Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 3
Jun 2023
Turn off MathJax
Article Contents
Yungui Liu, Xiang Li, Haipeng Song, Jingui Xu, Dongzhou Zhang, Junfeng Zhang, Xiang Wu. Thermal Equation of State of Natural F-Rich Topaz up to 29 GPa and 750 K. Journal of Earth Science, 2023, 34(3): 758-766. doi: 10.1007/s12583-021-1418-y
Citation: Yungui Liu, Xiang Li, Haipeng Song, Jingui Xu, Dongzhou Zhang, Junfeng Zhang, Xiang Wu. Thermal Equation of State of Natural F-Rich Topaz up to 29 GPa and 750 K. Journal of Earth Science, 2023, 34(3): 758-766. doi: 10.1007/s12583-021-1418-y

Thermal Equation of State of Natural F-Rich Topaz up to 29 GPa and 750 K

doi: 10.1007/s12583-021-1418-y
More Information
  • Corresponding author: Xiang Wu, wuxiang@cug.edu.cn
  • Received Date: 21 Dec 2020
  • Accepted Date: 20 Jan 2021
  • Available Online: 08 Jun 2023
  • Issue Publish Date: 30 Jun 2023
  • Subducting oceanic sediments and crusts, originating from the Earth's surface and descending into its deep interior, are important carriers of volatiles. The volatiles have significant effects on materials cycling and the dynamic evolution of the subduction zones. A simplified Al2O3-SiO2-H2O (ASH) ternary system models the relationship of minerals in the hydrated and alumina-silica rich sedimentary layer. Topaz Al2SiO4(F, OH)2 is an important mineral in the ASH system and comprises two volatiles: H2O and fluorine (F). In this study, the thermoelasticity of a natural F-rich topaz was investigated using synchrotron-based single-crystal X-ray diffraction combined with diamond anvil cells up to 29.1 GPa and 750 K. The pressure-volume-temperature data were fitted to a third-order Birch-Murnaghan Equation of state with V0 = 343.15(7) Å3, K0 = 166(1) GPa, K0' = 3.0(1), (∂K0/∂T)P = -0.015(9) GPa/K and α0 = 3.9(5) × 10-5 K-1. The isothermal bulk modulus increases with the F content in topaz, and the various F contents present significant effects on its anisotropic compressibility. Our results further reveal that the isothermal bulk modulus K0 of the minerals in ASH system increases with density. F and H contents in hydrous minerals might greatly affect their properties (e.g., compressibility and stability), providing more comprehensive constraints on the subduction zones.

     

  • Electronic Supplementary Materials: Supplementary materials (Figs. S1–S3; Tables S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1418-y.
  • loading
  • Angel, R. J., 2000. Equations of State. Reviews in Mineralogy and Geochemistry, 41(1): 35–59. https://doi.org/10.2138/rmg.2000.41.2
    Angel, R. J., Mosenfelder, J. L., Shaw, C. S. J., 2001. Anomalous Compression and Equation of State of Coesite. Physics of the Earth and Planetary Interiors, 124(1/2): 71–79. https://doi.org/10.1016/s0031-9201(01)00184-4
    Angel, R. J., Alvaro, M., Gonzalez-Platas, J., 2014. EosFit7c and a Fortran Module (Library) for Equation of State Calculations. Zeitschrift Für Kristallographie-Crystalline Materials, 229(5): 405–419. https://doi.org/10.1515/zkri-2013-1711
    Balcone-Boissard, H., Villemant, B., Boudon, G., 2010. Behavior of Halogens during the Degassing of Felsic Magmas. Geochemistry Geophysics Geosystems, 11(9): Q09005. https://doi.org/10.1029/2010gc003028
    Barnes, J. D., Manning, C. E., Scambelluri, M., et al., 2018. The Behavior of Halogens during Subduction-Zone Processes. Springer Geochemistry. Springer International Publishing, Cham. 545–590. https://doi.org/10.1007/978-3-319-61667-4_8
    Beyer, C., Klemme, S., Grützner, T., et al., 2016. Fluorine Partitioning between Eclogitic Garnet, Clinopyroxene, and Melt at Upper Mantle Conditions. Chemical Geology, 437: 88–97. https://doi.org/10.1016/j.chemgeo.2016.05.032
    Boehler, R., 2006. New Diamond Cell for Single-Crystal X-Ray Diffraction. Review of Scientific Instruments, 77(11): 115103. https://doi.org/10.1063/1.2372734
    Bucher, K., Stober, I., 2019. Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides. Journal of Earth Science, 30(6): 1084–1094. https://doi.org/10.1007/s12583-019-1257-2
    Bureau, H., Keppler, H., Métrich, N., 2000. Volcanic Degassing of Bromine and Iodine: Experimental Fluid/Melt Partitioning Data and Applications to Stratospheric Chemistry. Earth and Planetary Science Letters, 183(1/2): 51–60. https://doi.org/10.1016/s0012-821x(00)00258-2
    Chen, J., Lager, G. A., 2005. High-Pressure Infrared and Powder X-Ray Study of Topaz-OH: Comparison with Hydrous Magnesium Silicate (Humite). COMPRES 4th Annual Meeting. Jun. 16–19, 2005, New Paltz
    Chen, J. R., Lager, G. A., Kunz, M., et al., 2005. A Rietveld Refinement Using Neutron Powder Diffraction Data of a Fully Deuterated Topaz, Al2SiO4(OD)2. Acta Crystallographica Section E Structure Reports Online, 61(11): 253–255. https://doi.org/10.1107/s1600536805034811
    Churakov, S. V., Wunder, B., 2004. Ab-Initio Calculations of the Proton Location in Topaz-OH, Al2SiO4(OH)2. Physics and Chemistry of Minerals, 31(3): 131–141. https://doi.org/10.1007/s00269-003-0365-8
    Duan, Y., Sun, N., Wang, S., et al., 2018. Phase Stability and Thermal Equation of State of δ-AlOOH: Implication for Water Transportation to the Deep Lower Mantle. Earth and Planetary Science Letters, 494: 92–98. https://doi.org/10.1016/j.epsl.2018.05.003
    Dubrovinsky, L. S., Saxena, S. K., Lazor, P., 1998. High-Pressure and High-Temperature in situ X-Ray Diffraction Study of Iron and Corundum to 68 GPa Using an Internally Heated Diamond Anvil Cell. Physics and Chemistry of Minerals, 25(6): 434–441. https://doi.org/10.1007/s002690050133
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7
    Faccenda, M., 2014. Water in the Slab: A Trilogy. Tectonophysics, 614: 1–30. https://doi.org/10.1016/j.tecto.2013.12.020
    Fan, D. W., Zhou, W. G., Wei, S. Y., et al., 2010. A Simple External Resistance Heating Diamond Anvil Cell and Its Application for Synchrotron Radiation X-Ray Diffraction. Review of Scientific Instruments, 81(5): 053903. https://doi.org/10.1063/1.3430069
    Fei, Y. W., 1995. Thermal Expansion. In: Ahrens, T. J., ed., Mineral Physics and Crystallography, A Handbook of Physical Constants. Am Geophys Union, Washington, DC
    Fei, Y. W., Ricolleau, A., Frank, M., et al., 2007. Toward an Internally Consistent Pressure Scale. Proceedings of the National Academy of Sciences of the United States of America, 104(22): 9182–9186. https://doi.org/10.1073/pnas.0609013104
    Friedrich, A., Lager, G. A., Ulmer, P., et al., 2002. High-Pressure Single-Crystal X-Ray and Powder Neutron Study of F, OH/OD-Chondrodite: Compressibility, Structure, and Hydrogen Bonding. American Mineralogist, 87(7): 931–939. https://doi.org/10.2138/am-2002-0716
    Galvez, M. E., Connolly, J. A. D., Manning, C. E., 2016. Implications for Metal and Volatile Cycles from the pH of Subduction Zone Fluids. Nature, 539(7629): 420–424. https://doi.org/10.1038/nature20103
    Gatta, G. D., Nestola, F., Ballaran, T. B., 2006. Elastic Behaviour and Structural Evolution of Topaz at High Pressure. Physics and Chemistry of Minerals, 33(4): 235–242. https://doi.org/10.1007/s00269-006-0075-0
    Gatta, G. D., Morgenroth, W., Dera, P., et al., 2014. Elastic Behavior and Pressure-Induced Structure Evolution of Topaz up to 45 GPa. Physics and Chemistry of Minerals, 41(8): 569–577. https://doi.org/10.1007/s00269-014-0670-4
    Gonzalez-Platas, J., Alvaro, M., Nestola, F., et al., 2016. EosFit7-GUI: A New Graphical User Interface for Equation of State Calculations, Analyses and Teaching. Journal of Applied Crystallography, 49(4): 1377–1382. https://doi.org/10.1107/s1600576716008050
    Grevel, K. D., Burchard, M., Faßhauer, D. W., et al., 2000a. Pressure-Volume-Temperature Behavior of Diaspore and Corundum: An in situ X-Ray Diffraction Study Comparing Different Pressure Media. Journal of Geophysical Research: Solid Earth, 105(B12): 27877–27887. https://doi.org/10.1029/2000jb900323
    Grevel, K. D., Fasshauer, D. W., Rohling, S., 2000b. Bulk Moduli and P-V-T Data of the High-Pressure Phases Topaz-OH, Al2SiO4(OH)2, and Phase Pi, Al3Si2O7(OH)3. In: EMPG Ⅷ, Eighth International Symposium on Experimental Mineralogy, Petrology and Geochemistry. Journal of Conference Abstracts, 5: 1
    Grützner, T., Klemme, S., Rohrbach, A., et al., 2018. The Effect of Fluorine on the Stability of Wadsleyite: Implications for the Nature and Depths of the Transition Zone in the Earth's Mantle. Earth and Planetary Science Letters, 482: 236–244. https://doi.org/10.1016/j.epsl.2017.11.011
    Hartwig, J., Galkin, V., 2021. Heat Capacity, Thermal Expansion, and Elastic Parameters of Pyrope. Journal of Thermal Analysis and Calorimetry, 144(1): 71–79. https://doi.org/10.1007/s10973-020-09396-2
    He, Q., Liu, X., Li, B. S., et al., 2016. Thermal Equation of State of a Natural Kyanite up to 8.55 GPa and 1 273 K. Matter and Radiation at Extremes, 1(5): 269–276. https://doi.org/10.1016/j.mre.2016.07.003
    Holland, T. J. B., Redfern, S. A. T., 1997. Unit Cell Refinement from Powder Diffraction Data: The Use of Regression Diagnostics. Mineralogical Magazine, 61(404): 65–77. https://doi.org/10.1180/minmag.1997.061.404.07
    Huang, S. X., Qin, S., Wu, X., 2019. Elasticity and Anisotropy of the Pyrite-Type FeO2H-FeO2 System in Earth's Lowermost Mantle. Journal of Earth Science, 30(6): 1293–1301. https://doi.org/10.1007/s12583-018-0836-y
    Hughes, L., Pawley, A., 2019. Fluorine Partitioning between Humite-Group Minerals and Aqueous Fluids: Implications for Volatile Storage in the Upper Mantle. Contributions to Mineralogy and Petrology, 174(9): 78. https://doi.org/10.1007/s00410-019-1614-2
    Joachim, B., Pawley, A., Lyon, I. C., et al., 2015. Experimental Partitioning of F and Cl between Olivine, Orthopyroxene and Silicate Melt at Earth's Mantle Conditions. Chemical Geology, 416: 65–78. https://doi.org/10.1016/j.chemgeo.2015.08.012
    Kantor, I., Prakapenka, V., Kantor, A., et al., 2012. BX90: A New Diamond Anvil Cell Design for X-Ray Diffraction and Optical Measurements. Review of Scientific Instruments, 83(12): 125102. https://doi.org/10.1063/1.4768541
    Komatsu, K., Kuribayashi, T., Kudoh, Y., 2003. Effect of Temperature and Pressure on the Crystal Structure of Topaz, Al2SiO4(OH, F)2. Journal of Mineralogical and Petrological Sciences, 98(5): 167–180. https://doi.org/10.2465/jmps.98.167
    Komatsu, K., Kagi, H., Marshall, W. G., et al., 2008. Pressure Dependence of the Hydrogen-Bond Geometry in Topaz-OD from Neutron Powder Diffraction. American Mineralogist, 93(1): 217–227. https://doi.org/10.2138/am.2008.2483
    Kroll, H., Kirfel, A., Heinemann, R., et al., 2012. Volume Thermal Expansion and Related Thermophysical Parameters in the Mg, Fe Olivine Solid-Solution Series. European Journal of Mineralogy, 24(6): 935–956. https://doi.org/10.1127/0935-1221/2012/0024-2235
    Li, X., Liu, Y. G., Song, H. P., et al., 2020. Thermal Stability and Com-pressibility of Bastnaesite. Physics and Chemistry of Minerals, 47(3): 1–10. https://doi.org/10.1007/s00269-020-01084-9
    Li, X. Y., Zhang, C., Wang, L. X., et al., 2020. Experiments on the Saturation of Fluorite in Magmatic Systems: Implications for Maximum F Concentration and Fluorine-Cation Bonding in Silicate Melt. Journal of Earth Science, 31(3): 456–467. https://doi.org/10.1007/s12583-020-1305-y
    Liu, D., Pang, Y. W., Ye, Y., et al., 2019. In-situ High-Temperature Vibrational Spectra for Synthetic and Natural Clinohumite: Implications for Dense Hydrous Magnesium Silicates in Subduction Zones. American Mineralogist, 104(1): 53–63. https://doi.org/10.2138/am-2019-6604
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
    Momma, K., Izumi, F., 2011. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. Journal of Applied Crystallography, 44(6): 1272–1276. https://doi.org/10.1107/s0021889811038970
    Mookherjee, M., Tsuchiya, J., Hariharan, A., 2016. Crystal Structure, Equation of State, and Elasticity of Hydrous Aluminosilicate Phase, Topaz-OH (Al2SiO4(OH)2) at High Pressures. Physics of the Earth and Planetary Interiors, 251: 24–35. https://doi.org/10.1016/j.pepi.2015.11.006
    Nakagawa, T., 2017. On the Numerical Modeling of the Deep Mantle Water Cycle in Global-Scale Mantle Dynamics: The Effects of the Water Solubility Limit of Lower Mantle Minerals. Journal of Earth Science, 28(4): 563–577. https://doi.org/10.1007/s12583-017-0755-3
    Nishi, M., Irifune, T., Tsuchiya, J., et al., 2014. Stability of Hydrous Silicate at High Pressures and Water Transport to the Deep Lower Mantle. Nature Geoscience, 7(3): 224–227. https://doi.org/10.1038/ngeo2074
    Nishihara, Y., Takahashi, E., Matsukage, K., et al., 2003. Thermal Equation of State of Omphacite. American Mineralogist, 88(1): 80–86. https://doi.org/10.2138/am-2003-0110
    Nishihara, Y., Nakayama, K., Takahashi, E., et al., 2005. P-V-T Equation of State of Stishovite to the Mantle Transition Zone Conditions. Physics and Chemistry of Minerals, 31(10): 660–670. https://doi.org/10.1007/s00269-004-0426-7
    Northrup, P. A., Leinenweber, K., Parise, J. B., 1994. The Location of H in the High-Pressure Synthetic Al2SiO4(OH)2 Topaz Analogue. American Mineralogist, 79(3/4): 401–404 http://www.minsocam.org/MSA/AmMin/Supplemental_Data/Vol%2079%20p0401%20AM-94-556%20Tables1band2b.pdf
    Ohtani, E., Yuan, L., Ohira, I., et al., 2018. Fate of Water Transported into the Deep Mantle by Slab Subduction. Journal of Asian Earth Sciences, 167: 2–10. https://doi.org/10.1016/j.jseaes.2018.04.024
    Ono, S., 1998. Stability Limits of Hydrous Minerals in Sediment and Mid-Ocean Ridge Basalt Compositions: Implications for Water Transport in Subduction Zones. Journal of Geophysical Research: Solid Earth, 103(B8): 18253–18267. https://doi.org/10.1029/98jb01351
    Pagé, L., Hattori, K., de Hoog, J. C. M., et al., 2016. Halogen (F, Cl, Br, I) Behaviour in Subducting Slabs: A Study of Lawsonite Blueschists in Western Turkey. Earth and Planetary Science Letters, 442: 133–142. https://doi.org/10.1016/j.epsl.2016.02.054
    Pagé, L., Hattori, K., Guillot, S., 2018. Mantle Wedge Serpentinites: A Transient Reservoir of Halogens, Boron, and Nitrogen for the Deeper Mantle. Geology, 46(10): 883–886. https://doi.org/10.1130/g45204.1
    Pamato, M. G., Myhill, R., Ballaran, B. T., et al., 2015. Lower-Mantle Water Reservoir Implied by the Extreme Stability of a Hydrous Aluminosilicate. Nature Geoscience, 8(1): 75–79. https://doi.org/10.1038/ngeo2306
    Pinheiro, M. V. B., Fantini, C., Krambrock, K., et al., 2002. OH/F Substitution in Topaz Studied by Raman Spectroscopy. Physical Review B, 65(10): 104301. https://doi.org/10.1103/physrevb.65.104301
    Prescher, C., Prakapenka, V. B., 2015. DIOPTAS: A Program for Reduction of Two-Dimensional X-Ray Diffraction Data and Data Exploration. High Pressure Research, 35(3): 223–230. https://doi.org/10.1080/08957959.2015.1059835
    Qin, F., Wu, X., Zhang, D. Z., et al., 2017. Thermal Equation of State of Natural Ti-Bearing Clinohumite. Journal of Geophysical Research: Solid Earth, 122(11): 8943–8951. https://doi.org/10.1002/2017jb014827
    Rivers, M., Prakapenka, V. B., Kubo, A., et al., 2008. The COMPRES/GSECARS Gas-Loading System for Diamond Anvil Cells at the Advanced Photon Source. High Pressure Research, 28(3): 273–292. https://doi.org/10.1080/08957950802333593
    Ross, N. L., Crichton, W. A., 2001. Compression of Synthetic Hydroxylclinohumite [Mg9Si4O16(OH)2] and Hydroxylchondrodite [Mg5Si2O8(OH)2]. American Mineralogist, 86(9): 990–996. https://doi.org/10.2138/am-2001-8-905
    Sano-Furukawa, A., Kagi, H., Nagai, T., et al., 2009. Change in Compressibility of -AlOOH and -AlOOD at High Pressure: A Study of Isotope Effect and Hydrogen-Bond Symmetrization. American Mineralogist, 94(8/9): 1255–1261. https://doi.org/10.2138/am.2009.3109
    Schulze, K., Pamato, M. G., Kurnosov, A., et al., 2018. High-Pressure Single-Crystal Structural Analysis of AlSiO3OH Phase Egg. American Mineralogist, 103(12): 1975–1980. https://doi.org/10.2138/am-2018-6562
    Straub, S. M., Layne, G. D., 2003. The Systematics of Chlorine, Fluorine, and Water in Izu Arc Front Volcanic Rocks: Implications for Volatile Recycling in Subduction Zones. Geochimica et Cosmochimica Acta, 67(21): 4179–4203. https://doi.org/10.1016/s0016-7037(03)00307-7
    Tennakoon, S., Peng, Y., Mookherjee, M., et al., 2018. Single Crystal Elasticity of Natural Topaz at High-Temperatures. Scientific Reports, 8: 1372. https://doi.org/10.1038/s41598-017-17856-3
    Turner, S., Caulfield, J., Turner, M., et al., 2012. Recent Contribution of Sediments and Fluids to the Mantle's Volatile Budget. Nature Geoscience, 5(1): 50–54. https://doi.org/10.1038/ngeo1325
    Ulian, G., Valdrè, G., 2017. Effects of Fluorine Content on the Elastic Behavior of Topaz [Al2SiO4(F, OH)2]. American Mineralogist, 102(2): 347–356. https://doi.org/10.2138/am-2017-5668
    Wang, X., Xu, X. X., Ye, Y., et al., 2019. In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties. Journal of Earth Science, 30(5): 964–976. https://doi.org/10.1007/s12583-019-1236-7
    Wang, Z. H., Shi, F., Zhang, J. F., 2020. Effects of Water on the Rheology of Dominant Minerals and Rocks in the Continental Lower Crust: A Review. Journal of Earth Science, 31(6): 1170–1182. https://doi.org/10.1007/s12583-020-1307-9
    Watenphul, A., Libowitzky, E., Wunder, B., et al., 2010. The OH Site in Topaz: An IR Spectroscopic Investigation. Physics and Chemistry of Minerals, 37(9): 653–664. https://doi.org/10.1007/s00269-010-0365-4
    Wunder, B., Rubie, D. C., Ross, C. R. Ⅱ, et al., 1993. Synthesis, Stability and Properties and of Al2SiO4(OH)2: A Fully Hydrated Analogue of Topaz. American Mineralogist, 78(3/4): 285–297 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9308196166&site=ehost-live
    Wunder, B., Andrut, M., Wirth, R., 1999. High-Pressure Synthesis and Properties of OH-Rich Topaz. European Journal of Mineralogy, 11(5): 803–814. https://doi.org/10.1127/ejm/11/5/0803
    Ye, Y., Smyth, J. R., Jacobsen, S. D., et al., 2013. Crystal Chemistry, Thermal Expansion, and Raman Spectra of Hydroxyl-Clinohumite: Implications for Water in Earth's Interior. Contributions to Mineralogy and Petrology, 165: 563–574. https://doi.org/10.1007/s00410-012-0823-8
    Yoshino, T., Jaseem, V., 2018. Fluorine Solubility in Bridgmanite: A Potential Fluorine Reservoir in the Earth's Mantle. Earth and Planetary Science Letters, 504: 106–114. https://doi.org/10.1016/j.epsl.2018.10.009
    Zajonz, J. K., Werner, S., Schulz, H., 1999. High Pressure Single Crystal X-Ray Diffraction Study on α-Quartz. Zeitschrift für Kristallographie-Crystalline Materials, 214(6): 324–330. https://doi.org/10.1524/zkri.1999.214.6.324
    Zhang, D. Z., Dera, P. K., Eng, P. J., et al., 2017. High Pressure Single Crystal Diffraction at PX^2. Journal of Visualized Experiments, (119): 54660. https://doi.org/10.3791/54660
    Zhang, R. Y., Liou, J. G., Shu, J. F., 2002. Hydroxyl-Rich Topaz in High-Pressure and Ultrahigh-Pressure Kyanite Quartzites, with Retrograde Woodhouseite, from the Sulu Terrane, Eastern China. American Mineralogist, 87(4): 445–453. https://doi.org/10.2138/am-2002-0408
    Zhu, G. Z., Gerya, T., Yuen, D. A., 2011. Melt Evolution above a Spontaneously Retreating Subducting Slab in a Three-Dimensional Model. Journal of Earth Science, 22(2): 137–142. https://doi.org/10.1007/s12583-011-0165-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(89) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return