Citation: | Yungui Liu, Xiang Li, Haipeng Song, Jingui Xu, Dongzhou Zhang, Junfeng Zhang, Xiang Wu. Thermal Equation of State of Natural F-Rich Topaz up to 29 GPa and 750 K. Journal of Earth Science, 2023, 34(3): 758-766. doi: 10.1007/s12583-021-1418-y |
Subducting oceanic sediments and crusts, originating from the Earth's surface and descending into its deep interior, are important carriers of volatiles. The volatiles have significant effects on materials cycling and the dynamic evolution of the subduction zones. A simplified Al2O3-SiO2-H2O (ASH) ternary system models the relationship of minerals in the hydrated and alumina-silica rich sedimentary layer. Topaz Al2SiO4(F, OH)2 is an important mineral in the ASH system and comprises two volatiles: H2O and fluorine (F). In this study, the thermoelasticity of a natural F-rich topaz was investigated using synchrotron-based single-crystal X-ray diffraction combined with diamond anvil cells up to 29.1 GPa and 750 K. The pressure-volume-temperature data were fitted to a third-order Birch-Murnaghan Equation of state with
Angel, R. J., 2000. Equations of State. Reviews in Mineralogy and Geochemistry, 41(1): 35–59. https://doi.org/10.2138/rmg.2000.41.2 |
Angel, R. J., Mosenfelder, J. L., Shaw, C. S. J., 2001. Anomalous Compression and Equation of State of Coesite. Physics of the Earth and Planetary Interiors, 124(1/2): 71–79. https://doi.org/10.1016/s0031-9201(01)00184-4 |
Angel, R. J., Alvaro, M., Gonzalez-Platas, J., 2014. EosFit7c and a Fortran Module (Library) for Equation of State Calculations. Zeitschrift Für Kristallographie-Crystalline Materials, 229(5): 405–419. https://doi.org/10.1515/zkri-2013-1711 |
Balcone-Boissard, H., Villemant, B., Boudon, G., 2010. Behavior of Halogens during the Degassing of Felsic Magmas. Geochemistry Geophysics Geosystems, 11(9): Q09005. https://doi.org/10.1029/2010gc003028 |
Barnes, J. D., Manning, C. E., Scambelluri, M., et al., 2018. The Behavior of Halogens during Subduction-Zone Processes. Springer Geochemistry. Springer International Publishing, Cham. 545–590. |
Beyer, C., Klemme, S., Grützner, T., et al., 2016. Fluorine Partitioning between Eclogitic Garnet, Clinopyroxene, and Melt at Upper Mantle Conditions. Chemical Geology, 437: 88–97. https://doi.org/10.1016/j.chemgeo.2016.05.032 |
Boehler, R., 2006. New Diamond Cell for Single-Crystal X-Ray Diffraction. Review of Scientific Instruments, 77(11): 115103. https://doi.org/10.1063/1.2372734 |
Bucher, K., Stober, I., 2019. Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides. Journal of Earth Science, 30(6): 1084–1094. https://doi.org/10.1007/s12583-019-1257-2 |
Bureau, H., Keppler, H., Métrich, N., 2000. Volcanic Degassing of Bromine and Iodine: Experimental Fluid/Melt Partitioning Data and Applications to Stratospheric Chemistry. Earth and Planetary Science Letters, 183(1/2): 51–60. https://doi.org/10.1016/s0012-821x(00)00258-2 |
Chen, J., Lager, G. A., 2005. High-Pressure Infrared and Powder X-Ray Study of Topaz-OH: Comparison with Hydrous Magnesium Silicate (Humite). COMPRES 4th Annual Meeting. Jun. 16–19, 2005, New Paltz |
Chen, J. R., Lager, G. A., Kunz, M., et al., 2005. A Rietveld Refinement Using Neutron Powder Diffraction Data of a Fully Deuterated Topaz, Al2SiO4(OD)2. Acta Crystallographica Section E Structure Reports Online, 61(11): 253–255. https://doi.org/10.1107/s1600536805034811 |
Churakov, S. V., Wunder, B., 2004. Ab-Initio Calculations of the Proton Location in Topaz-OH, Al2SiO4(OH)2. Physics and Chemistry of Minerals, 31(3): 131–141. https://doi.org/10.1007/s00269-003-0365-8 |
Duan, Y., Sun, N., Wang, S., et al., 2018. Phase Stability and Thermal Equation of State of δ-AlOOH: Implication for Water Transportation to the Deep Lower Mantle. Earth and Planetary Science Letters, 494: 92–98. https://doi.org/10.1016/j.epsl.2018.05.003 |
Dubrovinsky, L. S., Saxena, S. K., Lazor, P., 1998. High-Pressure and High-Temperature in situ X-Ray Diffraction Study of Iron and Corundum to 68 GPa Using an Internally Heated Diamond Anvil Cell. Physics and Chemistry of Minerals, 25(6): 434–441. https://doi.org/10.1007/s002690050133 |
Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 |
Faccenda, M., 2014. Water in the Slab: A Trilogy. Tectonophysics, 614: 1–30. https://doi.org/10.1016/j.tecto.2013.12.020 |
Fan, D. W., Zhou, W. G., Wei, S. Y., et al., 2010. A Simple External Resistance Heating Diamond Anvil Cell and Its Application for Synchrotron Radiation X-Ray Diffraction. Review of Scientific Instruments, 81(5): 053903. https://doi.org/10.1063/1.3430069 |
Fei, Y. W., 1995. Thermal Expansion. In: Ahrens, T. J., ed., Mineral Physics and Crystallography, A Handbook of Physical Constants. Am Geophys Union, Washington, DC |
Fei, Y. W., Ricolleau, A., Frank, M., et al., 2007. Toward an Internally Consistent Pressure Scale. Proceedings of the National Academy of Sciences of the United States of America, 104(22): 9182–9186. https://doi.org/10.1073/pnas.0609013104 |
Friedrich, A., Lager, G. A., Ulmer, P., et al., 2002. High-Pressure Single-Crystal X-Ray and Powder Neutron Study of F, OH/OD-Chondrodite: Compressibility, Structure, and Hydrogen Bonding. American Mineralogist, 87(7): 931–939. https://doi.org/10.2138/am-2002-0716 |
Galvez, M. E., Connolly, J. A. D., Manning, C. E., 2016. Implications for Metal and Volatile Cycles from the pH of Subduction Zone Fluids. Nature, 539(7629): 420–424. https://doi.org/10.1038/nature20103 |
Gatta, G. D., Nestola, F., Ballaran, T. B., 2006. Elastic Behaviour and Structural Evolution of Topaz at High Pressure. Physics and Chemistry of Minerals, 33(4): 235–242. https://doi.org/10.1007/s00269-006-0075-0 |
Gatta, G. D., Morgenroth, W., Dera, P., et al., 2014. Elastic Behavior and Pressure-Induced Structure Evolution of Topaz up to 45 GPa. Physics and Chemistry of Minerals, 41(8): 569–577. https://doi.org/10.1007/s00269-014-0670-4 |
Gonzalez-Platas, J., Alvaro, M., Nestola, F., et al., 2016. EosFit7-GUI: A New Graphical User Interface for Equation of State Calculations, Analyses and Teaching. Journal of Applied Crystallography, 49(4): 1377–1382. https://doi.org/10.1107/s1600576716008050 |
Grevel, K. D., Burchard, M., Faßhauer, D. W., et al., 2000a. Pressure-Volume-Temperature Behavior of Diaspore and Corundum: An in situ X-Ray Diffraction Study Comparing Different Pressure Media. Journal of Geophysical Research: Solid Earth, 105(B12): 27877–27887. https://doi.org/10.1029/2000jb900323 |
Grevel, K. D., Fasshauer, D. W., Rohling, S., 2000b. Bulk Moduli and P-V-T Data of the High-Pressure Phases Topaz-OH, Al2SiO4(OH)2, and Phase Pi, Al3Si2O7(OH)3. In: EMPG Ⅷ, Eighth International Symposium on Experimental Mineralogy, Petrology and Geochemistry. Journal of Conference Abstracts, 5: 1 |
Grützner, T., Klemme, S., Rohrbach, A., et al., 2018. The Effect of Fluorine on the Stability of Wadsleyite: Implications for the Nature and Depths of the Transition Zone in the Earth's Mantle. Earth and Planetary Science Letters, 482: 236–244. https://doi.org/10.1016/j.epsl.2017.11.011 |
Hartwig, J., Galkin, V., 2021. Heat Capacity, Thermal Expansion, and Elastic Parameters of Pyrope. Journal of Thermal Analysis and Calorimetry, 144(1): 71–79. https://doi.org/10.1007/s10973-020-09396-2 |
He, Q., Liu, X., Li, B. S., et al., 2016. Thermal Equation of State of a Natural Kyanite up to 8.55 GPa and 1 273 K. Matter and Radiation at Extremes, 1(5): 269–276. https://doi.org/10.1016/j.mre.2016.07.003 |
Holland, T. J. B., Redfern, S. A. T., 1997. Unit Cell Refinement from Powder Diffraction Data: The Use of Regression Diagnostics. Mineralogical Magazine, 61(404): 65–77. https://doi.org/10.1180/minmag.1997.061.404.07 |
Huang, S. X., Qin, S., Wu, X., 2019. Elasticity and Anisotropy of the Pyrite-Type FeO2H-FeO2 System in Earth's Lowermost Mantle. Journal of Earth Science, 30(6): 1293–1301. https://doi.org/10.1007/s12583-018-0836-y |
Hughes, L., Pawley, A., 2019. Fluorine Partitioning between Humite-Group Minerals and Aqueous Fluids: Implications for Volatile Storage in the Upper Mantle. Contributions to Mineralogy and Petrology, 174(9): 78. https://doi.org/10.1007/s00410-019-1614-2 |
Joachim, B., Pawley, A., Lyon, I. C., et al., 2015. Experimental Partitioning of F and Cl between Olivine, Orthopyroxene and Silicate Melt at Earth's Mantle Conditions. Chemical Geology, 416: 65–78. https://doi.org/10.1016/j.chemgeo.2015.08.012 |
Kantor, I., Prakapenka, V., Kantor, A., et al., 2012. BX90: A New Diamond Anvil Cell Design for X-Ray Diffraction and Optical Measurements. Review of Scientific Instruments, 83(12): 125102. https://doi.org/10.1063/1.4768541 |
Komatsu, K., Kuribayashi, T., Kudoh, Y., 2003. Effect of Temperature and Pressure on the Crystal Structure of Topaz, Al2SiO4(OH, F)2. Journal of Mineralogical and Petrological Sciences, 98(5): 167–180. https://doi.org/10.2465/jmps.98.167 |
Komatsu, K., Kagi, H., Marshall, W. G., et al., 2008. Pressure Dependence of the Hydrogen-Bond Geometry in Topaz-OD from Neutron Powder Diffraction. American Mineralogist, 93(1): 217–227. https://doi.org/10.2138/am.2008.2483 |
Kroll, H., Kirfel, A., Heinemann, R., et al., 2012. Volume Thermal Expansion and Related Thermophysical Parameters in the Mg, Fe Olivine Solid-Solution Series. European Journal of Mineralogy, 24(6): 935–956. https://doi.org/10.1127/0935-1221/2012/0024-2235 |
Li, X., Liu, Y. G., Song, H. P., et al., 2020. Thermal Stability and Com-pressibility of Bastnaesite. Physics and Chemistry of Minerals, 47(3): 1–10. https://doi.org/10.1007/s00269-020-01084-9 |
Li, X. Y., Zhang, C., Wang, L. X., et al., 2020. Experiments on the Saturation of Fluorite in Magmatic Systems: Implications for Maximum F Concentration and Fluorine-Cation Bonding in Silicate Melt. Journal of Earth Science, 31(3): 456–467. https://doi.org/10.1007/s12583-020-1305-y |
Liu, D., Pang, Y. W., Ye, Y., et al., 2019. In-situ High-Temperature Vibrational Spectra for Synthetic and Natural Clinohumite: Implications for Dense Hydrous Magnesium Silicates in Subduction Zones. American Mineralogist, 104(1): 53–63. https://doi.org/10.2138/am-2019-6604 |
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4 |
Momma, K., Izumi, F., 2011. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. Journal of Applied Crystallography, 44(6): 1272–1276. https://doi.org/10.1107/s0021889811038970 |
Mookherjee, M., Tsuchiya, J., Hariharan, A., 2016. Crystal Structure, Equation of State, and Elasticity of Hydrous Aluminosilicate Phase, Topaz-OH (Al2SiO4(OH)2) at High Pressures. Physics of the Earth and Planetary Interiors, 251: 24–35. https://doi.org/10.1016/j.pepi.2015.11.006 |
Nakagawa, T., 2017. On the Numerical Modeling of the Deep Mantle Water Cycle in Global-Scale Mantle Dynamics: The Effects of the Water Solubility Limit of Lower Mantle Minerals. Journal of Earth Science, 28(4): 563–577. https://doi.org/10.1007/s12583-017-0755-3 |
Nishi, M., Irifune, T., Tsuchiya, J., et al., 2014. Stability of Hydrous Silicate at High Pressures and Water Transport to the Deep Lower Mantle. Nature Geoscience, 7(3): 224–227. https://doi.org/10.1038/ngeo2074 |
Nishihara, Y., Takahashi, E., Matsukage, K., et al., 2003. Thermal Equation of State of Omphacite. American Mineralogist, 88(1): 80–86. https://doi.org/10.2138/am-2003-0110 |
Nishihara, Y., Nakayama, K., Takahashi, E., et al., 2005. P-V-T Equation of State of Stishovite to the Mantle Transition Zone Conditions. Physics and Chemistry of Minerals, 31(10): 660–670. https://doi.org/10.1007/s00269-004-0426-7 |
Northrup, P. A., Leinenweber, K., Parise, J. B., 1994. The Location of H in the High-Pressure Synthetic Al2SiO4(OH)2 Topaz Analogue. American Mineralogist, 79(3/4): 401–404 http://www.minsocam.org/MSA/AmMin/Supplemental_Data/Vol%2079%20p0401%20AM-94-556%20Tables1band2b.pdf |
Ohtani, E., Yuan, L., Ohira, I., et al., 2018. Fate of Water Transported into the Deep Mantle by Slab Subduction. Journal of Asian Earth Sciences, 167: 2–10. https://doi.org/10.1016/j.jseaes.2018.04.024 |
Ono, S., 1998. Stability Limits of Hydrous Minerals in Sediment and Mid-Ocean Ridge Basalt Compositions: Implications for Water Transport in Subduction Zones. Journal of Geophysical Research: Solid Earth, 103(B8): 18253–18267. https://doi.org/10.1029/98jb01351 |
Pagé, L., Hattori, K., de Hoog, J. C. M., et al., 2016. Halogen (F, Cl, Br, I) Behaviour in Subducting Slabs: A Study of Lawsonite Blueschists in Western Turkey. Earth and Planetary Science Letters, 442: 133–142. https://doi.org/10.1016/j.epsl.2016.02.054 |
Pagé, L., Hattori, K., Guillot, S., 2018. Mantle Wedge Serpentinites: A Transient Reservoir of Halogens, Boron, and Nitrogen for the Deeper Mantle. Geology, 46(10): 883–886. https://doi.org/10.1130/g45204.1 |
Pamato, M. G., Myhill, R., Ballaran, B. T., et al., 2015. Lower-Mantle Water Reservoir Implied by the Extreme Stability of a Hydrous Aluminosilicate. Nature Geoscience, 8(1): 75–79. https://doi.org/10.1038/ngeo2306 |
Pinheiro, M. V. B., Fantini, C., Krambrock, K., et al., 2002. OH/F Substitution in Topaz Studied by Raman Spectroscopy. Physical Review B, 65(10): 104301. https://doi.org/10.1103/physrevb.65.104301 |
Prescher, C., Prakapenka, V. B., 2015. DIOPTAS: A Program for Reduction of Two-Dimensional X-Ray Diffraction Data and Data Exploration. High Pressure Research, 35(3): 223–230. https://doi.org/10.1080/08957959.2015.1059835 |
Qin, F., Wu, X., Zhang, D. Z., et al., 2017. Thermal Equation of State of Natural Ti-Bearing Clinohumite. Journal of Geophysical Research: Solid Earth, 122(11): 8943–8951. https://doi.org/10.1002/2017jb014827 |
Rivers, M., Prakapenka, V. B., Kubo, A., et al., 2008. The COMPRES/GSECARS Gas-Loading System for Diamond Anvil Cells at the Advanced Photon Source. High Pressure Research, 28(3): 273–292. https://doi.org/10.1080/08957950802333593 |
Ross, N. L., Crichton, W. A., 2001. Compression of Synthetic Hydroxylclinohumite [Mg9Si4O16(OH)2] and Hydroxylchondrodite [Mg5Si2O8(OH)2]. American Mineralogist, 86(9): 990–996. https://doi.org/10.2138/am-2001-8-905 |
Sano-Furukawa, A., Kagi, H., Nagai, T., et al., 2009. Change in Compressibility of -AlOOH and -AlOOD at High Pressure: A Study of Isotope Effect and Hydrogen-Bond Symmetrization. American Mineralogist, 94(8/9): 1255–1261. https://doi.org/10.2138/am.2009.3109 |
Schulze, K., Pamato, M. G., Kurnosov, A., et al., 2018. High-Pressure Single-Crystal Structural Analysis of AlSiO3OH Phase Egg. American Mineralogist, 103(12): 1975–1980. https://doi.org/10.2138/am-2018-6562 |
Straub, S. M., Layne, G. D., 2003. The Systematics of Chlorine, Fluorine, and Water in Izu Arc Front Volcanic Rocks: Implications for Volatile Recycling in Subduction Zones. Geochimica et Cosmochimica Acta, 67(21): 4179–4203. https://doi.org/10.1016/s0016-7037(03)00307-7 |
Tennakoon, S., Peng, Y., Mookherjee, M., et al., 2018. Single Crystal Elasticity of Natural Topaz at High-Temperatures. Scientific Reports, 8: 1372. https://doi.org/10.1038/s41598-017-17856-3 |
Turner, S., Caulfield, J., Turner, M., et al., 2012. Recent Contribution of Sediments and Fluids to the Mantle's Volatile Budget. Nature Geoscience, 5(1): 50–54. https://doi.org/10.1038/ngeo1325 |
Ulian, G., Valdrè, G., 2017. Effects of Fluorine Content on the Elastic Behavior of Topaz [Al2SiO4(F, OH)2]. American Mineralogist, 102(2): 347–356. https://doi.org/10.2138/am-2017-5668 |
Wang, X., Xu, X. X., Ye, Y., et al., 2019. In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties. Journal of Earth Science, 30(5): 964–976. https://doi.org/10.1007/s12583-019-1236-7 |
Wang, Z. H., Shi, F., Zhang, J. F., 2020. Effects of Water on the Rheology of Dominant Minerals and Rocks in the Continental Lower Crust: A Review. Journal of Earth Science, 31(6): 1170–1182. https://doi.org/10.1007/s12583-020-1307-9 |
Watenphul, A., Libowitzky, E., Wunder, B., et al., 2010. The OH Site in Topaz: An IR Spectroscopic Investigation. Physics and Chemistry of Minerals, 37(9): 653–664. https://doi.org/10.1007/s00269-010-0365-4 |
Wunder, B., Rubie, D. C., Ross, C. R. Ⅱ, et al., 1993. Synthesis, Stability and Properties and of Al2SiO4(OH)2: A Fully Hydrated Analogue of Topaz. American Mineralogist, 78(3/4): 285–297 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9308196166&site=ehost-live |
Wunder, B., Andrut, M., Wirth, R., 1999. High-Pressure Synthesis and Properties of OH-Rich Topaz. European Journal of Mineralogy, 11(5): 803–814. https://doi.org/10.1127/ejm/11/5/0803 |
Ye, Y., Smyth, J. R., Jacobsen, S. D., et al., 2013. Crystal Chemistry, Thermal Expansion, and Raman Spectra of Hydroxyl-Clinohumite: Implications for Water in Earth's Interior. Contributions to Mineralogy and Petrology, 165: 563–574. https://doi.org/10.1007/s00410-012-0823-8 |
Yoshino, T., Jaseem, V., 2018. Fluorine Solubility in Bridgmanite: A Potential Fluorine Reservoir in the Earth's Mantle. Earth and Planetary Science Letters, 504: 106–114. https://doi.org/10.1016/j.epsl.2018.10.009 |
Zajonz, J. K., Werner, S., Schulz, H., 1999. High Pressure Single Crystal X-Ray Diffraction Study on α-Quartz. Zeitschrift für Kristallographie-Crystalline Materials, 214(6): 324–330. https://doi.org/10.1524/zkri.1999.214.6.324 |
Zhang, D. Z., Dera, P. K., Eng, P. J., et al., 2017. High Pressure Single Crystal Diffraction at PX^2. Journal of Visualized Experiments, (119): 54660. https://doi.org/10.3791/54660 |
Zhang, R. Y., Liou, J. G., Shu, J. F., 2002. Hydroxyl-Rich Topaz in High-Pressure and Ultrahigh-Pressure Kyanite Quartzites, with Retrograde Woodhouseite, from the Sulu Terrane, Eastern China. American Mineralogist, 87(4): 445–453. https://doi.org/10.2138/am-2002-0408 |
Zhu, G. Z., Gerya, T., Yuen, D. A., 2011. Melt Evolution above a Spontaneously Retreating Subducting Slab in a Three-Dimensional Model. Journal of Earth Science, 22(2): 137–142. https://doi.org/10.1007/s12583-011-0165-x |