Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 2
Apr 2021
Turn off MathJax
Article Contents
Frits Agterberg. Aspects of Regional and Worldwide Mineral Resource Prediction. Journal of Earth Science, 2021, 32(2): 279-287. doi: 10.1007/s12583-020-1397-4
Citation: Frits Agterberg. Aspects of Regional and Worldwide Mineral Resource Prediction. Journal of Earth Science, 2021, 32(2): 279-287. doi: 10.1007/s12583-020-1397-4

Aspects of Regional and Worldwide Mineral Resource Prediction

doi: 10.1007/s12583-020-1397-4
More Information
  • Corresponding author: Frits Agterberg, frits@rogers.com
  • Received Date: 22 Nov 2020
  • Accepted Date: 18 Dec 2020
  • Publish Date: 01 Apr 2021
  • The purpose of this contribution is to highlight four topics of regional and worldwide mineral resource prediction: (1) use of the jackknife for bias elimination in regional mineral potential assessments; (2) estimating total amounts of metal from mineral potential maps; (3) fractal/multifractal modeling of mineral deposit density data in permissive areas; and (4) worldwide and large-areas metal size-frequency distribution modeling. The techniques described in this paper remain tentative because they have not been widely researched and applied in mineral potential studies. Although most of the content of this paper has previously been published, several perspectives for further research are suggested.

     

  • loading
  • Agterberg, F. P., Chung, C. F., Fabbri, A. G., et al., 1972. Geomathematical Evaluation of Copper and Zinc Potential of the Abitibi Area, Ontario and Quebec. Geological Survey of Canada, 41-71 http://www.getcited.org/pub/101554608
    Agterberg, F. P., 1973. Probabilistic Models to Evaluate Regional Mineral Potential. In: Proc. Symposium on Mathematical Methods in the Geosciences, Přibram. 3-38
    Agterberg, F. P., 2013. Fractals and Spatial Statistics of Point Patterns. Journal of Earth Science, 24(1): 1-11. https://doi.org/10.1007/s12583-013-0305-6
    Agterberg, F. P., 2014. Geomathematics: Theoretical Foundations, Applications and Future Developments. Springer, Heidelberg. 553
    Agterberg, F. P., 2017a. Pareto-lognormal Modeling of Known and Unknown Metal Resources. Natural Resources Research, 26: 3-20. https://doi.org/10.1007/s11053-016-9305-4
    Agterberg, F. P., 2017b. Pareto-Lognormal Modeling of Known and Unknown Metal Resources. Ⅱ. Method Refinement and Further Applications. Natural Resources Research, 26(3): 265-283. https://doi.org/10.1007/s11053-017-9327-6
    Agterberg, F. P., 2018b. Statistical Modeling of Regional and Worldwide Size-Frequency Distributions of Metal Deposits. In: Daya Sagar, B. S., Cheng, Q. M., Agterberg, F. P., eds., Handbook of Mathematical Geosciences. Fifty Years of IAMG. Springer, Heidelberg. 505-527
    Agterberg, F. P., 2018c. New Method of Fitting Pareto-Lognormal Size-Frequency Distributions of Metal Deposits. Natural Resources Research 27(1): 265-283
    Agterberg, F. P., 2020. Multifractal Modeling of Worldwide and Canadian Metal Size-Frequency Distributions. Natural Resources Research, 29(1): 539-550. https://doi.org/10.1007/s11053-019-09460-1
    Agterberg, F. P., David, M., 1979. Statistical Exploration. In: Weiss, A., ed., Computer Methods for the 80's. Society of Mining Engineers, New York. 30-115
    Agterberg, F. P., 2018a. Can Multifractals be Used for Mineral Resource Appraisal?. Journal of Geochemical Exploration, 189: 54-63. https://doi.org/10.1016/j.gexplo.2017.06.022
    Agterberg, F. P., 1970. Autocorrelation Functions in Geology. In: Merriam, D. F., ed., Geostatistics, Plenum, New York. 113-142
    Bonham-Carter, G. F., 1994. Geographic Information Systems for geoscientists: Modelling with GIS. Pergamon, Oxford. 398
    Carlson, C. A., 1991. Spatial Distribution of Ore Deposits. Geology, 19(2): 111-114. https://doi.org/10.1130/0091-7613(1991)019<0111:sdood>2.3.co;2 doi: 10.1130/0091-7613(1991)019<0111:sdood>2.3.co;2
    Cheng, Q. M., 2007. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1/2): 314-324. https://doi.org/10.1016/j.oregeorev.2006.10.002
    Efron, B., 1982. The Jackknife, the Bootstrap and Other Resampling Plans: SIAM, Philadelphia. 93
    Kleiber, C., Kotz, S., 2003. Statistical Distributions in Economics and Actuarial Sciences. Wiley, Hoboken. 339
    Lydon, J. W., 2007. An Overview of Economic and Geological Contexts of Canada's Major Mineral Deposit Types. In: Goodfellow, M. D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces & Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, Montreal. 3-48
    Mandelbrot, B. B., 1975. Les Objects Fractals: Forme, Hazard et Dimension. Flammarion, Paris. 346
    Patiño Douce, A. E., 2016a. Metallic Mineral Resources in the Twenty-First Century. I. Historical Extraction Trends and Expected Demand. Natural Resources Research, 25(1): 71-90. https://doi.org/10.1007/s11053-015-9266-z
    Patiño Douce, A. E., 2016b. Metallic Mineral Resources in the Twenty First Century. Ⅱ. Constraints on Future Supply. Natural Resources Research, 25: 97-124. https://doi.org/10.1007/s11053-015-9265-0
    Patiño Douce, A. E., 2016c. Statistical Distribution Laws for Metallic Mineral Deposit Sizes. Natural Resources Research, 25: 365-387. https://doi.org/10.1007/s11053-016-9297-0
    Patiño Douce, A. E., 2017. Loss Distribution Model for Metal Discovery Probabilities. Natural Resources Research, 26: 241-263. https://doi.org/10.1007/s11053-016-9315-2
    Quandt, R. E., 1966. Old and New Methods of Estimation and the Pareto Distribution. Metrica, 10: 55-82 doi: 10.1007/BF02613419
    Quenouille, M., 1949. Approximate Tests of Correlation in Time Series. Journal of the Royal Statistical Society, Series B, 27: 395-449 http://www.ams.org/mathscinet-getitem?mr=30179
    Reed, W. J., 2003. The Pareto Law of Increases: An Explanation and an Extension. Physica A., 319: 579-597 doi: 10.1016/S0378-4371(02)01455-3
    Reed, W. J., Jorgensen, M., 2003. The Double Pareto-Lognormal Distribution. A New Parametric Model for Size Distributions. Computational Statistics: Theory and Methods, 33(8): 1733-1753 doi: 10.1081/STA-120037438
    Ripley, B. D., 1976. The Second-Order Analysis of Stationary Point Processes. Journal of Applied Probability, 13: 255-266 doi: 10.2307/3212829
    Singer, D., Menzie, W. D., 2010. Quantitative Mineral Resource Assessments: An Integrated Approach. Oxford University Press, New York
    Tukey, J. W., 1970. Some Further Inputs. In: Merriam, D. F., ed., Geostatistics. Plenum, New York. 163-174
    USGS, 2015. Mineral Commodity Summaries 2015. U.S. Geological Survey, Reston
    Zhao, P., Hu, W., Li, Z., 1983. Statistical Prediction of Mineral Deposits. Geological Publishing House, Beijing (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(3416) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return