Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 2
Apr 2023
Turn off MathJax
Article Contents
Hou-Tian Xin, Jian Tian, Xue-Jian Teng, Li-Xin Sun, Guo-Zhen Zhang, Yong Zhang, Bang-Fang Ren. Petrology, Zircon Chronology and Geochemistry of the Late Silurian Ophiolitic Mélanges and the Baiyunshan Forearc Complex in the Central Beishan Orogenic Belt, NE China. Journal of Earth Science, 2023, 34(2): 444-455. doi: 10.1007/s12583-020-1377-8
Citation: Hou-Tian Xin, Jian Tian, Xue-Jian Teng, Li-Xin Sun, Guo-Zhen Zhang, Yong Zhang, Bang-Fang Ren. Petrology, Zircon Chronology and Geochemistry of the Late Silurian Ophiolitic Mélanges and the Baiyunshan Forearc Complex in the Central Beishan Orogenic Belt, NE China. Journal of Earth Science, 2023, 34(2): 444-455. doi: 10.1007/s12583-020-1377-8

Petrology, Zircon Chronology and Geochemistry of the Late Silurian Ophiolitic Mélanges and the Baiyunshan Forearc Complex in the Central Beishan Orogenic Belt, NE China

doi: 10.1007/s12583-020-1377-8
More Information
  • Corresponding author: Hou-Tian Xin, xinht@163.com
  • Received Date: 03 Apr 2020
  • Accepted Date: 20 Nov 2020
  • Issue Publish Date: 30 Apr 2023
  • The WNW-ESE-trending Baiyunshan ophiolitic mélange is exposed in the central Beishan orogenic belt (BOB), between the Hongliuhe-Niujuanzi and Xichangjing ophiolitic mélanges in the west and east, respectively. Here we present new petrological, geochemical, and zircon U-Pb age data for the Baiyunshan ophiolitic mélange and metamorphosed lithic sandstones of "the Baiyunshan Formation". The Baiyunshan ophiolitic mélange is characterized by a block-in-matrix structure, and the blocks of ultramafic-mafic rocks are mainly pyroxenites, dunites, gabbros, and minor hornblendites. Zircon U-Pb dating yielded an emplacement age of 424.2 ± 3.7 Ma for the gabbros. The ultramaficmafic rocks have geochemical features of supra-subduction zone-type ophiolites, including low Ti contents (TiO2 = 0.01 wt.%–0.35 wt.%), negative Nb-Ta anomalies, and U-shaped rare earth element patterns with positive Eu anomalies (δEu = 0.99–3.25). "The Baiyunshan Formation" is exposed to the north of the ophiolitic mélange, and comprises mainly meta-cherts in its lower part and metasandstones and marbles in its upper part. Blocks of basalt are locally dispersed in the sand-slate matrix. The ages of detrital zircons in the metamorphosed lithic sandstones range from 521 to 464 Ma, with an age peak of 500 Ma, which is similar to those of the Gongpoquan arc in the north. The central Beishan orogenic belt experienced continuous subduction of the Hongliuhe-Xichangjing oceanic lithosphere in the Late Silurian, which produced the Baiyunshan forearc complex and supra-subduction zone-type ophiolite.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1, S2) are available in the online version of this article at https://doi.org/10.1007/s12583-020-1377-8.
  • loading
  • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x
    Anonymous, 1972. Penrose Field Conference on Ophiolites. Geotimes, 17: 24–25
    Ao, S. J., Xiao, W. J., Han, C. M., et al., 2012. Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China: Implications for the Architecture of the Southern Altaids. Geological Magazine, 149(4): 606–625. https://doi.org/10.1017/s001 6756811000884 doi: 10.1017/s0016756811000884
    Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181–193. https://doi.org/10.1007/bf00375292
    Castro, A., Vogt, K., Gerya, T., 2013. Generation of New Continental Crust by Sublithospheric Silicic-Magma Relamination in Arcs: A Test of Taylor's Andesite Model. Gondwana Research, 23(4): 1554–1566. https://doi.org/10.1016/j.gr.2012.07.004
    Coleman, R. G., 1989. Continental Growth of Northwest China. Tectonics, 8(3): 621–635. https://doi.org/10.1029/tc008i003p00621
    Condie, K. C., Kröner, A., 2013. The Building Blocks of Continental Crust: Evidence for a Major Change in the Tectonic Setting of Continental Growth at the End of the Archean. Gondwana Research, 23(2): 394–402. https://doi.org/10.1016/j.gr.2011.09.011
    Dilek, Y., Furnes, H., Shallo, M., 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ Evolution of a Marginal Basin Oceanic Crust. Lithos, 100(1/2/3/4): 174–209. https://doi.org/10.1016/j.lithos.2007.06.026
    Ding, J. X., Han, C. M., Xiao, W. J., et al., 2015. Geochemistry and U-Pb Geochronology of Tungsten Deposit of Huanniushan is a Land Arc in the Beishan Orogenic Belt, and Its Geodynamic Background. Acta Petrol. Sin. , 31: 594–616 (in Chinese with English Abstract)
    Draut, A. E., Clift, P. D., Amato, J. M., et al., 2009. Arc-Continent Collision and the Formation of Continental Crust: A New Geochemical and Isotopic Record from the Ordovician Tyrone Igneous Complex, Ireland. Journal of the Geological Society, 166(3): 485–500. https://doi.org/10.1144/0016-76492008-102
    Festa, A., Pini, G. A., Dilek, Y., et al., 2010. Mélanges and Mélange-Forming Processes: A Historical Overview and New Concepts. International Geology Review, 52(10/11/12): 1040–1105. https://doi.org/10.1080/00206810903557704
    Furnes, H., Dilek, Y., 2017. Geochemical Characterization and Petrogenesis of Intermediate to Silicic Rocks in Ophiolites: A Global Synthesis. Earth-Science Reviews, 166: 1–37. https://doi.org/10.1016/j.earscire v.2017.01.001 doi: 10.1016/j.earscirev.2017.01.001
    Gao, J. F., Lu, J. J., Lai, M. Y., et al., 2003. Analysis of Trace Elements in Rock Samples Using HR-ICPMS. J. Nanjing University (Nat. Sci. ), 39: 844–850 (in Chinese with English Abstract)
    Guo, Q. Q., Chung, S. L., Xiao, W. J., et al., 2017. Petrogenesis and Tectonic Implications of Late Devonian Arc Volcanic Rocks in Southern Beishan Orogen, NW China: Geochemical and Nd-Sr-Hf Isotopic Constraints. Lithos, 278–281: 84–96. https://doi.org/10.1016/j.lithos.2017.01.017
    Hacker, B. R., Kelemen, P. B., Behn, M. D., 2011. Differentiation of the Continental Crust by Relamination. Earth and Planetary Science Letters, 307(3/4): 501–516. https://doi.org/10.1016/j.epsl.2011.05.024
    Hou, Q. Y., Wang, Z., Liu, J. B., et al., 2012. Geochemistry Characteristics and SHRIMP Dating of Yueyashan Ophiolite in Beishan Orogen. Geoscience, 26(5): 1008–1018 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-8527.2012.05.022
    Hu, X. Z., Zhao, G. C., Hu, X. Y., et al., 2015. Geological Characteristics, Formation Epoch and Geotectonic Significance of the Yueyashan Ophiolitic Tectonic Mélange in Beishan Area, Inner Mongolia. Geological Bulletin of China, 34 (2/3): 425–436 (in Chinese with English Abstract)
    Jahn, B. M., Wu, F. Y., Chen, B., 2000. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82–92. https://doi.org/10.18814/epiiugs/2000/v23i2/001
    Kusky, T. M., Windley, B. F., Polat, A., 2018. Geological Evidence for the Operation of Plate Tectonics Throughout the Archean: Records from Archean Paleo-Plate Boundaries. Journal of Earth Science, 29(6): 1291–1303. https://doi.org/10.1007/s12583-018-0999-6
    Lash, G. G., 1985. Recognition of Trench Fill in Orogenic Flysch Sequences. Geology, 13(12): 867–890. https://doi.org/10.1130/0091-7613(1985)13<867:rotfio>2.0.co;2 doi: 10.1130/0091-7613(1985)13<867:rotfio>2.0.co;2
    Li, S., Wang, T., Tong, T., et al., 2011a. Zircon U-Pb Age, Origin and Its Tectonic Significances of Huitongshan Devonian K-Feldspar Granites from Beishan Orogenic Belt, NW China. Acta Petrologica Sinica, 27: 3055–3070 (in Chinese with English Abstract)
    Li, S., Wang, T., Tong, Y., et al., 2009. Identification of the Early Devonian Shuangfengshan A-Type Granites in Liuyuan Area of Beishan and Its Implications to Tectonic Evolution. Acta Petrologica et Mineralogica, 28: 407–422 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-6524.2009.05.001
    Li, W. G., Li, Q. F., Jiang, W. D., 1996. Lithostratigraphy of Inner Mongolia Autonomous Region. China University of Geosciences Press, Wuhan
    Li, X. M., Yu, J. Y., Wang, G. Q., et al., 2012. Geochronology of Jijitaizi Ophiolite in Beishan Area, Gansu Province, and Its Geological Significance. Geological Bulletin of China, 31(12): 2025–2031 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-2552.2012.12.011
    Li, X. M., Yu, J. Y., Wang, G. Q., et al., 2011b. LA-ICP-MS Zircon U-Pb Dating of Devonian Sangejing Formation and Dundunshan Group in Hongliuyuan, Beishan Area, Gansu Province. Geol. Bull. China, 30: 1501–1507 (in Chinese with English Abstract)
    Li, Y. J., Wang, G. H., Santosh, M., et al., 2018. Supra-Subduction Zone Ophiolites from Inner Mongolia, North China: Implications for the Tectonic History of the Southeastern Central Asian Orogenic Belt. Gondwana Research, 59: 126–143. https://doi.org/10.1016/j.gr.2018.0 2.018 doi: 10.1016/j.gr.2018.02.018
    Li, Y. J., Wang, G. H., Santosh, M., et al., 2020. Subduction Initiation of the SE Paleo-Asian Ocean: Evidence from a Well Preserved Intra-Oceanic Forearc Ophiolite Fragment in Central Inner Mongolia, North China. Earth and Planetary Science Letters, 535: 116087. https://doi.org/10.1 016/j.epsl.2020.116087 doi: 10.1016/j.epsl.2020.116087
    Li, Y., Yang, J. S., Pei, X. Z., et al., 2012. A Model for Multi-Stage of the Early Palaeozoic Danfeng Ophiolite in Qinling Orogen Belt: From Arc to Inter-Arc Basin. Acta Petrologica Sinica, 28(6): 1896–1914 (in Chinese with English Abstract)
    Liu, X. C., Chen, B. L., Jahn, B. M., et al., 2010. Early Paleozoic (ca. 465 Ma) Eclogites from Beishan (NW China) and Their Bearing on the Tectonic Evolution of the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 42: 715–731. https://doi.org/10.1016/j.jseaes.2010.10.017
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Liu, Y., Gao, S., Hu, Z., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082
    Ludwig, K. R., 2003. ISOPLOT/EX 3.0: A Geochronological Toolkit for Microsoft Excel, 4. Berkeley Geochronology Centre Special Publication, Berkeley
    Mao, Q. G., Xiao, W. J., Windley, B. F., et al., 2012. The Liuyuan Complex in the Beishan, NW China: A Carboniferous–Permian Ophiolitic Fore-Arc Sliver in the Southern Altaids. Geological Magazine, 149(3): 483–506. https://doi.org/10.1017/s0016756811000811
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1 016/0012-8252(94)90029-9 doi: 10.1016/0012-8252(94)90029-9
    Miyashiro, A., Shido, F., 1975. Tholeiitic and Calc-Alkalic Series in Relation to the Behaviors of Titanium, Vanadium, Chromium, and Nickel. American Journal of Science, 275(3): 265–277. https://doi.org/10.2475/ajs.275.3.265
    Mullen, E. D., 1983. MnO/TiO2/P2O5: A Minor Element Discriminant for Basaltic Rocks of Oceanic Environments and Its Implications for Petrogenesis. Earth and Planetary Science Letters, 62(1): 53–62. https://doi.org/10.1016/0012-821x(83)90070-5
    Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
    Pearce, J. A., Lippard, S. J., Roberts, S. 1984. Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites. In: Kokelaar, B. P., Howells, M. F., eds., Marginal Basin Geology: Volcanic and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins. Geological Society of London Special Publication, 16: 77–94
    Qu, J. F., Xiao, W. J., Windley, B. F., et al., 2011. Ordovician Eclogites from the Chinese Beishan: Implications for the Tectonic Evolution of the Southern Altaids. Journal of Metamorphic Geology, 29(8): 803–820. https://doi.org/10.1111/j.1525-1314.2011.00942.x
    Saunders, A. D., Rogers, G., Marriner, G. F., et al., 1987. Geochemistry of Cenezoic Volcanic Rocks, Baja California, Mexico: Implications for the Petrogenesis of Post-Subduction Magmas. Journal of Volcanology and Geothermal Research, 32(1/2/3): 223–245. https://doi.org/10.1016/0377-0273(87)90046-1
    Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299–307. https://doi.org/10.1038/364299a0
    Shi, R. D., 2005. Comment on the Progress in and Problems on Ophiolite Study. Geological Review, 51(6): 681–693 (in Chinese with English Abstract) doi: 10.3321/j.issn:0371-5736.2005.06.010
    Shi, Y. R., Zhang, W., Kröner, A., et al., 2018. Cambrian Ophiolite Complexes in the Beishan Area, China, Southern Margin of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 193–205. https://doi.org/10.1016/j.jseaes.2017.05.021
    Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemge o.2007.11.005 doi: 10.1016/j.chemgeo.2007.11.005
    Song, D. F., Xiao, W. J., Han, C. M., et al., 2013. Progressive Accretionary Tectonics of the Beishan Orogenic Collage, Southern Altaids: Insights from Zircon U-Pb and Hf Isotopic Data of High-Grade Complexes. Precambrian Research, 227: 368–388. https://doi.org/10.1016/j.prec amres.2012.06.011 doi: 10.1016/j.precamres.2012.06.011
    Song, D. F., Xiao, W. J., Han, C. M., et al., 2014. Polyphase Deformation of a Paleozoic Forearc-Arc Complex in the Beishan Orogen, NW China. Tectonophysics, 632: 224–243. https://doi.org/10.1016/j.tecto.201 4.0 6.030 doi: 10.1016/j.tecto.2014.06.030
    Song, D. F., Xiao, W. J., Windley, B. F., et al., 2015. A Paleozoic Japan-Type Subduction-Accretion System in the Beishan Orogenic Collage, Southern Central Asian Orogenic Belt. Lithos, 224/225: 195–213. https://doi.org/10.1016/j.lithos.2015.03.005
    Song, D. F., Xiao, W., Han, C. M., et al., 2013. Geochronological and Geochemical Study of Gneiss-Schist Complexes and Associated Granitoids, Beishan Orogen, Southern Altaids. International Geology Review, 55(14): 1705–1727. https://doi.org/10.1080/00206814.2013.79 2515 doi: 10.1080/00206814.2013.792515
    Sun, L. X., Zhang, J. H., Ren, B. F., et al., 2017. Geochemical Characteristics and U-Pb Age of Baiyunshan Ophiolite Southern Central Asian Orogenic Belt. Acta Petrologica et Mineralogica, 36(2): 131–147 (in Chinese with English Abstract)
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Carlton, 312
    Tian, J., Teng, X. J., Xin, H. T., et al., 2020a. Structure, Composition and Ages of Ophiolitic Mélanges in the Baiyunshan Area, Beishan Orogenic Belt. Acta Petrologica Sinica, 36(12): 3741–3756 (in Chinese with English Abstract) doi: 10.18654/1000-0569/2020.12.11
    Tian, J., Xin, H. T., Teng, X. J., et al., 2020b. Petrogenesis and Tectonic Implications of the Late Silurian–Early Devonian Bimodal Intrusive Rocks in the Central Beishan Orogenic Belt, NW China: Constraints by Petrology, Geochemistry and Hf Isotope. Journal of Earth Science, https://doi.org/10.1007/s12583-020-1078-3
    Tian, Z. H., Xiao, W. J., Windley, B. F., et al., 2014. Structure, Age, and Tectonic Development of the Huoshishan-Niujuanzi Ophiolitic Mélange, Beishan, Southernmost Altaids. Gondwana Research, 25(2): 820–841. https://doi.org/10.1016/j.gr.2013.05.006
    Underwood, M. B., Moore, G. F., Taira, A., et al., 2003. Sedimentary and Tectonic Evolution of a Trench-Slope Basin in the Nankai Subduction Zone of Southwest Japan. Journal of Sedimentary Research, 73(4): 589–602. https://doi.org/10.1306/092002730589
    Underwood, M. B., Moore, G. F., 1995, Trenches and Trench-Slope Basins, In: Busby, C. J., Ingersoll, R. V., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge. 179–220
    Wang, G. Q., Li, X. M., Xu, X. Y., et al., 2014. Ziron U-Pb Chronological Study of the Hongshishan Ophiolite in the Beishan Area and Their Tectonic Significance. Acta Petrologica Sinica, 30(6): 1685–1694 (in Chinese with English Abstract)
    Wang, S. D., Zhang, K. X., Song, B. W., et al., 2017. Geochronology and Geochemistry of the Niujuanzi Ophiolitic Mélange, Gansu Province, NW China: Implications for Tectonic Evolution of the Beishan Orogenic Collage. International Journal of Earth Sciences, 107(1): 269–289. https://doi.org/10.1007/s00531-017-1489-2
    Wang, S. Q., Hu, X. J., Zhao, H. L., 2019. New Discovery of Late Carboniferous Alkaline Granite in the Honggeer Area, Sonid Zuoqi, Inner Mongolia. Geological Survey and Research, 42(2): 81–85 (in Chinese with English Abstract)
    Wang, X. Y., Yuan, C., Zhang, Y. Y., et al., 2018. S-Type Granite from the Gongpoquan Arc in the Beishan Orogenic Collage, Southern Altaids: Implications for the Tectonic Transition. Journal of Asian Earth Sciences, 153: 206–222. https://doi.org/10.1016/j.jseaes.2017.07.037
    Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-76492 006-022 doi: 10.1144/0016-76492006-022
    Wu, T. R., Zheng, R. G., Zhang, W., et al., 2011. Tectonic Framework of Beishan Mountain-Northern Alxa Area and the Time Constraints for the Closing of the Paleo-Asian Ocean. In: Proceedings of the Fifth Workshop on 1 : 5 000 000 International Geological Map of Asia. Beijing, 95–98
    Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553–1594. https://doi.org/10.2475/10.2010.12
    Xiao, W. J., Windley, B. F., Badarch, G., et al., 2004. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161(3): 339–342. https://doi.org/10.1144/0016-764903-165
    Yang, F. L., Zhao, Z. X., Jia, W. Y., et al., 2016. Discussion on the Forming Age of the Beishan Group in the Beishan Area, Inner Mongolia. Geological Survey and Research, 39(2): 90–94 (in Chinese with English Abstract)
    Yang, H. Q., Li, Y., Zhao, G. B., et al., 2010. Character and Structural Attribute of the Beishan Ophiolite. Northwestern Geology, 43(1): 26–36 (in Chinese with English Abstract)
    Yu, F. S., Li, J. B., Wang, T., 2006. The U-Pb Isotopic Age of Zircon from Hongliuhe Ophiolites in East Tianshan Mountains, Northwest China. Acta Geoscientia Sinica, 27(3): 213–216 (in Chinese with English Abstract)
    Yuan, Y., Zong, K. Q., He, Z. Y., et al., 2018. Geochemical Evidence for Paleozoic Crustal Growth and Tectonic Conversion in the Northern Beishan Orogenic Belt, Southern Central Asian Orogenic Belt. Lithos, 302/303: 189–202. https://doi.org/10.1016/j.lithos.2017.12.026
    Zhang, Q., Wang, C. Y., Liu, D., et al., 2008. A Brief Review of Ophiolites in China. Journal of Asian Earth Sciences, 32(5): 308–324
    Zhang, Y. Y., Guo, Z. J., 2008. Accurate Constraint on Formation and Emplacement Age of Hongliuhe Ophiolite, Boundary Region between Xinjiang and Gansu Provinces and Its Tectonic Implications. Acta Petrologica Sinica, 24(4): 803–809 (in Chinese with English Abstract)
    Zhao, Z. H., Guo, Z. J., Wang, Y., 2007. Geochronology, Geochemical Characteristics and Tectonic Implications of the Granitoids from Liuyuan Area, Beishan, Gansu Province, Northwest China. Acta Petrologica Sinica, 23: 1847–1860 (in Chinese with English Abstract)
    Zheng, R. G., Wu, T. R., Zhang, W., et al., 2013. Late Paleozoic Subduction System in the Southern Central Asian Orogenic Belt: Evidences from Geochronology and Geochemistry of the Xiaohuangshan Ophiolite in the Beishan Orogenic Belt. Journal of Asian Earth Sciences, 62: 463–475. https://doi.org/10.1016/j.jseaes.2012.10.033
    Zheng, R. G., Xiao, W. J., Li, J. Y., et al., 2018. A Silurian–Early Devonian Slab Window in the Southern Central Asian Orogenic Belt: Evidence from High-Mg Diorites, Adakites and Granitoids in the Western Central Beishan Region, NW China. Journal of Asian Earth Sciences, 153: 75–99. https://doi.org/10.1016/j.jseaes.2016.12.008
    Zhou, G. Q., Zhao, J. X., Li, X. H., 2000. Characteristics of Yueyashan ophiolite from Western Inner Mongolia Its Tectonic Setting Geochemistry and Sm-Nd Isotopic Constraints. Geochimica, 29(2): 108–119 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(162) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return