Citation: | Qinlong Tong, Ziying Li, Honghai Fan, Naser Jahdali, Mubarak M. Al-Nahdi. Petrogenesis and Tectonic Implications of the Jabal Hadb Ad Dayheen Granitic Complex, Central Arabian Shield. Journal of Earth Science, 2023, 34(1): 20-36. doi: 10.1007/s12583-020-1355-1 |
The Jabal Hadb Ad Dayheen granitic complex in central Saudi Arabia is an alkaline granitic ring complex associated with a collapsed caldera. It mainly consists of monzogranite in the center, biotite-hornblende porphyritic granite, and biotite-aegirine-riebeckite granite, intruded by some felsic and mafic dikes. The petrological and geochemical characteristics show that the granitic suites consist of metalminous-peralkaline A-type granites. The secondary ion mass spectrometry (SIMS) zircon U-Pb analysis yielded 206Pb/238U ages of 613.3 ± 8.1–603.8 ± 3.8, 602.4 ± 3.8, 596 ± 5.6 Ma for biotite-hornblende porphyritic granite, microgranite, and biotite-aegirine-riebeckite granite, respectively. The trace element characteristics and positive
Abu-Alam, T. S., Hassan, M., Stüwe, K., et al., 2014. Multistage Tectonism and Metamorphism during Gondwana Collision: Baladiyah Complex, Saudi Arabia. Journal of Petrology, 55(10): 1941–1964. https://doi.org/10.1093/petrology/egu046 |
Ahmed, H. A., Ma, C. Q., Wang, L. X., et al., 2018. Petrogenesis and Tectonic Implications of Peralkaline A-Type Granites and Syenites from the Suizhou-Zaoyang Region, Central China. Journal of Earth Science, 29(5): 1181–1202. https://doi.org/10.1007/s12583-018-0877-2 |
Ali, K. A., Jeon, H., Andresen, A., et al., 2014. U-Pb Zircon Geochronology and Nd-Hf-O Isotopic Systematics of the Neoproterozoic Hadb Adh Dayheen Ring Complex, Central Arabian Shield, Saudi Arabia. Lithos, 206/207: 348–360. https://doi.org/10.1016/j.lithos.2014.07.030 |
Anderson, J. L., Bender, E. E., 1989. Nature and Origin of Proterozoic A-Type Granitic Magmatism in the Southwestern United States of America. Lithos, 23(1/2): 19–52. https://doi.org/10.1016/0024-4937(89)90021-2 |
Avigad, D., Gvirtzman, Z., 2009. Late Neoproterozoic Rise and Fall of the Northern Arabian-Nubian Shield: The Role of Lithospheric Mantle Delamination and Subsequent Thermal Subsidence. Tectonophysics, 477(3/4): 217–228. https://doi.org/10.1016/j.tecto.2009.04.018 |
Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323–333. https://doi.org/10.1007/s004100050159 |
Blichert-Toft, J., 2008. The Hf Isotopic Composition of Zircon Reference Material 91500. Chemical Geology, 253(3/4): 252–257. https://doi.org/10.1016/j.chemgeo.2008.05.014 |
Calvez, J. Y., Kemp, J., 1982. Geochronological Investigations in the Mahd Ahd Dhahab Quadrangle, Central Arabian Shield: Saudi Arabian Deputy Ministry for Mineral Resources. Technical Report BRGM-TR-02-5 |
Chen, A. X., Zhou, D., Zhang, Q. K., et al., 2018. Age, Geochemistry, and Tectonic Implications of Dulaerqiao Granite, Inner Mongolia. Journal of Earth Science, 29(1): 78–92. https://doi.org/10.1007/s12583-017-0817-6 |
Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. https://doi.org/10.1007/BF00374895 |
Cox, G. M., Lewis, C. J., Collins, A. S., et al., 2012. Ediacaran Terrane Accretion within the Arabian-Nubian Shield. Gondwana Research, 21(2/3): 341–352. https://doi.org/10.1016/j.gr.2011.02.011 |
Creaser, R. A., Price, R. C., Wormald, R. J., 1991. A-Type Granites Revisited: Assessment of a Residual-Source Model. Geology, 19(2): 163–166. https://doi.org/10.1130/0091-7613(1991)0190163:atgrao>2.3.co;2 doi: 10.1130/0091-7613(1991)0190163:atgrao>2.3.co;2 |
Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When Continents Formed. Science, 331(6014): 154–155. https://doi.org/10.1126/science.1201245 |
Dokuz, A., 2011. A Slab Detachment and Delamination Model for the Generation of Carboniferous High-Potassium I-Type Magmatism in the Eastern Pontides, NE Turkey: The Köse Composite Pluton. Gondwana Research, 19(4): 926–944. https://doi.org/10.1016/j.gr.2010.09.006 |
Drysdall, A. R., Jackson, N. J., Ramsay, C. R., et al., 1984. Rare Element Mineralization Related to Precambrian Alkali Granites in the Arabian Shield. Economic Geology, 79(6): 1366–1377. https://doi.org/10.2113/gsecongeo.79.6.1366 |
Eby, G. N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2): 115–134. https://doi.org/10.1016/0024-4937(90)90043-Z |
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 |
El-Bialy, M. Z., 2010. On the Pan-African Transition of the Arabian-Nubian Shield from Compression to Extension: The Post-Collision Dokhan Volcanic Suite of Kid-Malhak Region, Sinai, Egypt. Gondwana Research, 17(1): 26–43. https://doi.org/10.1016/j.gr.2009.06.004 |
El-Fakharani, A., Abd-Allah, A. M. A., El-Sawy, E. S. K., et al., 2019. Emplacement Levels and Pre-Existing Structures Control Mechanisms and Host Rock Interactions of Three Granitic Plutons, Western Arabian Shield. International Journal of Earth Sciences, 108(4): 1233–1251. https://doi.org/10.1007/s00531-019-01703-z |
Eyal, M., Litvinovsky, B., Jahn, B., et al., 2010. Origin and Evolution of Post-Collisional Magmatism: Coeval Neoproterozoic Calc-Alkaline and Alkaline Suites of the Sinai Peninsula. Chemical Geology, 269(3/4): 153–179. https://doi.org/10.1016/j.chemgeo.2009.09.010 |
Foley, S., Amand, N., Liu, J., 1992. Potassic and Ultrapotassic Magmas and Their Origin. Lithos, 28(3/4/5/6): 181–185. https://doi.org/10.1016/0024-4937(92)90005-J |
Fritz, H., Abdelsalam, M., Ali, K. A., et al., 2013. Orogen Styles in the East African Orogen: A Review of the Neoproterozoic to Cambrian Tectonic Evolution. Journal of African Earth Sciences, 86: 65–106. https://doi.org/10.1016/j.jafrearsci.2013.06.004 |
Frost, C. D., Frost, B. R., Chamberlain, K. R., et al., 1999. Petrogenesis of the 1.43 Ga Sherman Batholith, SE Wyoming, USA: A Reduced, Rapakivi-Type Anorogenic Granite. Journal of Petrology, 40(12): 1771–1802. https://doi.org/10.1093/petroj/40.12.1771 |
Ghebretensae, G. F., Yao, H. Z., Zhao, K., et al., 2019. Petrogenesis and Tectonic Implications of the Neoproterozoic Adakitic and A-Type Granitoids in the Southern Arabian-Nubian Shield. Arabian Journal of Geosciences, 12(14): 428. https://doi.org/10.1007/s12517-019-4575-x |
Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347–359. https://doi.org/10.1016/0009-2541(94)00145-X |
Hargrove, U. S., Stern, R. J., Kimura, J. I., et al., 2006. How Juvenile is the Arabian-Nubian Shield? Evidence from Nd Isotopes and Pre-Neoproterozoic Inherited Zircon in the Bi'r Umq Suture Zone, Saudi Arabia. Earth and Planetary Science Letters, 252(3/4): 308–326. https://doi.org/10.1016/j.epsl.2006.10.002 |
Harris, N. B. W., 1982. The Petrogenesis of Alkaline Intrusives from Arabia and Northeast Africa and Their Implications for Within-Plate Magmatism. Tectonophysics, 83(3/4): 243–258. https://doi.org/10.1016/0040-1951(82)90021-X |
Harris, N. B. W., 1985. Alkaline Complexes from the Arabian Shield. Journal of African Earth Sciences (1983), 3(1/2): 83–88. https://doi.org/10.1016/0899-5362(85)90025-9 |
Johnson, P. R., Abdelsalam, M. G., Stern, R. J., 2003. The Bi'r Umq-Nakasib Suture Zone in the Arabian-Nubian Shield: A Key to Understanding Crustal Growth in the East African Orogen. Gondwana Research, 6(3): 523–530. https://doi.org/10.1016/S1342-937X(05)71003-0 |
Johnson, S. E., Schmidt, K. L., Tate, M. C., 2002. Ring Complexes in the Peninsular Ranges Batholith, Mexico and the USA: Magma Plumbing Systems in the Middle and Upper Crust. Lithos, 61(3/4): 187–208. https://doi.org/10.1016/S0024-4937(02)00079-8 |
Kozdrój, W., Kennedy, A. K., Johnson, P. R., et al., 2018. Geochronology in the Southern Midyan Terrane: A Review of Constraints on the Timing of Magmatic Pulses and Tectonic Evolution in a Northwestern Part of the Arabian Shield. International Geology Review, 60(10): 1290–1319. https://doi.org/10.1080/00206814.2017.1385425 |
Lee, C. T. A., Morton, D. M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23–31. https://doi.org/10.1016/j.epsl.2014.10.040 |
Le Maitre, R. W., 1989. A Classification of Igneous Rocks and Glossary of Terms, Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, London |
Li, X. H., Liu, Y., Li, Q. L., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q0401. https://doi.org/10.1029/2009gc002400 |
Lundmark, A. M., Andresen, A., Hassan, M. A., et al., 2012. Repeated Magmatic Pulses in the East African Orogen in the Eastern Desert, Egypt: An Old Idea Supported by New Evidence. Gondwana Research, 22(1): 227–237. https://doi.org/10.1016/j.gr.2011.08.017 |
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 |
Moghazi, A. M., Harbi, H. M., Ali, K. A., 2011. Geochemistry of the Late Neoproterozoic Hadb Adh Dayheen Ring Complex, Central Arabian Shield: Implications for the Origin of Rare-Metal-Bearing Post-Orogenic A-Type Granites. Journal of Asian Earth Sciences, 42(6): 1324–1340. https://doi.org/10.1016/j.jseaes.2011.07.018 |
Moufti, A. M. B., Ali, K. A., Whitehouse, M. J., 2013. Geochemistry and Petrogenesis of the Ediacaran Post-Collisional Jabal Al-Hassir Ring Complex, Southern Arabian Shield, Saudi Arabia. Geochemistry, 73(4): 451–467. https://doi.org/10.1016/j.chemer.2013.03.005 |
Nguyen, T. A., Yang, X. Y., Thi, H. V., et al., 2019. Piaoac Granites Related W-Sn Mineralization, Northern Vietnam: Evidences from Geochemistry, Zircon Geochronology and Hf Isotopes. Journal of Earth Science, 30(1): 52–69. https://doi.org/10.1007/s12583-018-0865-6 |
Norrish, K., Hutton, J. T., 1969. An Accurate X-Ray Spectrographic Method for the Analysis of a Wide Range of Geological Samples. Geochimica et Cosmochimica Acta, 33(4): 431–453. https://doi.org/10.1016/0016-7037(69)90126-4 |
O'Driscoll, B., Troll, V. R., Reavy, R. J., et al., 2006. The Great Eucrite Intrusion of Ardnamurchan, Scotland: Reevaluating the Ring-Dike Concept. Geology, 34(3): 189–192. https://doi.org/10.1130/g22294.1 |
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956 |
Qadhi, M. T., 2007. Geochemical Evolution of Rare Metal-Bearing A-Type Granites from the Aja Batholith, Hail Terrain, Saudi Arabia. Journal of the Geological Society of India, 70(5): 714–729 |
Qin, J. H., Liu, C., Chen, Y. C., et al., 2019. Timming of Lithospheric Extension in Northeastern China: Evidence from the Late Mesozoic Nianzishan A-Type Granitoid Complex. Journal of Earth Science, 30(4): 689–706. https://doi.org/10.1007/s12583-018-0996-9 |
Qu, X. M, Hou, Z. Q., Li, Y. G., 2004. Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau. Lithos, 74(3/4): 131–148. https://doi.org/10.1016/j.lithos.2004.01.003 |
Radain, A. A., 1978. Petrogenesis of Some Peralkaline and Non-Peralkaline Post-Tectonic Granites in the Arabian Shield, Kingdom of Saudi Arabia: [Dissertation]. University of Western Ontario, London, Ontario |
Robinson, F. A., Bonin, B., Pease, V., et al., 2017. A Discussion on the Tectonic Implications of Ediacaran Late- to Post-Orogenic A-Type Granite in the Northeastern Arabian Shield, Saudi Arabia. Tectonics, 36(3): 582–600. https://doi.org/10.1002/2016tc004320 |
Robinson, F. A., Foden, J. D., Collins, A. S., et al., 2014. Arabian Shield Magmatic Cycles and Their Relationship with Gondwana Assembly: Insights from Zircon U-Pb and Hf Isotopes. Earth and Planetary Science Letters, 408: 207–225. https://doi.org/10.1016/j.epsl.2014.10.010 |
Roobol, M. J., White, D. L., 1986. Cauldron-Subsidence Structures and Calderas above Arabian Felsic Plutons: A Preliminary Survey. Journal of African Earth Sciences (1983), 4: 123–134. https://doi.org/10.1016/S0899-5362(86)80073-2 |
Sami, M., Ntaflos, T., Farahat, E. S., et al., 2018. Petrogenesis and Geodynamic Implications of Ediacaran Highly Fractionated A-Type Granitoids in the North Arabian-Nubian Shield (Egypt): Constraints from Whole-Rock Geochemistry and Sr-Nd Isotopes. Lithos, 304/305/306/307: 329–346. https://doi.org/10.1016/j.lithos.2018.02.015 |
Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005 |
Stern, R. J., 1994. Arc Assembly and Continental Collision in the Neoproterozoic East-African Orogen: Implications for the Consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22: 319–351. https://doi.org/10.1146/annurev.ea.22.050194.001535 |
Stern, R. J., Johnson, P. R., 2010. Continental Lithosphere of the Arabian Plate: a Geologic, Petrologic, and Geophysical Synthesis. Earth-Science Reviews, 101(1/2): 29–67. https://doi.org/10.1016/j.earscirev.2010.01.002 |
Stoeser, D. B., 1986. Distribution and Tectonic Setting of Plutonic Rocks of the Arabian Shield. Journal of African Earth Sciences (1983), 4: 21–46. https://doi.org/10.1016/S0899-5362(86)80066-5 |
Stoeser, D. B., Camp, V. E., 1985. Pan-African Microplate Accretion of the Arabian Shield. Geological Society of America Bulletin, 96(7): 817–826. https://doi.org/10.1130/0016-7606(1985)96817:pmaota>2.0.co;2 doi: 10.1130/0016-7606(1985)96817:pmaota>2.0.co;2 |
Stoeser, D. B., Frost, C. D., 2006. Nd, Pb, Sr, and O Isotopic Characterization of Saudi Arabian Shield Terranes. Chemical Geology, 226(3/4): 163–188. https://doi.org/10.1016/j.chemgeo.2005.09.019 |
Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4): 533–556. https://doi.org/10.1016/S0016-7037(98)00274-9 |
Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185–220 (in Chinese with English Abstract) |
Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201–1219. https://doi.org/10.1007/s11430-016-5139-1 |
Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143–173. https://doi.org/10.1016/S0009-2541(02)00018-9 |
Yang, J. H., Wu, F. Y., Chumg, S., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1/2): 89–106. https://doi.org/10.1016/j.lithos.2005.10.002 |