Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 5
Oct 2020
Turn off MathJax
Article Contents
Yanjun Liu, Teng Ma, Juan Chen, Ziqi Peng. Compaction Simulator: A Novel Device for Pressure Experiments of Subsurface Sediments. Journal of Earth Science, 2020, 31(5): 1045-1050. doi: 10.1007/s12583-020-1334-6
Citation: Yanjun Liu, Teng Ma, Juan Chen, Ziqi Peng. Compaction Simulator: A Novel Device for Pressure Experiments of Subsurface Sediments. Journal of Earth Science, 2020, 31(5): 1045-1050. doi: 10.1007/s12583-020-1334-6

Compaction Simulator: A Novel Device for Pressure Experiments of Subsurface Sediments

doi: 10.1007/s12583-020-1334-6
More Information
  • Corresponding author: Teng Ma, ORCID:0000-0003-2827-9579, mateng@cug.edu.cn
  • Received Date: 08 Mar 2020
  • Accepted Date: 15 Apr 2020
  • Publish Date: 20 Oct 2020
  • Increasing overburden pressure is a key factor that alters the chemical and physical properties of soils and sediments. However, limited information is presently available on how aquifer compression impacts water quality. We introduced a novel compaction device, which is composited of four parts, including pressure simulator reactor system (PSRS), gas-liquid separator (GLS), automatic collector (AC) and composite control system (CCS). We conducted experiments at various pressures to test the functionality and outcomes of the device. In general, this device can be used to examine changes in water chemistry associated with aquifer compression resulting from compaction (overburden pressure) or groundwater overdraft.

     

  • loading
  • Alabdullah, J., Lins, Y., Schanz, T., 2009. Shear Strength of Unsaturated Sand under Plane Strain Conditions. In: Buzzi, O., Fityus, S., Sheng, D., eds., Proc., 4th Asia-Pacific Conf. on Unsaturated Soils. Taylor & Francis, London
    Audet, D. M., 1995. Mathematical Modelling of Gravitational Compaction and Clay Dehydration in Thick Sediment Layers. Geophysical Journal International, 122(1): 283-298. doi: 10.1111/j.1365-246x.1995.tb03554.x
    Batey, T., 2009. Soil Compaction and Soil Management--A Review. Soil Use and Management, 25(4): 335-345. doi: 10.1111/j.1475-2743.2009.00236.x
    Beylich, A., Oberholzer, H. R., Schrader, S., et al., 2010. Evaluation of Soil Compaction Effects on Soil Biota and Soil Biological Processes in Soils. Soil and Tillage Research, 109(2): 133-143. doi: 10.1016/j.still.2010.05.010
    Bishop, A. W., Donald, I. B., 1961. The Experimental Study of Partly Saturated Soil in the Triaxial Apparatus. Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, July 17-22, 1961. Paris
    Collin, F., Li, X. L., Radu, J. P., et al., 2002. Thermo-Hydro-Mechanical Coupling in Clay Barriers. Engineering Geology, 64(2/3): 179-193. doi: 10.1016/s0013-7952(01)00124-7
    Cui, Y. J., Delage, P., 1996. Yielding and Plastic Behaviour of an Unsaturated Compacted Silt. Géotechnique, 46(2): 291-311. doi: 10.1680/geot.1996.46.2.291
    Dasgupta, T., Mukherjee, S., 2020. Compaction of Sediments and Different Compaction Models. In: Dasgupta, T., Mukherjee, S., eds. Sediment Compaction and Applications in Petroleum Geoscience. Springer, Switzerland
    Eugene, A., Shinn, D. M. R., 1983. Mechanical and Chemical Compaction in Fine-Grained Shallow-Water Limestones. SEPM Journal of Sedimentary Research, 53(2): 595-618. doi: 10.1306/212f8242-2b24-11d7-8648000102c1865d
    Fawad, M., Mondol, N. H., Jahren, J., et al., 2011. Mechanical Compaction and Ultrasonic Velocity of Sands with Different Texture and Mineralogical Composition. Geophysical Prospecting, 59(4): 697-720. doi: 10.1111/j.1365-2478.2011.00951.x
    Koochak Zadeh, M., Mondol, N. H., Jahren, J., et al., 2016. Experimental Mechanical Compaction of Sands and Sand-Clay Mixtures: A Study to Investigate Evolution of Rock Properties with Full Control on Mineralogy and Rock Texture. Geophysical Prospecting, 64(4): 915-941. doi: 10.1111/1365-2478.12399
    Langroudi, A. A., Yasrobi, S. S., 2013. Drainage Controlled Uniaxial Swelling Cell. Proceedings of the Institution of Civil Engineers--Geotechnical Engineering, 166(4): 357-364. doi: 10.1680/geng.9.00017
    Leonard, R. B., 1969. Thermal Stability of Hastelloy Alloy C-276. Corrosion, 25(5): 222-232. doi: 10.5006/0010-9312-25.5.222
    Liu, Y. J., Ma, T., Du, Y., 2017. Compaction of Muddy Sediment and Its Significance to Groundwater Chemistry. Procedia Earth and Planetary Science, 17: 392-395. doi: 10.1016/j.proeps.2016.12.099
    Lloret, A., Villar, M. V., Sánchez, M., et al., 2003. Mechanical Behaviour of Heavily Compacted Bentonite under High Suction Changes. Géotechnique, 53(1): 27-40. doi: 10.1680/geot.2003.53.1.27
    Mondol, N. H., Bjørlykke, K., Jahren, J., 2008. Experimental Compaction of Clays: Relationship between Permeability and Petrophysical Properties in Mudstones. Petroleum Geoscience, 14(4): 319-337. doi: 10.1144/1354-079308-773
    Mondol, N. H., Bjørlykke, K., Jahren, J., et al., 2007. Experimental Mechanical Compaction of Clay Mineral Aggregates-Changes in Physical Properties of Mudstones during Burial. Marine and Petroleum Geology, 24(5): 289-311. doi: 10.1016/j.marpetgeo.2007.03.006
    Muna, W., McCartneyb, J. S., 2015. Rate Effects in Constant Rate of Strain Compression Tests on Unsaturated Soils to High Pressures. PanAmerican Conference on Soil Mechanics and Geotechnical Engineering, November 15-18, 2015. Buenos Aires
    Neveux, L., Grgic, D., Carpentier, C., et al., 2014. Experimental Simulation of Chemomechanical Processes during Deep Burial Diagenesis of Carbonate Rocks. Journal of Geophysical Research: Solid Earth, 119(2): 984-1007. doi: 10.1002/2013jb010516
    Ng, C. W. W., Zhan, L. T., Cui, Y. J., 2002. A New Simple System for Measuring Volume Changes in Unsaturated Soils. Canadian Geotechnical Journal, 39(3): 757-764. doi: 10.1139/t02-015
    Nooraiepour, M., Mondol, N. H., Hellevang, H., et al., 2017. Experimental Mechanical Compaction of Reconstituted Shale and Mudstone Aggregates: Investigation of Petrophysical and Acoustic Properties of SW Barents Sea Cap Rock Sequences. Marine and Petroleum Geology, 80: 265-292. doi: 10.1016/j.marpetgeo.2016.12.003
    O'Reilly, E. B., Barnett, S., Madden, C., et al., 2015. Computed-Tomography Modeled Polyether Ether Ketone (PEEK) Implants in Revision Cranioplasty. Journal of Plastic, Reconstructive & Aesthetic Surgery, 68(3): 329-338. doi: 10.1016/j.bjps.2014.11.001
    Pincus, H., Kolymbas, D., Bauer, E., 1993. Soft Oedometer-A New Testing Device and Its Application for the Calibration of Hypoplastic Constitutive Laws. Geotechnical Testing Journal, 16(2): 263-270. doi: 10.1520/gtj10044j
    Rae, P. J., Brown, E. N., Orler, E. B., 2007. The Mechanical Properties of Poly (Ether-Ether-Ketone) (PEEK) with Emphasis on the Large Compressive Strain Response. Polymer, 48(2): 598-615. doi: 10.1016/j.polymer.2006.11.032
    Rubol, S., Manzoni, S., Bellin, A., et al., 2013. Modeling Soil Moisture and Oxygen Effects on Soil Biogeochemical Cycles Including Dissimilatory Nitrate Reduction to Ammonium (DNRA). Advances in Water Resources, 62: 106-124. doi: 10.1016/j.advwatres.2013.09.016
    Ruser, R., Flessa, H., Russow, R., et al., 2006. Emission of N2O, N2 and CO2 from Soil Fertilized with Nitrate: Effect of Compaction, Soil Moisture and Rewetting. Soil Biology and Biochemistry, 38(2): 263-274. doi: 10.1016/j.soilbio.2005.05.005
    Saha, P. K., Hossain, M. D., 2011. Assessment of Heavy Metal Contamination and Sediment Quality in the Buriganga River, Bangladesh. In: 2011 2nd International Conference on Environmental Science and Technology, February 26-28, 2011. IACSIT Press, Singapore
    Sandbaekken, G., Berre, T., Lacasse, S., 1986. Oedometer Testing at the Norwegian Geotechnical Institute. In: Yong, R., Townsend, F., eds., Consolidation of Soils: Testing and Evaluation. ASTM International, West Conshohocken
    Sivakumar, R., Sivakumar, V., Blatz, J., et al., 2006. Twin-Cell Stress Path Apparatus for Testing Unsaturated Soils. Geotechnical Testing Journal, 29(2): 175-179. doi: 10.1520/gtj14014
    Toyota, H., Sakai, N., Nishimura, T., 2001. Effects of Stress History Due to Unsaturation and Drainage Condition on Shear Properties of Unsaturated Cohesive Soil. Soils and Foundations, 41(1): 13-24. doi: 10.3208/sandf.41.13
    Weller, J. M., 1959. Compaction of Sediments. AAPG Bulletin, 43(2): 273-310
    Xiao, C., Ma, T., Du, Y., et al., 2016. Arsenic Releasing Characteristics during the Compaction of Muddy Sediments. Environmental Science: Processes & Impacts, 18(10): 1297-1304. doi: 10.1039/c6em00343e
    Yin, J. H., 2002. A New Double Cell Triaxial System for Continuous Measurement of Volume Changes of an Unsaturated or Saturated Soil Specimen in Triaxial Testing. Chinese Journal of Geotechnical Engineering, 24(5): 552-555 (in Chinese with English Abstract) http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=GTJODJ000026000003010916000001&idtype=cvips&gifs=Yes
    Zeglin, L. H., Dahm, C. N., Barrett, J. E., et al., 2010. Bacterial Community Structure along Moisture Gradients in the Parafluvial Sediments of Two Ephemeral Desert Streams. Microbial Ecology, 61(3): 543-556. doi: 10.1007/s00248-010-9782-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(292) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return