Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 2
Apr 2021
Turn off MathJax
Article Contents
Emmanuel John M. Carranza. Fuzzy Modeling of Surficial Uranium Prospectivity in British Columbia (Canada) with a Weighted Fuzzy Algebraic Sum Operator. Journal of Earth Science, 2021, 32(2): 293-309. doi: 10.1007/s12583-021-1403-5
Citation: Emmanuel John M. Carranza. Fuzzy Modeling of Surficial Uranium Prospectivity in British Columbia (Canada) with a Weighted Fuzzy Algebraic Sum Operator. Journal of Earth Science, 2021, 32(2): 293-309. doi: 10.1007/s12583-021-1403-5

Fuzzy Modeling of Surficial Uranium Prospectivity in British Columbia (Canada) with a Weighted Fuzzy Algebraic Sum Operator

doi: 10.1007/s12583-021-1403-5
More Information
  • Corresponding author: Emmanuel John M. Carranza, ejmcarranza@gmail.com
  • Received Date: 22 Nov 2020
  • Accepted Date: 22 Dec 2020
  • Publish Date: 01 Apr 2021
  • This paper demonstrates knowledge-guided fuzzy logic modeling of regional-scale surficial uranium (U) prospectivity in British Columbia (Canada). The deposits/occurrences of surficial U in this region vary from those in Western Australia and Namibia; thus, requiring innovative and carefully-thought techniques of spatial evidence generation and integration. As novelty, this papers introduces a new weighted fuzzy algebraic sum operator to combine certain spatial evidence layers. The analysis trialed several layers of spatial evidence based on conceptual mineral system model of surficial U in British Columbia (Canada) as well as tested various models of evidence integration. Non-linear weighted functions of (a) spatial closeness to U-enriched felsic igneous rocks was employed as U-source spatial evidence, (b) spatial closeness to paleochannels as fluid pathways spatial evidence, and (c) surface water U content as chemical trap spatial evidence. The best models of prospectivity created by integrating the layers of spatial evidence for U-source, pathways and traps predicted at least 85% of the known surficial U deposits/occurrences in > 10% of the study region with the highest prospectivity fuzzy scores. The results of analyses demonstrate that, employing the known deposits/occurrences of surficial U for scrutinizing the spatial evidence layers and the final models of prospectivity can pinpoint the most suitable critical processes and models of data integration to reduce bias in the analysis of mineral prospectivity.

     

  • loading
  • Agterberg, F. P., Bonham-Carter, G. F., 2005. Measuring the Performance of Mineral-Potential Maps. Natural Resources Research, 14(1): 1-17. https://doi.org/10.1007/s11053-005-4674-0
    An, P., Moon, W. M., Rencz, A., 1991. Application of Fuzzy Set Theory for Integration of Geological, Geophysical and Remote Sensing Data. Canadian Journal of Exploration Geophysics, 27: 1-11
    Bardossy, G., Fodor, J., 2003. Geological Reasoning and the Problem of Uncertainty. In: Cubitt, J., Whalley, J., Henley, S., eds., Modeling Geohazards: IAMG2003 Proceedings, Portsmouth UK. Portsmouth University, UK, September 7-12, 2003
    Bonham-Carter, G. F., 1994. Geographic Information Systems for Geoscientists, Modelling with GIS. Oxford, Pergamon Press, Ontario. 398
    Bonnetti, C., Cuney, M., Bourlange, S., et al., 2017. Primary Uranium Sources for Sedimentary-Hosted Uranium Deposits in NE China: Insight from Basement Igneous Rocks of the Erlian Basin. Mineralium Deposita, 52(3): 297-315. https://doi.org/10.1007/s00126-016-0661-0
    Boyle, D. R., 1982. The Formation of Basal-Type Uranium Deposits in South Central British Columbia. Economic Geology, 77(5): 1176-1209. https://doi.org/10.2113/gsecongeo.77.5.1176
    Boyle, D. R., 1984. The Genesis of Surficial Uranium Deposit. IAEA-TECDOC-322, Report of the Working Group on Uranium Geology Organized by the International Atomic Energy Agency (IAEA), Vienna. 45
    Cameron, E., 1984. The Yeelirrie Calcrete Uranium Deposit, Western Australia, IAEA-TECDOC-322, IAEA, Vienna. 157-164
    Carlisle, D., 1984. Surficial Uranium Occurrences in Relation to Climate and Physical Setting, IAEA-TECDOC-322, IAEA, Vienna. 25-35
    Carranza, E. J. M., 2010. Improved Wildcat Modelling of Mineral Prospectivity. Resource Geology, 60(2): 129-149. https://doi.org/10.1111/j.1751-3928.2010.00121.x
    Carranza, E. J. M., 2008. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Exploration and Environmental Geochemistry Vol. 11. Elsevier, Amsterdam. 351
    Carranza, E. J. M., Hale, M., 2001. Geologically Constrained Fuzzy Mapping of Gold Mineralization Potential, Baguio District, Philippines. Natural Resources Research, 10: 125-136 doi: 10.1023/A:1011500826411
    Chabiron, A., Cuney, M., Poty, B., 2003. Possible Uranium Sources for the Largest Uranium District Associated with Volcanism: The Streltsovka Caldera (Transbaikalia, Russia). Mineralium Deposita, 38(2): 127-140. https://doi.org/10.1007/s00126-002-0289-0
    Coyan, J. A., Zientek, M. L., Mihalasky, M. J., 2017. Spatiotemporal Analysis of Changes in Lode Mining Claims around the McDermitt Caldera, Northern Nevada and Southern Oregon. Natural Resources Research, 26(3): 319-337. https://doi.org/10.1007/s11053-017-9324-9
    Cui, Y., Katay, F., Nelson, J. L., et al., 2013. British Columbia Digital Geology, BCGS Open File 2013-04, British Columbia Geological Survey (http://www.empr.gov.bc.ca/mining/geoscience/publicationscatalogue/openfiles/2013/pages/2013-4.aspx)
    Cui, Y., Miller, D., Schiarizza, P., et al., 2017. British Columbia Digital Geology. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Open File 2017-8, Victoria, B.C.
    Culbert, R. R., Leighton, D. G., 1988. Young Uranium. Ore Geology Reviews, 3(1/2/3): 313-330. https://doi.org/10.1016/0169-1368(88)90024-8
    Culbert, R. R., Boyle, D. R., Levinson, A. A., 1984. Surficial Uranium Deposits in Canada, In: Surficial Uranium Deposits, IAEA-TECDOC-322, IAEA, Vienna. 179-191
    Cunningham, C. G., Ludwig, K. R., Naeser, C. W., et al., 1982. Geochronology of Hydrothermal Uranium Deposits and Associated Igneous Rocks in the Eastern Source Area of the Mount Belknap Volcanics, Marysvale, Utah. Economic Geology, 77(2): 453-463. https://doi.org/10.2113/gsecongeo.77.2.453
    IAEA, 2000. Methods of Exploitation of Different Types of Uranium Deposits IAEA-TECDOC-1174, International Atomic Energy Agency (IAEA), Vienna. 75
    Joly, A., Porwal, A., McCuaig, T. C., et al., 2015. Mineral Systems Approach Applied to GIS-Based 2D-Prospectivity Modelling of Geological Regions: Insights from Western Australia. Ore Geology Reviews, 71: 673-702. https://doi.org/10.1016/j.oregeorev.2015.06.007
    Kazanskiy, V. I., Laverov, N. P., Tugarinov, A. I., 1977. Sources of Ore Material in Endogenic Uranium Deposits. International Geology Review, 19(3): 283-294. https://doi.org/10.1080/00206817709471023
    Khoury, H. N., 2014. Geochemistry of Surficial Uranium Deposits from Central Jordan. Jordan Journal of Earth and Environmental Sciences, 6: 11-22 http://www.sciencedirect.com/science/article/pii/S0883292714000274
    Kreuzer, O. P., Markwitz, V., Porwal, A. K., et al., 2010. A Continent-Wide Study of Australia's Uranium Potential. Ore Geology Reviews, 38(4): 334-366. https://doi.org/10.1016/j.oregeorev.2010.08.003
    Kreuzer, O. P., Miller, A. V. M., Peters, K. J., et al., 2015. Comparing Prospectivity Modelling Results and Past Exploration Data: A Case Study of Porphyry Cu-Au Mineral Systems in the Macquarie Arc, Lachlan Fold Belt, New South Wales. Ore Geology Reviews, 71: 516-544. https://doi.org/10.1016/j.oregeorev.2014.09.001
    Lett, R., 2011. Regional Geochemical Survey Database 2011, [2011-07-22]. https://www2.gov.bc.ca/gov/content/industry/mineral-exploration-mining/british-columbia-geological-survey/publications/geofiles#2011
    Lindsey, D. A., 1982. Tertiary Volcanic Rocks and Uranium in the Thomas Range and Northern Drum Mountains, Juab County, Utah. U.S. Geological Survey Professional Paper No. 1221. United States Government Printing Office, Washington D.C. https://doi.org/10.3133/pp1221
    Lisitsin, V. A., González-Álvarez, I., Porwal, A., 2013. Regional Prospectivity Analysis for Hydrothermal-Remobilised Nickel Mineral Systems in Western Victoria, Australia. Ore Geology Reviews, 52: 100-112. https://doi.org/10.1016/j.oregeorev.2012.04.001
    McCuaig, T. C., Beresford, S., Hronsky, J., 2010. Translating the Mineral Systems Approach into an Effective Exploration Targeting System. Ore Geology Reviews, 38(3): 128-138. https://doi.org/10.1016/j.oregeorev.2010.05.008
    Misra, A., Pande, D., Kumar, K. R., et al., 2011. Calcrete-Hosted Surficial Uranium Occurrence in Playa-Lake Environment at Lachari, Nagaur District, Rajasthan, India. Current Science, 101: 84-88 http://www.researchgate.net/publication/277667571_Calcrete-hosted_surficial_uranium_occurrence_in_playa-lake_environment_at_Lachhri_Nagaur_District_Rajasthan_India
    Nykänen, V., Groves, D. I., Ojala, V. J., et al., 2008. Reconnaissance-Scale Conceptual Fuzzy-Logic Prospectivity Modelling for Iron Oxide Copper-Gold Deposits in the Northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55(1): 25-38. https://doi.org/10.1080/08120090701581372
    O'Callaghan, J. F., Mark, D. M., 1984. The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics, and Image Processing, 28(3): 323-344. https://doi.org/10.1016/s0734-189x(84)80011-0
    Occhipinti, S. A., Metelka, V., Lindsay, M. D., et al., 2016. Multicommodity Mineral Systems Analysis Highlighting Mineral Prospectivity in the Halls Creek Orogen. Ore Geology Reviews, 72: 86-113. https://doi.org/10.1016/j.oregeorev.2015.07.003
    Page, R. W., 1983. Chronology of Magmatism, Skarn Formation, and Uranium Mineralization, Mary Kathleen, Queensland, Australia. Economic Geology, 78(5): 838-853. https://doi.org/10.2113/gsecongeo.78.5.838
    Porwal, A. K., Kreuzer, O. P., 2010. Introduction to the Special Issue: Mineral Prospectivity Analysis and Quantitative Resource Estimation. Ore Geology Reviews, 38(3): 121-127. https://doi.org/10.1016/j.oregeorev.2010.06.002
    Porwal, A., Carranza, E. J. M., Hale, M., 2006. A Hybrid Fuzzy Weights-of-Evidence Model for Mineral Potential Mapping. Natural Resources Research, 15(1): 1-14. https://doi.org/10.1007/s11053-006-9012-7
    Porwal, A., Carranza, E. J. M., Hale, M., 2003. Knowledge-Driven and Data-Driven Fuzzy Models for Predictive Mineral Potential Mapping. Natural Resources Research, 12: 1-25 doi: 10.1023/A:1022693220894
    Porwal, A., Das, R. D., Chaudhary, B., et al., 2015. Fuzzy Inference Systems for Prospectivity Modeling of Mineral Systems and a Case-Study for Prospectivity Mapping of Surficial Uranium in Yeelirrie Area, Western Australia. Ore Geology Reviews, 71: 839-852. https://doi.org/10.1016/j.oregeorev.2014.10.016
    Sanusi, S. O., Amigun, J. O., 2020. Logistic-Based Translation of Orogenic Gold Forming Processes into Mappable Exploration Criteria for Fuzzy Logic Mineral Exploration Targeting in the Kushaka Schist Belt, North-Central Nigeria. Natural Resources Research, 29(6): 3505-3526. https://doi.org/10.1007/s11053-020-09689-1
    Stamoulis, V., 2006. ASTER Night-Time Thermal Infrared Data: Interpreting Subsurface Features from High Resolution Data. MESA Journal, 43: 36-39 http://www.pir.sa.gov.au/__data/assets/pdf_file/0017/41606/mj43_aster_subsurface.pdf
    Thakur, S., Chudasama, B., Porwal, A., González-Álvarez, I., 2016. Sub-Surface Paleochannel Detection in DeGrussa Area, Western Australia, Using Thermal Infrared Remote Sensing, Proceedings SPIE 9877, Land Surface and Cryosphere Remote Sensing Ⅲ, 98772C (May 5, 2016), https://doi.org/10.1117/12.2223626.
    Thole, U., Zimmermann, H. J., Zysno, P., 1979. On the Suitability of Minimum and Product Operators for the Intersection of Fuzzy Sets. Fuzzy Sets and Systems, 2(2): 167-180. https://doi.org/10.1016/0165-0114(79)90023-x
    Tixier, K., Beckie, R., 2001. Uranium Depositional Controls at the Prairie Flats Surficial Uranium Deposit, Summerland, British Columbia. Environmental Geology, 40(10): 1242-1251. https://doi.org/10.1007/s002540100303
    Yousefi, M., Carranza, E. J. M., 2015. Fuzzification of Continuous-Value Spatial Evidence for Mineral Prospectivity Mapping. Computers & Geosciences, 74: 97-109. https://doi.org/10.1016/j.cageo.2014.10.014
    Zadeh, L. A., 1965. Fuzzy Sets. Information and Control, 8(3): 338-353. https://doi.org/10.1016/s0019-9958(65)90241-x
    Zadeh, L. A., 1973. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(1): 28-44. https://doi.org/10.1109/tsmc.1973.5408575
    Zadeh, L. A., 1983. The Role of Fuzzy Logic in the Management of Uncertainty in Expert Systems. Fuzzy Sets and Systems, 11(1/2/3): 199-227. https://doi.org/10.1016/s0165-0114(83)80081-5
    Zielinski, R. A., 1978. Uranium Abundances and Distribution in Associated Glassy and Crystalline Rhyolites of the Western United States. Geological Society of America Bulletin, 89(3): 409-414. https://doi.org/10.1130/0016-7606(1978)89<409:uaadia>2.0.co;2 doi: 10.1130/0016-7606(1978)89<409:uaadia>2.0.co;2
    Zielinski, R. A., 1983. Tuffaceous Sediments as Source Rocks for Uranium: A Case Study of the White River Formation, Wyoming. Journal of Geochemical Exploration, 18(3): 285-306. https://doi.org/10.1016/0375-6742(83)90074-2
    Zimmerman, H. -J., 1991. Fuzzy Set Theory——And Its Applications, Kluwer Academic Publisher, Dordrecht
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(6)

    Article Metrics

    Article views(3074) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return