
    Maxwell, R. M., Condon, L. E., 2016. Connections between Groundwater Flow and Transpiration Partitioning. Science, 353(6297): 377-380. https://doi.org/10.1126/science.aaf7891
    Maxwell, R. M., Condon, L. E., Kollet, S. J., 2015. A High-Resolution Simulation of Groundwater and Surface Water over Most of the Continental US with the Integrated Hydrologic Model ParFlow V3. Geoscientific Model Development, 8(3): 923-937. https://doi.org/10.5194/gmd-8-923-2015
    Millar, D. J., Cooper, D. J., Ronayne, M. J., 2018. Groundwater Dynamics in Mountain Peatlands with Contrasting Climate, Vegetation, and Hydrogeological Setting. Journal of Hydrology, 561: 908-917. https://doi.org/10.1016/j.jhydrol.2018.04.050
    Mitsch, W. J., Bernal, B., Nahlik, A. M., et al., 2012. Wetlands, Carbon, and Climate Change. Landscape Ecology, 28(4): 583-597. https://doi.org/10.1007/s10980-012-9758-8
    Moore, P. D., 2007. Wetlands, In: Kentula, M. E., ed., United States Geological Survey Water Supply Paper 2425, Infobase Publishing, Corvallis
    Moore, S., Evans, C. D., Page, S. E., et al., 2013. Deep Instability of Deforested Tropical Peatlands Revealed by Fluvial Organic Carbon Fluxes. Nature, 493(7434): 660-663. https://doi.org/10.1038/nature11818
    Moreno, D., Pedrocchi, C., Comín, F. A., et al., 2007. Creating Wetlands for the Improvement of Water Quality and Landscape Restoration in Semi-Arid Zones Degraded by Intensive Agricultural Use. Ecological Engineering, 30(2): 103-111. https://doi.org/10.1016/j.ecoleng.2006.07.001
    Moreno-Mateos, D., Comin, F. A., 2010. Integrating Objectives and Scales for Planning and Implementing Wetland Restoration and Creation in Agricultural Landscapes. Journal of Environmental Management, 91(11): 2087-2095. https://doi.org/10.1016/j.jenvman.2010.06.002
    Nachshon, U., Ireson, A., van der Kamp, G., et al., 2014. Impacts of Climate Variability on Wetland Salinization in the North American Prairies. Hydrology and Earth System Sciences, 18(4): 1251-1263. https://doi.org/10.5194/hess-18-1251-2014
    Négrel, P., Millot, R., Brenot, A., et al., 2010. Lithium Isotopes as Tracers of Groundwater Circulation in a Peat Land. Chemical Geology, 276(1/2): 119-127. https://doi.org/10.1016/j.chemgeo.2010.06.008
    Nielsen, D. L., Brock, M. A., 2009. Modified Water Regime and Salinity as a Consequence of Climate Change: Prospects for Wetlands of Southern Australia. Climatic Change, 95(3/4): 523-533. https://doi.org/10.1007/s10584-009-9564-8
    Nivala, J., Knowles, P., Dotro, G., et al., 2012. Clogging in Subsurface-Flow Treatment Wetlands: Measurement, Modeling and Management. Water Research, 46(6): 1625-1640. https://doi.org/10.1016/j.watres.2011.12.051
    Nyquist, J. E., Freyer, P. A., Toran, L., 2008. Stream Bottom Resistivity Tomography to Map Ground Water Discharge. Ground Water, 46(4): 561-569. https://doi.org/10.1111/j.1745-6584.2008.00432.x
    O'Grady, A. P., Eamus, D., Cook, P. G., et al., 2006. Groundwater Use by Riparian Vegetation in the Wet-Dry Tropics of Northern Australia. Australian Journal of Botany, 54(2): 145-154. https://doi.org/10.1071/bt04164
    Okkonen, J., Kløve, B., 2010. A Conceptual and Statistical Approach for the Analysis of Climate Impact on Ground Water Table Fluctuation Patterns in Cold Conditions. Journal of Hydrology, 388(1/2): 1-12. https://doi.org/10.1016/j.jhydrol.2010.02.015
    Okkonen, J., Kløve, B., 2011. A Sequential Modelling Approach to Assess Groundwater-Surface Water Resources in a Snow Dominated Region of Finland. Journal of Hydrology, 411(1/2): 91-107. https://doi.org/10.1016/j.jhydrol.2011.09.038
    Orellana, F., Verma, P., Loheide, S. P. Ⅱ, et al., 2012. Monitoring and Modeling Water-Vegetation Interactions in Groundwater-Dependent Ecosystems. Reviews of Geophysics, 50(3): RG3003. https://doi.org/10.1029/2011rg000383
    Patten, D. T., 2009. Restoration of Wetland and Riparian Systems: The Role of Science, Adaptive Management, History, and Values. Journal of Contemporary Water Research & Education, 134(1): 9-18. https://doi.org/10.1111/j.1936-704x.2006.mp134001003.x
    Peralta-Maraver, I., Reiss, J., Robertson, A. L., 2018. Interplay of Hydrology, Community Ecology and Pollutant Attenuation in the Hyporheic Zone. Science of the Total Environment, 610-611: 267-275. https://doi.org/10.1016/j.scitotenv.2017.08.036
    Peyrard, D., Delmotte, S., Sauvage, S., et al., 2011. Longitudinal Transformation of Nitrogen and Carbon in the Hyporheic Zone of an N-Rich Stream: A Combined Modelling and Field Study. Physics and Chemistry of the Earth, Parts A/B/C, 36(12): 599-611. https://doi.org/10.1016/j.pce.2011.05.003
    Phillips, D. P., Human, L. R. D., Adams, J. B., 2015. Wetland Plants as Indicators of Heavy Metal Contamination. Marine Pollution Bulletin, 92(1/2): 227-232. https://doi.org/10.1016/j.marpolbul.2014.12.038
    Price, J. S., 1996. Hydrology and Microclimate of a Partly Restored Cutover Bog, Québec. Hydrological Processes, 10(10): 1263-1272. https://doi.org/10.1002/(sici)1099-1085(199610)10:10 < 1263::aid-hyp458 > 3.0.co; 2-1 doi: 10.1002/(sici)1099-1085(199610)10:10<1263::aid-hyp458>3.0.co;2-1
    Radke, M., Lauwigi, C., Heinkele, G., et al., 2009. Fate of the Antibiotic Sulfamethoxazole and Its Two Major Human Metabolites in a Water Sediment Test. Environmental Science & Technology, 43(9): 3135-3141. https://doi.org/10.1021/es900300u
    Rasmussen, T. C., Deemy, J. B., Long, S. L., 2087. Wetland Hydrology. The Wetland Book, Volume I: Structure and Function, Management and Methods. In: Finlayson, C. M., Everard, M., Irvine, K., eds., The Wetland Book, Springer, Berlin
    Richardson, C. J., Flanagan, N. E., Ho, M., et al., 2011. Integrated Stream and Wetland Restoration: A Watershed Approach to Improved Water Quality on the Landscape. Ecological Engineering, 37(1): 25-39. https://doi.org/10.1016/j.ecoleng.2010.09.005
    Robertson, A. L., Wood, P. J., 2010. Ecology of the Hyporheic Zone: Origins, Current Knowledge and Future Directions. Fundamental and Applied Limnology, 176(4): 279-289. https://doi.org/10.1127/1863-9135/2010/0176-0279
    Scheurer, K., Alewell, C., Bänninger, D., et al., 2009. Climate and Land-Use Changes Affecting River Sediment and Brown Trout in Alpine Countries-A Review. Environmental Science and Pollution Research, 16(2): 232-242. https://doi.org/10.1007/s11356-008-0075-3
    Seeger, E. M., Kuschk, P., Fazekas, H., et al., 2011. Bioremediation of Benzene-, MTBE- and Ammonia-Contaminated Groundwater with Pilot-Scale Constructed Wetlands. Environmental Pollution, 159(12): 3769-3776. https://doi.org/10.1016/j.envpol.2011.07.019
    Singha, K., Pidlisecky, A., Day-Lewis, F. D., et al., 2008. Electrical Characterization of Non-Fickian Transport in Groundwater and Hyporheic Systems. Water Resources Research, 44(4): W00D07. https://doi.org/10.1029/2008wr007048
    Smolders, A. J. P., Lucassen, E. C. H. E. T., Bobbink, R., et al., 2009. How Nitrate Leaching from Agricultural Lands Provokes Phosphate Eutrophication in Groundwater Fed Wetlands: The Sulphur Bridge. Biogeochemistry, 98(1/2/3): 1-7. https://doi.org/10.1007/s10533-009-9387-8
    Sophocleous, M., 2002. Interactions between Groundwater and Surface Water: The State of the Science. Hydrogeology Journal, 10(1): 52-67. https://doi.org/10.1007/s10040-001-0170-8
    Storey, R. G., Fulthorpe, R. R., Williams, D. D., 1999. Perspectives and Predictions on the Microbial Ecology of the Hyporheic Zone. Freshwater Biology, 41(1): 119-130. https://doi.org/10.1046/j.1365-2427.1999.00377.x
    Stubbington, R., Wood, P. J., Boulton, A. J., 2009. Low Flow Controls on Benthic and Hyporheic Macroinvertebrate Assemblages during Supra-Seasonal Drought. Hydrological Processes, 23(15): 2252-2263. https://doi.org/10.1002/hyp.7290
    Su, X. S., Cui, G., Du, S. H., et al., 2016. Using Multiple Environmental Methods to Estimate Groundwater Discharge into an Arid Lake (Dakebo Lake, Inner Mongolia, China). Hydrogeology Journal, 24(7): 1707-1722. https://doi.org/10.1007/s10040-016-1439-2
    Thangarajan, R., Bolan, N. S., Tian, G. L., et al., 2013. Role of Organic Amendment Application on Greenhouse Gas Emission from Soil. Science of the Total Environment, 465: 72-96. https://doi.org/10.1016/j.scitotenv.2013.01.031
    Triska, F. J., Kennedy, V. C., Avanzino, R. J., et al., 1989. Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes. Ecology, 70(6): 1893-1905. https://doi.org/10.2307/1938120
    Vymazal, J., 2018. Does Clogging Affect Long-Term Removal of Organics and Suspended Solids in Gravel-Based Horizontal Subsurface Flow Constructed Wetlands?. Chemical Engineering Journal, 331: 663-674. https://doi.org/10.1016/j.cej.2017.09.048
    Wang, C. Y., Sample, D. J., Day, S. D., et al., 2015. Floating Treatment Wetland Nutrient Removal through Vegetation Harvest and Observations from a Field Study. Ecological Engineering, 78: 15-26. https://doi.org/10.1016/j.ecoleng.2014.05.018
    Wang, R. C., Wang, H. M., Xiang, X., et al., 2018. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 29(4): 969-976. https://doi.org/10.1007/s12583-017-0818-5
    Wang, W., Gong, C., Zhang, Z., et al., 2018. Research Status and Prospect of the Subsurface Hydrology and Ecological Effect in Arid Regions. Advances in Earth Science, 33(7): 702-718 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201807004
    Wu, X. C., Dong, W. H., Lin, X. Y., et al., 2017. Evolution of Wetland in Honghe National Nature Reserve from the View of Hydrogeology. Science of the Total Environment, 609: 1370-1380. https://doi.org/10.1016/j.scitotenv.2017.07.260
    Xu, Y., Wang, H. M., Xiang, X., et al., 2019. Vertical Variation of Nitrogen Fixers and Ammonia Oxidizers along a Sediment Profile in the Dajiuhu Peatland, Central China. Journal of Earth Science, 30(2): 397-406. https://doi.org/10.1007/s12583-018-0982-2
    Yu, Z. C., 2012. Northern Peatland Carbon Stocks and Dynamics: A Review. Biogeosciences, 9(10): 4071-4085. https://doi.org/10.5194/bg-9-4071-2012
    Zedler, J. B., Kercher, S., 2005. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Annual Review of Environment and Resources, 30(1): 39-74. https://doi.org/10.1146/annurev.energy.30.050504.144248
    Zeglin, L. H., Dahm, C. N., Barrett, J. E., et al., 2011. Bacterial Community Structure along Moisture Gradients in the Parafluvial Sediments of Two Ephemeral Desert Streams. Microbial Ecology, 61(3): 543-556. https://doi.org/10.1007/s00248-010-9782-7
    Zhang, J., Su, L., Wang, L. P., et al., 2019. The Effect of Vegetation Cover on Ecological Stoichiometric Ratios of Soil Carbon, Nitrogen and Phosphorus: A Case Study of the Dunhuang Yangguan Wetland. Acta Ecologica Sinica, 39(2): 580-589. https://doi.org/10.5846/stxb201712132239
    Zhou, N. Q., Zhao, S., Shen, X. P., 2014. Nitrogen Cycle in the Hyporheic Zone of Natural Wetlands. Chinese Science Bulletin, 59(24): 2945-2956. https://doi.org/10.1007/s11434-014-0224-7
    Zhou, S. B., Yuan, X. Z., Peng, S. C., et al., 2014. Groundwater-Surface Water Interactions in the Hyporheic Zone under Climate Change Scenarios. Environmental Science and Pollution Research, 21(24): 13943-13955. https://doi.org/10.1007/s11356-014-3255-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(1191) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return