Citation: | Xing Xiang, Hongmei Wang, Wen Tian, Ruicheng Wang, Linfeng Gong, Ying Xu, Baiying Man. Composition and Function of Bacterial Communities of Bryophytes and Their Underlying Sediments in the Dajiuhu Peatland, Central China. Journal of Earth Science, 2023, 34(1): 133-144. doi: 10.1007/s12583-020-1391-x |
Symbiotic microbiomes of
Barabási, A. L., 2009. Scale-Free Networks: A Decade and Beyond. Science, 325(5939): 412–413. https://doi.org/10.1126/science.1173299 |
Bassett, D. S., Bullmore, E., 2006. Small-World Brain Networks. The Neuroscientist, 12(6): 512–523. https://doi.org/10.1177/1073858406293182 |
Bauer, I. E., Tirlea, D., Bhatti, J. S., et al., 2007. Environmental and Biotic Controls on Bryophyte Productivity along Forest to Peatland Ecotones. Canadian Journal of Botany, 85(5): 463–475. https://doi.org/10.1139/b07-045 |
Beck, M., 2017. Ggord: Ordination Plots with ggplot2. R Package Version 1.0. 0 |
Becking, J. H., 2006. The Genus Beijerinckia. In: Dworkin, M., Falkow, S., Rosenberg, E., et al., eds., The Prokaryotes. Springer, New York. 151–162. https://doi.org/10.1007/0-387-30745-1_8 |
Berry, D., Widder, S., 2014. Deciphering Microbial Interactions and Detecting Keystone Species with Co-Occurrence Networks. Frontiers in Microbiology, 5: 219. https://doi.org/10.3389/fmicb.2014.00219 |
Bragina, A., Berg, C., Cardinale, M., et al., 2012. Sphagnum Mosses Harbour Highly Specific Bacterial Diversity during Their Whole Lifecycle. The ISME Journal, 6(4): 802–813. https://doi.org/10.1038/ismej.2011.151 |
Bragina, A., Berg, C., Müller, H., et al., 2013a. Insights into Functional Bacterial Diversity and Its Effects on Alpine Bog Ecosystem Functioning. Scientific Reports, 3: 1955. https://doi.org/10.1038/srep01955 |
Bragina, A., Cardinale, M., Berg, C., et al., 2013b. Vertical Transmission Explains the Specific Burkholderia Pattern in Sphagnum Mosses at Multi-Geographic Scale. Frontiers in Microbiology, 4: 394. https://doi.org/10.3389/fmicb.2013.00394 |
Caporaso, J. G., Kuczynski, J., Stombaugh, J., et al., 2010. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nature Methods, 7(5): 335–336. https://doi.org/10.1038/nmeth.f.303 |
Chao, A., Chazdon, R. L., Colwell, R. K., et al., 2005. A New Statistical Approach for Assessing Compositional Similarity Based on Incidence and Abundance Data. Ecology Letters, 8(2): 148–159. https://doi.org/10.1111/j.1461-0248.2004.00707.x |
Chen, X., Bu, Z. J., Wang, S. Z., et al., 2009. Niches of Seven Bryophyte Species in Hani Peat Land of Changbai Mountains. Chinese Journal of Applied Ecology, 20(3): 574–578 (in Chinese with English Abstract) |
Claesson, M. J., O'Sullivan, O., Wang, Q., et al., 2009. Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring Microbial Community Structures in the Human Distal Intestine. PLoS One, 4(8): e6669. https://doi.org/10.1371/journal.pone.0006669 |
Clauset, A., Shalizi, C. R., Newman, M. E. J., 2009. Power-Law Distributions in Empirical Data. SIAM Review, 51(4): 661–703. https://doi.org/10.1137/070710111 |
Dai, Z. M., Su, W. Q., Chen, H. H., et al., 2018. Long-Term Nitrogen Fertilization Decreases Bacterial Diversity and Favors the Growth of Actinobacteria and Proteobacteria in Agro-Ecosystems across the Globe. Global Change Biology, 24(8): 3452–3461. https://doi.org/10.1111/gcb.14163 |
Deng, Y. C., Cui, X. Y., Hernańdez, M., et al., 2014. Microbial Diversity in Hummock and Hollow Soils of Three Wetlands on the Qinghai-Tibetan Plateau Revealed by 16S rRNA Pyrosequencing. PLoS One, 9(7): e103115. https://doi.org/10.1371/journal.pone.0103115 |
Dodds, W. K., Gudder, D. A., Mollenhauer, D., 1995. The Ecology of Nostoc. Journal of Phycology, 31(1): 2–18. https://doi.org/10.1111/j.0022-3646.1995.00002.x |
Edgar, R. C., 2013. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nature Methods, 10(10): 996–998. https://doi.org/10.1038/nmeth.2604 |
Elumeeva, T. G., Soudzilovskaia, N. A., During, H. J., et al., 2011. The Importance of Colony Structure versus Shoot Morphology for the Water Balance of 22 Subarctic Bryophyte Species. Journal of Vegetation Science, 22(1): 152–164. https://doi.org/10.1111/j.1654-1103.2010.01237.x |
Faith, D. P., 1992. Conservation Evaluation and Phylogenetic Diversity. Biological Conservation, 61(1): 1–10. https://doi.org/10.1016/0006-3207(92)91201-3 |
Faust, K., Raes, J., 2016. CoNet App: Inference of Biological Association Networks Using Cytoscape. F1000Research, 5: 1519. https://doi.org/10.12688/f1000research.9050.2 |
George, D., Mallery, P., 1998. SPSS for Windows Step by Step: A Simple Guide and Reference. Allyn & Bacon, Boston |
Graham, D. W., Chaudhary, J. A., Hanson, R. S., et al., 1993. Factors Affecting Competition between Type Ⅰ and Type Ⅱ Methanotrophs in Two-Organism, Continuous-Flow Reactors. Microbial Ecology, 25(1): 1–17. https://doi.org/10.1007/BF00182126 |
Grime, J. P., 1973. Competitive Exclusion in Herbaceous Vegetation. Nature, 242(5396): 344–347. https://doi.org/10.1038/242344a0 |
Hill, T. C. J., Walsh, K. A., Harris, J. A., et al., 2003. Using Ecological Diversity Measures with Bacterial Communities. FEMS Microbiology Ecology, 43(1): 1–11. https://doi.org/10.1016/S0168-6496(02)00449-X |
Holden, J., 2006. Peatland Hydrology. In: Martini, I. P., Martínez Cortizas, A., Chesworth, W., eds., Peatlands: Evolution and Records of Environmental and Climate Changes. Elsevier, Amsterdam. 319–346 |
Huang, X. Y., Zhang, Z. Q., Wang, H. M., et al., 2017. Overview on Critical Zone Observatory at Dajiuhu Peatland, Shennongjia. Earth Science, 42(6): 1026–1038 (in Chinese with English Abstract) |
Huang, Y. B., Zhao, T. T., Xiang, W., et al., 2021. Stability of Organic Iron Complexes in Dajiuhu Peats and Its Ecological Significance. Earth Science, (5): 1862–1870. https://doi.org/10.3799/dqkx.2020.149 (in Chinese with English Abstract) |
Hughes, J. B., Hellmann, J. J., Ricketts, T. H., et al., 2001. Counting the Uncountable: Statistical Approaches to Estimating Microbial Diversity. Applied and Environmental Microbiology, 67(10): 4399–4406. https://doi.org/10.1128/AEM.67.10.4399-4406.2001 |
Hunter, P. R., Gaston, M. A., 1988. Numerical Index of the Discriminatory Ability of Typing Systems: An Application of Simpson's Index of Diversity. Journal of Clinical Microbiology, 26(11): 2465–2466. https://doi.org/10.1128/jcm.26.11.2465-2466.1988 |
Jiang, X. T., Peng, X., Deng, G. H., et al., 2013. Illumina Sequencing of 16S rRNA Tag Revealed Spatial Variations of Bacterial Communities in a Mangrove Wetland. Microbial Ecology, 66(1): 96–104. https://doi.org/10.1007/s00248-013-0238-8 |
Kostka, J. E., Weston, D. J., Glass, J. B., et al., 2016. The Sphagnum Microbiome: New Insights from an Ancient Plant Lineage. The New Phytologist, 211(1): 57–64. https://doi.org/10.1111/nph.13993 |
Kumar, R., Novak, J., Tomkins, A., 2010. Structure and Evolution of Online Social Networks. Link Mining: Models, Algorithms, and Applications. Springer, New York. 337–357. https://doi.org/10.1007/978-1-4419-6515-8_13 |
Kuykendall, L. D., 2015. Bradyrhizobium. Bergey's Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, New Jersey. 1–11 |
Lau, E., Nolan Iv, E., Dillard, Z. W., et al., 2015. High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA. Microorganisms, 3(2): 113–136. https://doi.org/10.3390/microorganisms3020113 |
León, C. A., Oliván, G., Larraín, J., et al., 2014. Bryophytes and Lichens in Peatlands and Tepualia Stipularis Swamp Forests of Isla Grande de Chiloé (Chile). Anales Del Jardín Botánico De Madrid, 71(1): e003. https://doi.org/10.3989/ajbm.2342 |
Levy-Booth, D. J., Prescott, C. E., Grayston, S. J., 2014. Microbial Functional Genes Involved in Nitrogen Fixation, Nitrification and Denitrification in Forest Ecosystems. Soil Biology and Biochemistry, 75: 11–25. https://doi.org/10.1016/j.soilbio.2014.03.021 |
Lima-Mendez, G., Faust, K., Henry, N., et al., 2015. Determinants of Community Structure in the Global Plankton Interactome. Science, 348(6237): e1262073. https://doi.org/10.1126/science.1262073 |
Louca, S., Parfrey, L. W., Doebeli, M., 2016. Decoupling Function and Taxonomy in the Global Ocean Microbiome. Science, 353(6305): 1272–1277. https://doi.org/10.1126/science.aaf4507 |
Ma, B., Wang, H. Z., Dsouza, M., et al., 2016. Geographic Patterns of Co-Occurrence Network Topological Features for Soil Microbiota at Continental Scale in Eastern China. The ISME Journal, 10(8): 1891–1901. https://doi.org/10.1038/ismej.2015.261 |
Magoč, T., Salzberg, S. L., 2011. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics, 27(21): 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 |
Maksimova, V., Klavina, L., Bikovens, O., et al., 2013. Structural Characterization and Chemical Classification of some Bryophytes Found in Latvia. Chemistry & Biodiversity, 10(7): 1284–1294. https://doi.org/10.1002/cbdv.201300014 |
Mellegård, H., Stalheim, T., Hormazabal, V., et al., 2009. Antibacterial Activity of Sphagnum Acid and other Phenolic Compounds Found in Sphagnum Papillosum Against Food-Borne Bacteria. Letters in Applied Microbiology, 49(1): 85–90. https://doi.org/10.1111/j.1472-765X.2009.02622.x |
Opelt, K., Berg, G., 2004. Diversity and Antagonistic Potential of Bacteria Associated with Bryophytes from Nutrient-Poor Habitats of the Baltic Sea Coast. Applied and Environmental Microbiology, 70(11): 6569–6579. https://doi.org/10.1128/AEM.70.11.6569-6579.2004 |
Opelt, K., Chobot, V., Hadacek, F., et al., 2007. Investigations of the Structure and Function of Bacterial Communities Associated with Sphagnum Mosses. Environmental Microbiology, 9(11): 2795–2809. https://doi.org/10.1111/j.1462-2920.2007.01391.x |
Putkinen, A., Larmola, T., Tuomivirta, T., et al., 2014. Peatland Succession Induces a Shift in the Community Composition of Sphagnum-Associated Active Methanotrophs. FEMS Microbiology Ecology, 88(3): 596–611. https://doi.org/10.1111/1574-6941.12327 |
Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., et al., 2005. Methanotrophic Symbionts Provide Carbon for Photosynthesis in Peat Bogs. Nature, 436(7054): 1153–1156. https://doi.org/10.1038/nature03802 |
Rauha, J. P., Remes, S., Heinonen, M., et al., 2000. Antimicrobial Effects of Finnish Plant Extracts Containing Flavonoids and other Phenolic Compounds. International Journal of Food Microbiology, 56(1): 3–12. https://doi.org/10.1016/S0168-1605(00)00218-X |
Segata, N., Izard, J., Waldron, L., et al., 2011. Metagenomic Biomarker Discovery and Explanation. Genome Biology, 12(6): R60. https://doi.org/10.1186/gb-2011-12-6-r60 |
Shannon, P., Markiel, A., Ozier, O., et al., 2003. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11): 2498–2504. https://doi.org/10.1101/gr.1239303 |
Shcherbakov, A. V., Bragina, A. V., Kuzmina, E. Y., et al., 2013. Endophytic Bacteria of Sphagnum Mosses as Promising Objects of Agricultural Microbiology. Microbiology, 82(3): 306–315. https://doi.org/10.1134/S0026261713030107 |
Silverman, J. D., Washburne, A. D., Mukherjee, S., et al., 2017. A Phylogenetic Transform Enhances Analysis of Compositional Microbiota Data. eLife, 6: e21887. https://doi.org/10.7554/eLife.21887 |
Spearing, A. M., 1972. Cation-Exchange Capacity and Galacturonic Acid Content of Several Species of Sphagnum in Sandy Ridge Bog, Central New York State. The Bryologist, 75(2): 154–158. https://doi.org/10.2307/3241443 |
Sun, H., Terhonen, E., Koskinen, K., et al., 2014. Bacterial Diversity and Community Structure along Different Peat Soils in Boreal Forest. Applied Soil Ecology, 74(2): 37–45. https://doi.org/10.1016/j.apsoil.2013.09.010 |
Tang, J. Y., Ma, J., Li, X. D., et al., 2016. Illumina Sequencing-Based Community Analysis of Bacteria Associated with Different Bryophytes Collected from Tibet, China. BMC Microbiology, 16(1): 276. https://doi.org/10.1186/s12866-016-0892-3 |
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., et al., 2009. Soil Organic Carbon Pools in the Northern Circumpolar Permafrost Region. Global Biogeochemical Cycles, 23(2): GB2023: 1–GB2023: 11. https://doi.org/10.1029/2008gb003327 |
Tian, W., Wang, H. M., Xiang, X., et al., 2019. Structural Variations of Bacterial Community Driven by Sphagnum Microhabitat Differentiation in a Subalpine Peatland. Frontiers in Microbiology, 10: 1661. https://doi.org/10.3389/fmicb.2019.01661 |
Trosvik, P., de Muinck, E. J., 2015. Ecology of Bacteria in the Human Gastrointestinal Tract: Identification of Keystone and Foundation Taxa. Microbiome, 3: 44. https://doi.org/10.1186/s40168-015-0107-4 |
Turetsky, M. R., Bond-Lamberty, B., Euskirchen, E., et al., 2012. The Resilience and Functional Role of Moss in Boreal and Arctic Ecosystems. The New Phytologist, 196(1): 49–67. https://doi.org/10.1111/j.1469-8137.2012.04254.x |
van Breemen, N., 1995. How Sphagnum Bogs down other Plants. Trends in Ecology & Evolution, 10(7): 270–275. https://doi.org/10.1016/0169-5347(95)90007-1 |
Vorob'ev, A. V., de Boer, W., Folman, L. B., et al., 2009. Methylovirgula Ligni Gen. Nov., Sp. Nov., an Obligately Acidophilic, Facultatively Methylotrophic Bacterium with a Highly Divergent mxaF Gene. International Journal of Systematic and Evolutionary Microbiology, 59(10): 2538–2545. https://doi.org/10.1099/ijs.0.010074-0 |
Wang, Y. Q., Sen, B., He, Y. D., et al., 2018. Spatiotemporal Distribution and Assemblages of Planktonic Fungi in the Coastal Waters of the Bohai Sea. Frontiers in Microbiology, 9: 584. https://doi.org/10.3389/fmicb.2018.00584 |
Xiang, X., Wang, H. M., Gong, L. F., et al., 2014. Vertical Variations and Associated Ecological Function of Bacterial Communities from Sphagnum to Underlying Sediments in Dajiuhu Peatland. Science China Earth Sciences, 57(5): 1013–1020. https://doi.org/10.1007/s11430-013-4752-9 |
Xiang, X., Wang, R. C., Wang, H. M., et al., 2017. Distribution of Bathyarchaeota Communities across Different Terrestrial Settings and Their Potential Ecological Functions. Scientific Reports, 7: 45028. https://doi.org/10.1038/srep45028 |
Xu, Y., 2018. The Diversity and Spacial Distribution of Microbial Community Related To Nitrogen Cycle in the Shennongjia Dajiuhu: [Dissertation]. China University of Geosciences, Wuhan |
Xu, Y., Wang, H. M., Xiang, X., et al., 2019. Vertical Variation of Nitrogen Fixers and Ammonia Oxidizers along a Sediment Profile in the Dajiuhu Peatland, Central China. Journal of Earth Science, 30(2): 397–406. https://doi.org/10.1007/s12583-018-0982-2 |
Yan, Q. Y., Li, J. J., Yu, Y. H., et al., 2016. Environmental Filtering Decreases with Fish Development for the Assembly of Gut Microbiota. Environmental Microbiology, 18(12): 4739–4754. https://doi.org/10.1111/1462-2920.13365 |
Yu, E. M., Xie, J., Wang, J. L., et al., 2016. Surface-Attached and Suspended Bacterial Community Structure as Affected by C/N Ratios: Relationship between Bacteria and Fish Production. World Journal of Microbiology and Biotechnology, 32(7): 116. https://doi.org/10.1007/s11274-016-2065-9 |
Zhang, P., Xie, X. J., Li, Q. H., et al., 2022. Microbial Community Structure and Its Response to Environment in Mangrove Sediments of Dongzhai Port. Earth Science, 47(3): 1122–1135. https://doi.org/10.3799/dqkx.2022.025 (in Chinese with English Abstract) |