Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 5
Oct 2021
Turn off MathJax
Article Contents
Yangbaihe Hong, Bo Liu. Tracking the Tectonic Evolution of the Junggar-Balkhash Ocean: A Case Study from the Post-Collisional Takergan Pluton in the West Junggar, Xinjiang. Journal of Earth Science, 2021, 32(5): 1250-1261. doi: 10.1007/s12583-020-1373-z
Citation: Yangbaihe Hong, Bo Liu. Tracking the Tectonic Evolution of the Junggar-Balkhash Ocean: A Case Study from the Post-Collisional Takergan Pluton in the West Junggar, Xinjiang. Journal of Earth Science, 2021, 32(5): 1250-1261. doi: 10.1007/s12583-020-1373-z

Tracking the Tectonic Evolution of the Junggar-Balkhash Ocean: A Case Study from the Post-Collisional Takergan Pluton in the West Junggar, Xinjiang

doi: 10.1007/s12583-020-1373-z
More Information
  • Corresponding author: Bo Liu, liubo@mail.neu.edu.cn
  • Received Date: 29 Aug 2020
  • Accepted Date: 16 Nov 2020
  • Publish Date: 01 Oct 2021
  • The Late Carboniferous and Early Permian igneous rocks are widely developed in the West Junggar, Xinjiang, which are considered to be related to the evolution of the Junggar-Balkhash Ocean. However, their tectonic settings have been controversial for a long time. With the aim of providing new evidence for the Late Paleozoic tectonic evolution of the West Junggar, we present petrology, zircon U-Pb chronology, whole-rock major and trace elemental and Sr-Nd isotopic data, to discuss the petrogenesis and tectonic setting of Takergan pluton from the Barleik Mountains in the West Junggar. The Takergan pluton is mainly composed of quartz diorite porphyry and quartz monzonite. The quartz diorite porphyry has low SiO2 (57.76 wt.%-57.81 wt.%), high total alkali contents (Na2O+K2O=6.29 wt.%-6.56 wt.%), and high Mg# values (45-46), with a zircon U-Pb age of 304±5 Ma. The quartz monzonite shows relatively high SiO2 (58.71 wt.%-64.71 wt.%), total alkali contents (7.73 wt.%-9.70 wt.%), and Mg# values (34-47), with the A/CNK values of 0.91-0.98, which belongs to shoshonitic and metaluminous Ⅰ-type granite series. The quartz monzonite yields zircon U-Pb ages of 302±2 and 296±3 Ma, and is characterized by low initial Sr ratios of 0.703 97-0.704 09, high εNd(t) values of +6.8- +7.0, and young Nd model ages of 551-587 Ma. Both the quartz diorite porphyry and quartz monzonite are enriched in light rare earth elements and Rb, Th, U, K, and depleted in Nb, Ta, Ti, with different degrees of negative Eu anomalies. These features indicate that the Takergan pluton was most likely formed in a post-collisional setting by partial melting of a depleted mantle source that had been metasomatized by subduction-related fluids, with significant fractional crystallization and slightly contaminated by crustal materials. Combined with the widespread distribution of the coeval stitching plutons, the occurrences of terrestrial Late Carboniferous to Permian volcano-sedimentary formations, and the absence of subduction-related rocks later than Early Carboniferous, it is believed that the Junggar-Balkhash Ocean was closed at about 320 Ma, and the central West Junggar has transformed to a post-collisional environment during the Late Carboniferous and Early Permian.

     

  • loading
  • Bai, J. K., Chen, J. L., Tang, Z., et al., 2015. Redefinition of the Middle Devonian Kulumudi Formation in the South of Tiechanggou Town, West Junggar, Xinjiang and Its Geological Implications. Northwestern Geology, 48(3): 72-80 (in Chinese with English Abstract)
    Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
    Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. https://doi.org/10.1016/j.gca.2004.09.019
    Chen, S., Guo, Z. J., Pe-Piper, G., et al., 2013. Late Paleozoic Peperites in West Junggar, China, and How They Constrain Regional Tectonic and Palaeoenvironmental Setting. Gondwana Research, 23(2): 666-681. https://doi.org/10.1016/j.gr.2012.04.012
    Chen, J. F., Han, B. F., Ji, J. Q., et al., 2010. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons in Northern West Junggar, North Xinjiang, China. Lithos, 115(1/2/3/4): 137-152. https://doi.org/10.1016/j.lithos.2009.11.014
    Chen, J. F., Han, B. F., Zhang, L., et al., 2015. Middle Paleozoic Initial Amalgamation and Crustal Growth in the West Junggar (NW China): Constraints from Geochronology, Geochemistry and Sr-Nd-Hf-Os Isotopes of Calc-Alkaline and Alkaline Intrusions in the Xiemisitai-Saier Mountains. Journal of Asian Earth Sciences, 113: 90-109. https://doi.org/10.1016/j.jseaes.2014.11.028
    Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691-703. https://doi.org/10.1016/s1367-9120(03)00118-4
    Chen, Y., Sun, M. X., Zhang, X. L., 2006. SHRIMP U-Pb Dating of Zircons from Quartz Diorite at the Southeast Side of the Ba'erluke Fault, Western Junggar, Xinjiang, China. Geological Bulletin of China, 25(8): 992-994 (in Chinese with English Abstract) http://www.researchgate.net/publication/279552109_SHRIMP_U-Pb_dating_of_zircons_from_quartz_diorite_at_the_southeast_side_of_the_Ba'erlukc_fault_western_Junggar_Xinjiang_China
    Coleman, R. G., 1989. Continental Growth of Northwest China. Tectonics, 8(3): 621-635. https://doi.org/10.1029/tc008i003p00621
    Dong, S. F., Wang, J. L., Hu, Y., et al., 2016. Geochemistry, Geochronology and Metallogenic Significance of No. 2 Granitic Intrusion in Suyunhe Porphyry Molybdenum Deposit, Western Junggar. Mineral Exploration, 7(6): 891-903 (in Chinese with English Abstract) http://search.cnki.net/down/default.aspx?filename=YSJS201606014&dbcode=CJFD&year=2016&dflag=pdfdown
    Du, H. Y., Chen, J. F., 2017. Determination on the Hoboksar Ancient Oceanic Basin in the West Junggar: The Evidence from Zircon U-Pb Age and Geochemistry of the Hoboksar Ophiolite. Acta Geologica Sinica, 91(12): 2638-2650 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201712004.htm
    Duan, F. H., Li, Y. J., Zhi, Q., et al., 2018. Geochemical Characteristics, Petrogenesis of the Sanukitic Dikes in the Miaoergou Area of West Junggar, Xinjiang, NW China and Their Geological Significance. Geotectonica et Metallogenia, 42(4): 759-776 (in Chinese with English Abstract)
    Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
    Gao, R., Xiao, L., Pirajno, F., et al., 2014. Carboniferous-Permian Extensive Magmatism in the West Junggar, Xinjiang, Northwestern China: Its Geochemistry, Geochronology, and Petrogenesis. Lithos, 204: 125-143. https://doi.org/10.1016/j.lithos.2014.05.028
    Geng, H. Y., Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction?. Chemical Geology, 266(3/4): 364-389. https://doi.org/10.1016/j.chemgeo.2009.07.001
    Gu, P. Y., Li, Y. J., Wang, X. G., et al., 2011. Geochemical Evidences and Tectonic Significances of Dalabute SSZ-Type Ophiolitic Mélange, Western Junggar Basin. Geological Review, 57(1): 36-44 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201101006.htm
    Han, B. F., Guo, Z. J., He, G. Q., 2010a. Timing of Major Suture Zones in North Xinjiang, China: Constraints from Stitching Plutons. Acta Petrologica Sinica, 26(8): 2233-2246 (in Chinese with English Abstract)
    Han, B. F., Guo, Z. J., Zhang, Z. C., et al., 2010b. Age, Geochemistry, and Tectonic Implications of a Late Paleozoic Stitching Pluton in the North Tian Shan Suture Zone, Western China. Geological Society of America Bulletin, 122(3/4): 627-640. https://doi.org/10.1130/b26491.1
    Han, B. F., He, G. Q., Wang, S. G., et al., 1998. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xinjiang. Geological Review, 44(4): 396-406 (in Chinese with English Abstract)
    Han, B. F., Ji, J. Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part Ⅰ): Timing of Post-Collisional Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English Abstract)
    He, X. X., Xiao, L., Wang, G. C., 2015. Petrogenesis and Geological Implications of Late Paleozoic Intermediate-Basic Dyke Swarms in Western Junggar. Earth Science-Journal of China University of Geosciences, 40(5): 777-796 (in Chinese with English Abstract)
    Hu, Y., Wang, J. L., Wang, J. Q., et al., 2018a. Origin of the Shiwu Pluton in Barluk Region, Xinjiang: Zircon U-Pb Chronological, Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints. Acta Petrologica Sinica, 34(3): 601-617 (in Chinese with English Abstract)
    Hu, Y., Wang, J. L., Wang, J. Q., et al., 2018b. Geochemistry and Geochronology of the Granodiorite in Jiamantieliek Pluton, Barluk Region, Xinjiang. Chinese Journal of Geology, 53(2): 594-614 (in Chinese with English Abstract)
    Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
    Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1/2): 181-193. https://doi.org/10.1017/s0263593300007367
    le Bas, M. J., le Maitre, R.W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
    Li, C. F., Li, X. H., Li, Q. L., et al., 2012. Rapid and Precise Determination of Sr and Nd Isotopic Ratios in Geological Samples from the Same Filament Loading by Thermal Ionization Mass Spectrometry Employing a Single-Step Separation Scheme. Analytica Chimica Acta, 727: 54-60. https://doi.org/10.1016/j.aca.2012.03.040
    Li, D., He, D. F., Qi, X. F., et al., 2015. How was the Carboniferous Balkhash-West Junggar Remnant Ocean Filled and Closed? Insights from the Well Tacan-1 Strata in the Tacheng Basin, NW China. Gondwana Research, 27(1): 342-362. https://doi.org/10.1016/j.gr.2013.10.003
    Li, Y. J., Xu, Q., Liu, J., et al., 2016. Redefinition and Geological Significance of Jiamuhe Formation in Hala'alate Mountain of West Junggar, Xinjiang. Earth Science, 41(9): 1479-1488 (in Chinese with English Abstract)
    Lin, W., Sun, P., Xue, Z. H., et al., 2017. Structural Analysis of Late Paleozoic Deformation of Central Dalabute Fault Zone, West Junggar, China. Acta Petrologica Sinica, 33(10): 2987-3001 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252013586.html
    Liu, B., Han, B. F., Chen, J. F., et al., 2017a. Closure Time of the Junggar-Balkhash Ocean: Constraints from Late Paleozoic Volcano-Sedimentary Sequences in the Barleik Mountains, West Junggar, NW China. Tectonics, 36(12): 2823-2845. https://doi.org/10.1002/2017tc004606
    Liu, B., Han, B. F., Ren, R., et al., 2017b. Petrogenesis and Tectonic Implications of the Early Carboniferous to the Late Permian Barleik Plutons in the West Junggar (NW China). Lithos, 272/273: 232-248. https://doi.org/10.1016/j.lithos.2016.12.027
    Liu, B., Han, B. F., Gong, E. P., et al., 2019. The Tectono-Magmatic Evolution of the West Junggar Terrane (NW China) Unravelled by U-Pb Ages of Detrital Zircons in Modern River Sands. International Geology Review, 61(5): 607-621. https://doi.org/10.1080/00206814.2018.1440647
    Liu, B., Han, B. F., Ren, R., et al., 2020. Late Carboniferous to Early Permian Adakitic Rocks and Fractionated Ⅰ-Type Granites in the Southern West Junggar Terrane, NW China: Implications for the Final Closure of the Junggar-Balkhash Ocean. Geological Journal, 55: 1728-1749. https://doi.org/10.1002/gj.3508
    Ludwig, K. R., 2003. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley
    Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.1002/(sici)1096-9837(199612)21:12<1163::aid-esp666>3.3.co doi: 10.1002/(sici)1096-9837(199612)21:12<1163::aid-esp666>3.3.co
    Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
    Ren, R., Han, B. F., Xu, Z., et al., 2014. When did the Subduction First Initiate in the Southern Paleo-Asian Ocean: New Constraints from a Cambrian Intra-Oceanic Arc System in West Junggar, NW China. Earth and Planetary Science Letters, 388: 222-236. https://doi.org/10.1016/j.epsl.2013.11.055
    Roeder, P. L., Emslie, R. F., 1970. Olivine-Liquid Equilibrium. Contributions to Mineralogy and Petrology, 29(4): 275-289. https://doi.org/10.1007/bf00371276
    Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
    Shen, P., Shen, Y. C., Li, X. H., et al., 2012. Northwestern Junggar Basin, Xiemisitai Mountains, China: A Geochemical and Geochronological Approach. Lithos, 140/141: 103-118. https://doi.org/10.1016/j.lithos.2012.02.004
    Shen, P., Xiao, W. J., Pan, H. D., et al., 2013. Petrogenesis and Tectonic Settings of the Late Carboniferous Jiamantieliek and Baogutu Ore-Bearing Porphyry Intrusions in the Southern West Junggar, NW China. Journal of Asian Earth Sciences, 75: 158-173. https://doi.org/10.1016/j.jseaes.2013.07.024
    Su, Y. P., Tang, H. F., Hou, G. S., et al., 2006. Geochemistry of Aluminous A-Type Granites along Darabut Tectonic Belt in West Junggar, Xinjiang. Geochimica, 35(1): 55-67 (in Chinese with English Abstract)
    Sun, H., Xu, Y., Han, B. F., et al., 2020. Changes in Sedimentary Environments and Provenances of the Carboniferous-Lower Permian in Ashelekuoerlesi Area, West Junggar. Geological Bulletin of China, 39(07): 963-982 (in Chinese with English Abstract)
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tang, G. J., Wang, Q., Wyman, D. A., et al., 2010. Ridge Subduction and Crustal Growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous Adakites and High-Mg Diorites in the Western Junggar Region, Northern Xinjiang (West China). Chemical Geology, 277(3/4): 281-300. https://doi.org/10.1016/j.chemgeo.2010.08.012
    Tang, G. J., Wyman, D. A., Wang, Q., et al., 2012. Asthenosphere-Lithosphere Interaction Triggered by a Slab Window during Ridge Subduction: Trace Element and Sr-Nd-Hf-Os Isotopic Evidence from Late Carboniferous Tholeiites in the Western Junggar Area (NW China). Earth and Planetary Science Letters, 329/330: 84-96. https://doi.org/10.1016/j.epsl.2012.02.009
    Tian, Z. X., Yan, J., Li, Y. J., et al., 2013. LA-ICP-MS Zircon U-Pb Age, Geochemistry and Tectonic Setting of the Volcanic Rocks in the Heishantou Formation from the Area of Barleik, West Junggar. Acta Petrologica Sinica, 87(3): 343-352 (in Chinese with English Abstract)
    Wang, G. C., Zhang, P., 2019. A New Understanding on the Ophiolitic Mélanges and Its Tectonic Significance: Insights from the Structural Analysis of the Remnant Oceanic Basin-Type Ophiolitic Mélanges. Earth Science, 44(5): 1688-1704 (in Chinese with English Abstract)
    Wei, W., Pang, X. Y., Wang, Y., et al., 2009. Sediment Facies, Provenance Evolution and Their Implications for the Lower Devonian to Lower Carboniferous in Shaerbuerti Mountain in North Xinjiang. Acta Petrologica Sinica, 25(3): 689-698 (in Chinese with English Abstract)
    Wen, Z. G., Zhao, W. P., Liu, T. F., et al., 2016. Formation Age and Geotectonic Significance of Baerluke Ophiolite in West Junggar, Xinjiang. Geological Bulletin of China, 35(9): 1401-1410 (in Chinese with English Abstract)
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
    Wilson, M. B., 1989. Igneous Petrogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6788-4
    Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022
    Xiao, W. J., Huang, B. C., Han, C. M., et al., 2010. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2/3): 253-273. https://doi.org/10.1016/j.gr.2010.01.007
    Xu, S. L., Chen, X. H., Li, Y. D., et al., 2020. The Latest Magma Intrusion Activities in the West Junggar: Constraints from the Early Permian-Early Triassic Jietebutiao Pluton. Acta Petrologica Sinica, 94(4): 1067-1090 (in Chinese with English Abstract)
    Xu, X., He, G. Q., Li, H. Q., et al., 2006. Basic Characteristics of the Karamay Ophiolitic Mélange, Xinjiang, and Its Zircon SHRIMP Dating. Geology in China, 33(3): 470-475 (in Chinese with English Abstract)
    Xu, X., Zhou, K. F., Wang, Y., 2010. Study on Extinction of the Remnant Oceanic Basin and Tectonic Setting of West Junggar during Late Paleozoic. Acta Petrologica Sinica, 26(11): 3206-3214 (in Chinese with English Abstract) http://d.wanfangdata.com.cn/periodical/ysxb98201011005
    Xu, Z., Han, B. F., Ren, R., et al., 2012. Ultramafic-Mafic Mélange, Island Arc and Post-Collisional Intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic Intra-Oceanic Subduction-Accretion Process. Lithos, 132/133: 141-161. https://doi.org/10.1016/j.lithos.2011.11.016
    Xu, Z., Han, B. F., Ren, R., et al., 2013. Palaeozoic Multiphase Magmatism at Barleik Mountain, Southern West Junggar, Northwest China: Implications for Tectonic Evolution of the West Junggar. International Geology Review, 55(5): 633-656. https://doi.org/10.1080/00206814.2012.741315
    Yang, G. X., Li, Y. J., Santosh, M., et al., 2012. A Neoproterozoic Seamount in the Paleoasian Ocean: Evidence from Zircon U-Pb Geochronology and Geochemistry of the Mayile Ophiolitic Mélange in West Junggar, NW China. Lithos, 140/141: 53-65. https://doi.org/10.1016/j.lithos.2012.01.026
    Yang, G. X., Li, Y. J., Santosh, M., et al., 2013. Geochronology and Geochemistry of Basalts from the Karamay Ophiolitic Melange in West Junggar (NW China): Implications for Devonian-Carboniferous Intra-Oceanic Accretionary Tectonics of the Southern Altaids. Geological Society of America Bulletin, 125(3/4): 401-419. https://doi.org/10.1130/b30650.1
    Yang, M., Wang, J. L., Wang, J. Q., et al., 2015. Late Carboniferous Intra-Oceanic Subduction and Mineralization in Western Junggar: Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of I# Ore-Bearing Granite Body in Suyunhe Molybdenite Orefield, Xinjiang. Acta Petrologica Sinica, 31(2): 523-533 (in Chinese with English Abstract) http://www.researchgate.net/publication/305535966_Late_Carboniferous_intra-oceanic_subduction_and_mineralization_in_western_Junggar_Evidence_from_the_petrology_geochemistry_and_zircon_U-Pb_geochronology_of_I_ore-bearing_granite_body_in_Suyunhe_molybd
    Yang, Y. Q., Zhao, L., Zheng, R. G., et al., 2019. Evolution of the Early Paleozoic Hongguleleng-Balkybey Ocean: Evidence from the Hebukesaier Ophiolitic Mélange in the Northern West Junggar, NW China. Lithos, 324/325: 519-536. https://doi.org/10.1016/j.lithos.2018.11.029
    Yin, J. Y., Yuan, C., Sun, M., et al., 2010. Late Carboniferous High-Mg Dioritic Dikes in Western Junggar, NW China: Geochemical Features, Petrogenesis and Tectonic Implications. Gondwana Research, 17(1): 145-152. https://doi.org/10.1016/j.gr.2009.05.011
    Yin, J. Y., Yuan, C., Sun, M., et al., 2012. Age, Geochemical Features and Possible Petrogenesis Mechanism of Early Permian Magnesian Diorite in Hatu, Xinjiang. Acta Petrologica Sinica, 28(7): 2171-2182 (in Chinese with English Abstract)
    Yu, Z. Q., Liu, B., Hong, Y. B. H., 2021. Zircon U-Pb Age and Geochemistry of the Granitic Porphyry from the Baibuxie River of the West Junggar, Xinjiang, and Its Tectonic Significance. Geological Journal of China Universities, 27(1): 80-93 (in Chinese with English Abstract)
    Zhang Y. Y., Guo, Z. J., 2010. New Constraints on Formation Ages of Ophiolites in Northern Junggar and Comparative Study on Their Connection. Acta Petrologica Sinica, 26(2): 421-430 (in Chinese with English Abstract) http://www.oalib.com/paper/1473405
    Zhang, P., Wang, G. C., Shen, T. Y., et al., 2021. Paleozoic Convergence Processes in the Southwestern Central Asian Orogenic Belt: Insights from U-Pb Dating of Detrital Zircons from West Junggar, Northwestern China. Geoscience Frontiers, 12(2): 531-548. https://doi.org/10.1016/j.gsf.2020.07.015
    Zhao, Z. F., Dai, F. Q., Chen, Q., 2019. Continental Slab-Mantle Interaction: Geochemical Evidence from Post-Collisional Andesitic Rocks in the Dabie Orogen. Earth Science, 44(12): 4119-4127 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912021.htm
    Zheng, B., Han, B. F., Liu, B., et al., 2019. Ediacaran to Paleozoic Magmatism in West Junggar Orogenic Belt, NW China, and Implications for Evolution of Central Asian Orogenic Belt. Lithos, 338/339: 111-127. https://doi.org/10.1016/j.lithos.2019.04.017
    Zheng, B., Han, B. F., Wang, Z. Z., et al., 2020. An Example of Phanerozoic Continental Crustal Growth: The West Junggar Orogenic Belt, Northwest China. Lithos, 376/377: 105745. https://doi.org/10.1016/j.lithos.2020.105745
    Zhong, S. H., Shen, P., Pan, H. D., et al., 2015. Geochemistry and Geochronology of Ore-Bearing Granites in Suyunhe Mo Deposit, West Junggar, Xinjiang. Minerals Deposits, 34(1): 39-62 (in Chinese with English Abstract)
    Zhu, Y. F., Chen, B., Qiu, T., 2015. Geology and Geochemistry of the Baijiantan-Baikouquan Ophiolitic Mélanges: Implications for Geological Evolution of West Junggar, Xinjiang, NW China. Geological Magazine, 152(1): 41-69. https://doi.org/10.1017/s0016756814000168
    Zhu, Y. F., Xu, X., 2006. The Discovery of Early Ordovician Ophiolitic Mélanges in Taerbahatai Mts., Xinjiang, NW China. Acta Petrologica Sinica, 22(12): 2833-2842 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(241) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return