Alina, V., Zita, P., Ákos, T., 2013. The Influence of Freeze-Thaw and Heat on the Strength of Ten Different Rock Types. Geophysical Research Abstracts, 15: 13930 http://meetingorganizer.copernicus.org/EGU2013/EGU2013-13930.pdf |
Chen, S. L., Feng, X. T., Li, S. J., 2003. Effects of Chemical Erosion on Uniaxial Compressive Strength and Meso-Fracturing Behaviors of Rock. Chinese Journal of Rock Mechanics and Engineering, 22(4): 547-551 (in Chinese with English Abstract) |
Chen, S. L., Feng, X. T., Li, S. J., 2002. The Effects of Chemical Erosion on Mechanical Behaviors of Xiaolangdi Sandstone. Rock and Soil Mechanics, 23(3): 284-287, 296 (in Chinese with English Abstract) |
Chen, T. C., Yeung, M. R., Mori, N., 2004. Effect of Water Saturation on Deterioration of Welded Tuff Due to Freeze-Thaw Action. Cold Regions Science and Technology, 38(2/3): 127-136. https://doi.org/10.1016/j.coldregions.2003.10.001 |
Ciantia, M. O., Castellanza, R., Prisco, C., 2015. Experimental Study on the Water-Induced Weakening of Calcarenites. Rock Mechanics and Rock Engineering, 48(2): 441-461. https://doi.org/10.1007/s00603-014-0603-z |
Cui, Q., Feng, X. T., Xue, Q., et al., 2008. Mechanism Study of Porosity Structure Change of Sandstone under Chemical Corrosion. Chinese Journal of Rock Mechanics and Engineering, 27(6): 1209-1216 (in Chinese with English Abstract) |
Feng, Q. W., 2012. The Late Paleozoic Geodynamical Environment of Central Asia: Evidence from Dark Dykes: [Dissertation]. Chinese Academy of Geological Sciences, Beijing (in Chinese with English Abstract) |
Feng, X. T., Seto, M., 1999. A New Method of Modelling the Rock Micro-Fracturing Process in Double-Torsion Experiments Using Neural Networks. International Journal for Numerical and Analytical Methods in Geomechanics, 23(9): 905-923. https://doi.org/10.1002/(sici)1096-9853(19990810)23:9905:aid-nag11>3.0.co;2-f doi: 10.1002/(sici)1096-9853(19990810)23:9905:aid-nag11>3.0.co;2-f |
Feng, X. T., Seto, M., 1998. Neural Network Dynamic Modeling of Acoustic Emission Sequences in Rock. Safety Engineering, 37(3): 157-163 |
Feucht, L. J., Logan, J. M., 1990. Effects of Chemically Active Solutions on Shearing Behavior of a Sandstone. Tectonophysics, 175(1/2/3): 159-176. https://doi.org/10.1016/0040-1951(90)90136-v |
Fleer, V. N., 1982. The Dissolution Kinetics of Anorthite (CaAl2Si2O8) and Synthetic Strontium Feldspar (SrAl2Si2O8) in Aqueous Solutions at Temperatures below 100℃: With Applications to the Geological Disposal of Radioactive Nuclear Wastes: [Dissertation]. Pennsylvania State University, University Park |
Ghobadi, M. H., Babazadeh, R., 2015. Experimental Studies on the Effects of Cyclic Freezing-Thawing, Salt Crystallization, and Thermal Shock on the Physical and Mechanical Characteristics of Selected Sandstones. Rock Mechanics and Rock Engineering, 48(3): 1001-1016. https://doi.org/10.1007/s00603-014-0609-6 |
Han, T. L., Shi, J. P., Cao, X. S., 2016. Fracturing and Damage to Sandstone under Coupling Effects of Chemical Corrosion and Freeze-Thaw Cycles. Rock Mechanics and Rock Engineering, 49(11): 4245-4255. https://doi.org/10.1007/s00603-016-1028-7 |
Hori, M., Morihiro, H., 1998. Micromechanical Analysis on Deterioration due to Freezing and Thawing in Porous Brittle Materials. International Journal of Engineering Science, 36(4): 511-522. https://doi.org/10.1016/S0020-7225(97)00080-3 |
Huang, S. B., Liu, Q. S., Cheng, A. P., et al., 2018. A Statistical Damage Constitutive Model under Freeze-Thaw and Loading for Rock and Its Engineering Application. Cold Regions Science and Technology, 145: 142-150. https://doi.org/10.1016/j.coldregions.2017.10.015 |
Huo, R. K., Yang, J. Q., Yao, Z. F., et al., 2007. Study of Physical and Mechanical Characteristics of Sandstone Subjected to Hydrochloric Acid Attack. Rock and Soil Mechanics, 28(S1): 45-48 (in Chinese with English Abstract) http://www.researchgate.net/publication/286320028_Study_of_physical_and_mechanical_characteristics_of_sandstone_subjected_to_hydrochloric_acid_attack |
Hutchinson, A. J., Johnson, J. B., Thompson, G. E., et al., 1993. Stone Degradation Due to Wet Deposition of Pollutants. Corrosion Science, 34(11): 1881-1898. https://doi.org/10.1016/0010-938x(93)90025-c |
Jia, H. L., Xiang, W., Krautblatter, M., 2015. Quantifying Rock Fatigue and Decreasing Compressive and Tensile Strength after Repeated Freeze-Thaw Cycles. Permafrost and Periglacial Processes, 26(4): 368-377. https://doi.org/10.1002/ppp.1857 |
Jiang, L. H., Chen, Y. L., Liu, M. L., 2011. Experimental Study of Mechanical Properties of Granite under High/Low Temperature Freeze-Thaw Cycles. Rock and Soil Mechanics, 32(S2): 319-323 (in Chinese with English Abstract) http://www.cqvip.com/QK/94551X/2011S2/1003565680.html |
Lasaga, A. C., 1984. Chemical Kinetics of Water-Rock Interactions. Journal of Geophysical Research: Solid Earth, 89(B6): 4009-4025. https://doi.org/10.1029/jb089ib06p04009 |
Li, Z., Chen, Y. L., Wang, S. R., et al., 2019. Experimental Research on Mechanical Properties of Sandstone after Chemical Corrosion and High Temperature Exposure. Journal of University of Shanghai for Science and Technology, 41: 244-252 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_journal-university-shanghai-science-technology_thesis/0201272733308.html |
Meng, Y. K., Xiong, F. H., Yang, J. S., et al., 2019. Tectonic Implications and Petrogenesis of the Various Types of Magmatic Rocks from the Zedang Area in Southern Tibet. Journal of Earth Science, 30(6): 1125-1143. https://doi.org/10.1007/s12583-019-1248-3 |
Ni, J., Chen, Y. L., Wang, P., et al., 2017. Effect of Chemical Erosion and Freeze-Thaw Cycling on the Physical and Mechanical Characteristics of Granites. Bulletin of Engineering Geology and the Environment, 76(1): 169-179. https://doi.org/10.1007/s10064-016-0891-5 |
Özbek, A., 2014. Investigation of the Effects of Wetting-Drying and Freezing-Thawing Cycles on some Physical and Mechanical Properties of Selected Ignimbrites. Bulletin of Engineering Geology and the Environment, 73(2): 595-609. https://doi.org/10.1007/s10064-013-0519-y |
Ozcelik, Y., Careddu, N., Yilmazkaya, E., 2012. The Effects of Freeze-Thaw Cycles on the Gloss Values of Polished Stone Surfaces. Cold Regions Science and Technology, 82: 49-55. https://doi.org/10.1016/j.coldregions.2012.05.007 |
Rimstidt, J. D., Barnes, H. L., 1980. The Kinetics of Silica-Water Reactions. Geochimica et Cosmochimica Acta, 44(11): 1683-1699. https://doi.org/10.1016/0016-7037(80)90220-3 |
Tan, Z. Y., Liu, W. J., Bi, L. P., et al., 2001. Experimental Simulation of Rock Strength Damage and Its Environmental Effect. Chin. Min. Mag. , 10(4): 50-53 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA200104017.htm |
Tan, Z. Y., Chai, H. B., Liu, W. J., et al., 2005. Rock Strength Deterioration under Acidified Conditions and Its Static Accelerated Simulation. Chinese Journal of Rock Mechanics and Engineering, 24(14): 2439-2448 (in Chinese with English Abstract) |
Ulusay, R., 2015. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-07713-0 |
Wang, P., Xu, J. Y., Liu, S., et al., 2016. Static and Dynamic Mechanical Properties of Sedimentary Rock after Freeze-Thaw or Thermal Shock Weathering. Engineering Geology, 210:148-157. https://doi.org/10.1016/j.enggeo.2016.06.017 |
Wang, S. J., Li, X. P., Duan, W. Y., et al., 2019. Record of Early-Stage Rodingitization from the Purang Ophiolite Complex, Western Tibet. Journal of Earth Science, 30(6): 1108-1124. https://doi.org/10.1007/s12583-019-1244-7 |
Xu, C., Chen, Y. L., Wang, S. R., et al., 2019. Mechanical Properties of Tonalite Subjected to Combined Effects of Chemical Corrosion and Freeze-Thaw Cycles. Applied Sciences, 9(18): 3890. https://doi.org/10.3390/app9183890 |