Citation: | Youran Yang, Xianghua Yang, Wanzhong Shi, Hongtao Zhu, Wei Wang, Hongquan Kang, Linan Pang. Recognition and Prediction of Source Rocks of the Madingo Formation in the Lower Congo Basin. Journal of Earth Science, 2023, 34(1): 232-241. doi: 10.1007/s12583-020-1354-2 |
We investigated the petrological and seismic properties of Madingo Formation, the high-quality source rocks in the Madingo Formation in the Lower Congo Basin are highly heterogeneous. Due to little drilling and oil-based mud pollution, samples that are able to be used to measure the TOC (total organic carbon) content of source rock in the Madingo Formation are few and unevenly distributed; hence, it is difficult to carry out their quantitative evaluation. We investigated the petrological and seismic properties of Madingo Formation between TOC and well logging parameters including density, natural gamma, and acoustic time difference via multiple regression analysis. The TOC data volume is calculated using a neural network model between the predicted TOC content and seismic attributes of the sidetrack. The results of TOC three-dimensional quantitative prediction in the study area show that the source rocks in the Madingo Formation have a strong heterogeneity in the vertical direction, and the plane distribution is low in the northeast and high in the southwest. This study provides suitable tools to predict the complex heterogeneous distribution of source rocks and has great significance for oil exploration in the Lower Congo Basin.
Bernhard, J. M., 1986. Characteristic Assemblages and Morphologies of Benthic Foraminifera from Anoxic, Organic-Rich Deposits; Jurassic through Holocene. The Journal of Foraminiferal Research, 16(3): 207–215. https://doi.org/10.2113/gsjfr.16.3.207 |
Brownfield, M. E., Charpentier, R. R., 2006. Geology and Total Petroleum Systems of the West-Central Coastal Province (7203), West Africa. World Energy Project, Reston. http://pubs.usgs.gov/bul/2207/C/ |
Burwood, R., 1999. Angola: Source Rock Control for Lower Congo Coastal and Kwanza Basin Petroleum Systems. Geological Society, London, Special Publications, 153(1): 181–194. https://doi.org/10.1144/gsl.sp.1999.153.01.12 doi: 10.1144/GSL.SP.1999.153.01.12 |
Burwood, R., Cornet, P. J., Jacobs, L., et al., 1990. Organofacies Variation Control on Hydrocarbon Generation: A Lower Congo Coastal Basin (Angola) Case History. Organic Geochemistry, 16(1/2/3): 325–338. https://doi.org/10.1016/0146-6380(90)90052-2 |
Burwood, R., de Witte, S. M., Mycke, B., et al., 1995. Petroleum Geochemical Characterisation of the Lower Congo Coastal Basin Bucomazi Formation. Casebooks in Earth Sciences. Springer, Berlin, Heidelberg. 235–263. https://doi.org/10.1007/978-3-642-78911-3_13 |
Burwood, R., Leplat, P., Mycke, B., et al., 1992. Rifted Margin Source Rock Deposition: A Carbon Isotope and Biomarker Study of a West African Lower Cretaceous "Lacustrine" Section. Organic Geochemistry, 19(1/2/3): 41–52. https://doi.org/10.1016/0146-6380(92)90026-T |
Cole, G. A., Requejo, A., Ormerod, D., et al., 2000. AAPG Memoir 73, Chapter 23: Petroleum Geochemical Assessment of the Lower Congo Basin. Geo Science World. 325–339 |
Coren, F., Volpi, V., Tinivella, U., 2001. Gas Hydrate Physical Properties Imaging by Multi-Attribute Analysis—Blake Ridge BSR Case History. Marine Geology, 178(1/2/3/4): 197–210. https://doi.org/10.1016/S0025-3227(01)00156-6 |
Das, A., Krishnaswami, S., 2007. Elemental Geochemistry of River Sediments from the Deccan Traps, India: Implications to Sources of Elements and Their Mobility during Basalt-Water Interaction. Chemical Geology, 242(1/2): 232–254. https://doi.org/10.1016/j.chemgeo.2007.03.023 |
Davies, D. J., Mcinalley, A., Barclay, F., 2003. Lithology and Fluid Prediction from Amplitude Versus Offset (AVO) Seismic Data. Geofluids, 3(4): 219–232. https://doi.org/10.1046/j.1468-8123.2003.00068.x |
de Wit, M. J., Guillocheau, F., de Wit, M. C. J., 2015. Geology and Resource Potential of the Congo Basin. Springer, Berlin, Heidelberg |
Eshet, Y., Almogi, A., 1996. Calcareous Nannofossils as Paleoproductivity Indicators in Upper Cretaceous Organic-Rich Sequences in Israel. Marine Micropaleontology, 29(1): 37–61. https://doi.org/10.1016/0377-8398(96)00006-0 |
Fu, X. G., Wang, J., Chen, W. B., et al., 2016. Elemental Geochemistry of the Early Jurassic Black Shales in the Qiangtang Basin, Eastern Tethys: Constraints for Palaeoenvironment Conditions. Geological Journal, 51(3): 443–454. https://doi.org/10.1002/gj.2642 |
Hart, B. S., MacQuaker, J. H. S., Taylor, K. G, 2013. Mudstone ("Shale") Depositional and Diagenetic Processes: Implications for Seismic Analyses of Source-Rock Reservoirs. Interpretation, 1(1): B7–B26 doi: 10.1190/INT-2013-0003.1 |
Huang, Z., Williamson, M. A., 1996. Artificial Neural Network Modelling as an Aid to Source Rock Characterization. Marine and Petroleum Geology, 13(2): 277–290. https://doi.org/10.1016/0264-8172(95)00062-3 |
Huo, F. L., Xu, C. W., 2013. Low Rank Coalbed Gas Preservation Conditions of Inversion Study. Applied Mechanics and Materials, 448/449/450/451/452/453: 3747–3750. https://doi.org/10.4028/www.scientific.net/amm.448-453.3747 |
Iravani, M., Rastegarnia, M., Javani, D., et al., 2018. Application of Seismic Attribute Technique to Estimate the 3D Model of Hydraulic Flow Units: A Case Study of a Gas Field in Iran. Egyptian Journal of Petroleum, 27(2): 145–157. https://doi.org/10.1016/j.ejpe.2017.02.003 |
Jaksch, K., Giese, R., Kopf, M., 2010. Seismic Prediction while Drilling (SPWD): Seismic Exploration Ahead of the Drill Bit Using Phased Array Sources. Egu General Assembly, 12: 14099 |
Jansen, J. H. F., Giresse, P., Moguedet, G., 1984. Structural and Sedimentary Geology of the Congo and Southern Gabon Continental Shelf: A Seismic and Acoustic Reflection Survey. Netherlands Journal of Sea Research, 17(2/3/4): 364–384. https://doi.org/10.1016/0077-7579(84)90056-5 |
Konitzer, S. F., Davies, S. J., Stephenson, M. H., et al., 2014. Depositional Controls on Mudstone Lithofacies in a Basinal Setting: Implications for the Delivery of Sedimentary Organic Matter. Journal of Sedimentary Research, 84(3): 198–214. https://doi.org/10.2110/jsr.2014.18 |
Kulessa, B., King, E. C., Barrett, B. E., et al., 2010. Joint Inversion of Multi-Component Seismic and Ground-Penetrating Radar GPR Data for Ice-Physical Properties, and Application to the Larsen C Ice Shelf. AGU Fall Meeting Abstracts. |
Lei, C., Yin, S. Y., Ye, J. R., et al., 2021. Geochemical Characteristics and Hydrocarbon Generation History of Paleocene Source Rocks in Jiaojiang Sag, East China Sea Basin. Earth Science, 46(10): 3575–3587. https://doi.org/10.3799/dqkx.2020.399 (in Chinese with English abstract) |
Ling, Y., Guo, X. Y., Huang, X. R., et al., 2009. Integration of 3D Seismic Data and Dynamic Reservoir Data for Exploitation of Remaining Oil in a Mature Field: A Case Study in Western China. The Leading Edge, 28(12): 1508–1516. https://doi.org/10.1190/1.3272707 |
Liu, B. L., Wang, Y. P., Su, X., et al., 2013. Elemental Geochemistry of Northern Slope Sediments from the South China Sea: Implications for Provenance and Source Area Weathering since Early Miocene. Geochemistry, 73(1): 61–74. https://doi.org/10.1016/j.chemer.2012.11.005 |
Liu, C. C., Ghosh, D., 2017. A New Seismic Attribute for Ambiguity Reduction in Hydrocarbon Prediction. Geophysical Prospecting, 65(1): 229–239. https://doi.org/10.1111/1365-2478.12367 |
Liu, J., Wang, R. L., Shu, Y., et al., 2012. Geophysical Quantitative Prediction Technology about the Total Organic Carbon in Source Rocks and Application in Pearl River Mouth Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 39(4): 415–419 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-9727.2012.04.010 |
Liu, Z., Chang, M., Zhao, Y., et al., 2007. Method of Early Prediction on Source Rocks in Basins with Low Exploration Activity. Earth Science Frontiers, 14(4): 159–167. https://doi.org/10.1016/S1872-5791(07)60031-1 (in Chinese with English Abstract) |
Løseth, H., Wensaas, L., Gading, M., et al., 2011. Can Hydrocarbon Source Rocks be Identified on Seismic Data?. Geology, 39(12): 1167–1170. https://doi.org/10.1130/g32328.1 doi: 10.1130/G32328.1 |
Lüschen, E., Lammerer, B., Gebrande, H., et al., 2004. Orogenic Structure of the Eastern Alps, Europe, from TRANSALP Deep Seismic Reflection Profiling. Tectonophysics, 388(1/2/3/4): 85–102. https://doi.org/10.1016/j.tecto.2004.07.024 |
Marcano, G., Anka, Z., di Primio, R., 2013. Major Controlling Factors on Hydrocarbon Generation and Leakage in South Atlantic Conjugate Margins: A Comparative Study of Colorado, Orange, Campos and Lower Congo Basins. Tectonophysics, 604: 172–190. https://doi.org/10.1016/j.tecto.2013.02.004 |
Moon, S., Lee, G. H., Kim, H., et al., 2016. Collocated Cokriging and Neural-Network Multi-Attribute Transform in the Prediction of Effective Porosity: A Comparative Case Study for the Second Wall Creek Sand of the Teapot Dome Field, Wyoming, USA. Journal of Applied Geophysics, 131: 69–83. https://doi.org/10.1016/j.jappgeo.2016.05.008 |
Oluboyo, A. P., Gawthorpe, R. L., Bakke, K., et al., 2014. Salt Tectonic Controls on Deep-Water Turbidite Depositional Systems: Miocene, Southwestern Lower Congo Basin, Offshore Angola. Basin Research, 26(4): 597–620. https://doi.org/10.1111/bre.12051 |
Passey, Q. R., Creaney, S., Kulla, J. B., et al. 1990. A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bulletin, 74(12): 1777–1794. https://doi.org/10.1306/0c9b25c9-1710-11d7-8645000102c1865d |
Peng, G. R., Pang, X. Q., Xu Z., et al., 2022. Characteristics of Paleogene Whole Petroleum System and Orderly Distribution of Oil and Gas Reservoirs in South Lufeng Depression, Pearl River Mouth Basin. Earth Science, 47(7): 2494–2508. https://doi.org/10.3799/dqkx.2022.253 (in Chinese with English Abstract) |
Roberts, E., Jelsma, H. A., Hegna, T., 2014. Mesozoic Sedimentary Cover Sequences of the Congo Basin in the Kasai Region, Democratic Republic of Congo. Geology and Resource Potential of the Congo Basin. Springer, Berlin, Heidelberg. 163–191. https://doi.org/10.1007/978-3-642-29482-2_9 |
Sachse, V. F., Delvaux, D., Littke, R., 2012. Petrological and Geochemical Investigations of Potential Source Rocks of the Central Congo Basin, Democratic Republic of Congo. AAPG Bulletin, 96(2): 245–275. https://doi.org/10.1306/07121111028 |
Sarki Yandoka, B. M., Abdullah, W. H., Abubakar, M. B., et al., 2015. Geochemical Characterisation of Early Cretaceous Lacustrine Sediments of Bima Formation, Yola Sub-Basin, Northern Benue Trough, NE Nigeria: Organic Matter Input, Preservation, Paleoenvironment and Palaeoclimatic Conditions. Marine and Petroleum Geology, 61: 82–94. https://doi.org/10.1016/j.marpetgeo.2014.12.010 |
Shen, W. L., Qi, B. W., Xu, G. C., et al., 2019. The Seismic Inversion Based Organic Matter Abundance Prediction Method for Source Rocks and Its Application in Lishui Sag. China Offshore Oil and Gas, 31(3): 68–74 (in Chinese with English Abstract) |
Sickafoose, D. K., 2016. Interaction of Tertiary Deep-Water Depositional Systems with Actively Evolving Structures—Paleogeography of the Lower Congo Basin, Offshore Angola. Geological Society of America |
Simpson, S. L., Apte, S. C., Batley, G. E., 2000. Effect of Short-Term Resuspension Events on the Oxidation of Cadmium, Lead, and Zinc Sulfide Phases in Anoxic Estuarine Sediments. Environmental Science & Technology, 34(21): 4533–4537. https://doi.org/10.1021/es991440x |
Sømme, T. O., Jackson, C. A. L., Vaksdal, M., 2013. Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway: Part 1––Depositional Setting and Fan Evolution. Basin Research, 25(5): 489–511. https://doi.org/10.1111/bre.12013 |
Tao, Q.Q., Li, D., Yang, X.B., et al., 2015. Hydrocarbon Source Rock Prediction with Frequency-Divided Inversion. Oil Geophysical Prospecting, 50(4): 706–713, 722, 6. https://doi.org/10.13810/j.cnki.issn.1000-7210.2015.04.019 (in Chinese with English Abstract) |
Valle, P. J., Gjelberg, J. G., Hellandhansen, W., 2001. Tectonostratigraphic Development in the Eastern Lower Congo Basin, Offshore Angola, West Africa. Marine and Petroleum Geology, 18(8): 909–927. https://doi.org/10.1016/S0264-8172(01)00036-8 |
Wang, Y. F., Zhai, G. Y., Liu, G. H., et al., 2021. Geological Characteristics of Shale Gas in Different Strata of Marine Facies in South China. Journal of Earth Science, 32(4): 725–741. https://doi.org/10.1007/s12583-020-1104-5 |
Xu, H. D., Wang, S. F., Chen, K. Y., 1990. Elementary Seismic Stratigraphy Interpretation. China University of Geosciences Press, Wuhan. 118–122 (in Chinese) |
Xu, X. D., Tao, Q. Q., Zeng, S. J., et al., 2013. A Method to Evaluate High-Quality Source Rocks Based on Geochemistry-Logging-Seismic Joint-Inversion and Its Application: A Case of Weixinan Sag in Beibuwan Basin. China Offshore Oil and Gas, 25(3): 13–18 (in Chinese with English Abstract) |
Yang, R., He, S., Wang, X., et al., 2016. Paleo-Ocean Redox Environments of the Upper Ordovician Wufeng and the First Member in Lower Silurian Longmaxi Formations in the Jiaoshiba Area, Sichuan Basin. Canadian Journal of Earth Sciences, 53: 426–440. https://doi.org/10.1139/CJES-2015-0210 doi: 10.1139/cjes-2015-0210 |
Yu, H. Y., Rezaee, R., Wang, Z. L., et al., 2017. A New Method for TOC Estimation in Tight Shale Gas Reservoirs. International Journal of Coal Geology, 179: 269–277. https://doi.org/10.1016/j.coal.2017.06.011 |
Zou, C. N., Yang, Z., Dong, D. Z., et al., 2022. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Science, 47(5): 1517–1533. https://doi.org/10.3799/dqkx.2022.160 (in Chinese with English Abstract) |