Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 3
Jun 2023
Turn off MathJax
Article Contents
Xiaowei Zhang, Huafeng Zhang, Ying Tong. Multistage Formation of Neoarchean Potassic Meta-Granites and Evidence for Crustal Growth on the North Margin of the North China Craton. Journal of Earth Science, 2023, 34(3): 658-673. doi: 10.1007/s12583-021-1419-x
Citation: Xiaowei Zhang, Huafeng Zhang, Ying Tong. Multistage Formation of Neoarchean Potassic Meta-Granites and Evidence for Crustal Growth on the North Margin of the North China Craton. Journal of Earth Science, 2023, 34(3): 658-673. doi: 10.1007/s12583-021-1419-x

Multistage Formation of Neoarchean Potassic Meta-Granites and Evidence for Crustal Growth on the North Margin of the North China Craton

doi: 10.1007/s12583-021-1419-x
More Information
  • Corresponding author: Huafeng Zhang, doctoria@sina.com; Ying Tong, Yingtong@pku.org.cn
  • Received Date: 29 Sep 2020
  • Accepted Date: 18 Jan 2021
  • Available Online: 08 Jun 2023
  • Issue Publish Date: 30 Jun 2023
  • The North China Craton (NCC) is one of the most complex cratons in the world. It underwent a series of tectonothermal events during the Neoarchean–Paleoproterozoic. The petrogenesis of potassic granitoids, the timing, and the style of Archean crustal growth are still debated. Systematic field and petrological stdudies on the potassic meta-granites from the Guyang-Chayouzhongqi region were carried out. New U-Pb ages, zircon Lu-Hf isotopic analyses, and whole-rock geochemical data were obtained. Two groups (~2.7 Ga and ~2.5 Ga) of potassic meta-granites were recognized. The ~2.7 Ga meta-granites are mainly A2-type, with variable εHf(t) values (-8.4 to +3.3) and Archean one stage model ages (TDM = ~3.0 Ga), indicating that their source was derived from ancient anatectic TTG-like granite and depleted mantle, which suggests that thin crust had formed in the Guyang-Chayouzhongqi region by ~3.0 Ga. Similar to the K-rich granites in the NCC, most of the ~2.5 Ga potassic meta-granites are typical of A1-type granite, and are enriched in Sm and Gd and depleted in Nb, Ta, P, and Ti. The ages and isotopic data indicate that the ~2.5 Ga meta-granites were generated from juvenile crustal sources with Neoarchean TTGs. The overall zircon U-Pb and Hf isotopic data furthermore suggested that the ~2.7 Ga event is the most important stage of magmatic accretion in the NCC, similar to other cratons. In contrast, reworking or metamorphic alteration was the main crustal process in the NCC at ~2.5 Ga.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1419-x.
  • loading
  • Abbott, D. H., 1996. Plumes and Hotspots as Sources of Greenstone Belts. Lithos, 37(2/3): 113–127. https://doi.org/10.1016/0024-4937(95)00032-1
    Ameen, S. M., Wilde, S. A., 2018. Multiple Sources for Archean Granitoids in the Yalgoo Area, Yilgarn Craton, Western Australia: Geochemical and Isotopic Evidence. Precambrian Research, 314: 76–110. https://doi.org/10.1016/j.precamres.2018.05.027
    Amelin, Y., Lee, D. C., Halliday, A. N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733): 252–255. https://doi.org/10.1038/20426
    Ao, S. J., Xiao, W. J., Han, C. M., et al., 2022. Status and Prospect of Research on Ophiolites in the Southern Margin of the Central Asian Orogenic Belt. Earth Science, 47(9): 3107–3126. https://doi.org/10.3799/dqkx.2022.321 (in Chinese with English Abstract)
    Armstrong, R. L., 1968. A Model for the Evolution of Strontium and Lead Isotopes in a Dynamic Earth. Reviews of Geophysics, 6(2): 175–199. https://doi.org/10.1029/rg006i002p00175
    Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144–146. https://doi.org/10.1038/362144a0
    Barker, F., Arth, J. G., 1976. Generation of Trondhjemitic-Tonalitic Liquids and Archean Bimodal Trondhjemite-Basalt Suites. Geology, 4(10): 596–600. https://doi.org/10.1130/0091-7613(1976)4596:gotlaa>2.0.co;2 doi: 10.1130/0091-7613(1976)4596:gotlaa>2.0.co;2
    Barker, F., 1979. Trondhjemite: Definition, Environment and Hypotheses of Origin. Developments in Petrology. Elsevier, Amsterdam. 1–12. https://doi.org/10.1016/b978-0-444-41765-7.50006-x
    Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1–29. https://doi.org/10.1016/j.lithos.2006.12.007
    Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region (BGMRXUAR), 1965. Geological Map of Siziwangqi Region (Scale 1: 200 000). National Geological Data Center, Beijing (in Chinese)
    Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region (BGMRXUAR), 1966. Geological Map of Hohhot Region (Scale 1: 200 000). National Geological Data Center, Beijing (in Chinese)
    Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin, 125(1/2): 14–32. https://doi.org/10.1130/b30722.1
    Chen, F. Y., Shi, X., Yu, J. X., et al., 2018. Permineralized Calamitean Axes from the Upper Permian of Xinjiang, Northwest China and Its Paleoecological Implication. Journal of Earth Science, 29(2): 237–244. https://doi.org/10.1007/s12583-017-0941-3
    Chen, L., 2007. Geochronology and Geochemistry of the Guyang Greenstone Belt: [Dissertation]. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (in Chinese with English Abstract)
    Chen, N. H. C., Zhao, G. C., Jahn, B. M., et al., 2017a. U-Pb Zircon Ages and Hf Isotopes of ~2.5 Ga Granitoids from the Yinshan Block, North China Craton: Implications for Crustal Growth. Precambrian Research, 303: 171–182. https://doi.org/10.1016/j.precamres.2017.03.016
    Chen, N. H. C., Zhao, G. C., Sun, M., et al., 2017b. Geochemistry of ~2.5 Ga Granitoids at the Northern Margin of the Yinshan Block: Implications for the Crustal Evolution of the North China Craton. Precambrian Research, 303: 673–686. https://doi.org/10.1016/j.precamres.2017.08.022
    Chen, Y. W., Hu, R. Z., Bi, X. W., et al., 2018. Zircon U-Pb Ages and Sr-Nd-Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance. Journal of Earth Science, 29(3): 492–507. https://doi.org/10.1007/s12583-017-0906-6
    Condie, K. C., Boryta, M. D., Liu, J. Z., et al., 1992. The Origin of Khon-dalites: Geochemical Evidence from the Archean to Early Proterozoic Granulite Belt in the North China Craton. Precambrian Research, 59(3/4): 207–223. https://doi.org/10.1016/0301-9268(92)90057-u
    Condie, K. C., 1994. Chapter 3 Greenstones through Time. In: Condie, K. C., ed., Archean Crustal Evolution. Elsevier, Amsterdam. 85–120. https://doi.org/10.1016/s0166-2635(08)70221-4
    Condie, K. C., 1997. Contrasting Sources for Upper and Lower Continental Crust: The Greenstone Connection. Journal of Geology, 105(6): 729–736. https://doi.org/10.1086/515980
    Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3/4): 228–242. https://doi.org/10.1016/j.gr.2008.06.001
    Condie, K. C., Aster, R. C., 2010. Episodic Zircon Age Spectra of Orogenic Granitoids: The Supercontinent Connection and Continental Growth. Precambrian Research, 180(3/4): 227–236. https://doi.org/10.1016/j.precamres.2010.03.008
    Condie, K. C., Bickford, M. E., Aster, R. C., et al., 2011. Episodic Zircon Ages, Hf Isotopic Composition, and the Preservation Rate of Continental Crust. Geological Society of America Bulletin, 123(5/6): 951–957. https://doi.org/10.1130/b30344.1
    Condie, K. C., Kröner, A., 2013. The Building Blocks of Continental Crust: Evidence for a Major Change in the Tectonic Setting of Continental Growth at the End of the Archean. Gondwana Research, 23(2): 394–402. https://doi.org/10.1016/j.gr.2011.09.011
    Deng, H., Kusky, T. M., Polat, A., et al., 2014. Geochronology, Mantle Source Composition and Geodynamic Constraints on the Origin of Neoarchean Mafic Dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton. Lithos, 205: 359–378. https://doi.org/10.1016/j.lithos.2014.07.011
    Deng, H., Kusky, T. M., Polat, A., et al., 2016. A 2.5 Ga Fore-Arc Subduction-Accretion Complex in the Dengfeng Granite-Greenstone Belt, Southern North China Craton. Precambrian Research, 275: 241–264. https://doi.org/10.1016/j.precamres.2016.01.024
    Deng, H., Kusky, T. M., Polat, A., et al., 2019. Magmatic Record of Neoarchean Arc-Polarity Reversal from the Dengfeng Segment of the Central Orogenic Belt, North China Craton. Precambrian Research, 326: 105–123. https://doi.org/10.1016/j.precamres.2018.01.020
    Deng, H., Kusky, T., Polat, A., et al., 2020. A Neoarchean Arc-Backarc Pair in the Linshan Massif, Southern North China Craton. Precambrian Research, 341: 105649. https://doi.org/10.1016/j.precamres.2020. 105649 doi: 10.1016/j.precamres.2020.105649
    Deng, X. Q., Peng, T. P., Zhao, T. P., 2016. Geochronology and Geochemistry of the Late Paleoproterozoic Aluminous A-Type Granite in the Xiaoqinling Area along the Southern Margin of the North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 285: 127–146. https://doi.org/10.1016/j.precamres.2016.09.013
    Dong, X. J., Xu, Z. Y., Liu, Z. H., et al., 2012. 2.7 Ga Granitic Gneiss in the Northern Foot of Daqingshan Mountain, Central Inner Mongolia, and Its Geological Implications. Earth Science—Journal of China University of Geosciences, 37: 45–52. https://doi.org/10.3799/dqkx.2012.s1.003 (in Chinese with English Abstract)
    Drüppel, K., Mccready, A. J., Stumpfl, E. F., 2009. High-K Granites of the Rum Jungle Complex, N-Australia: Insights into the Late Archean Crustal Evolution of the North Australian Craton. Lithos, 111(3/4): 203–219. https://doi.org/10.1016/j.lithos.2009.04.007
    Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
    Frost, B. R., Chamberlain, K. R., Schumacher, J. C., 2001. Sphene (Titanite): Phase Relations and Role as a Geochronometer. Chemical Geology, 172(1/2): 131–148. https://doi.org/10.1016/s0009-2541(00)00240-0
    Frost, C. D., Frost, B. R., Chamberlain, K. R., et al., 1998. The Late Archean History of the Wyoming Province as Recorded by Granitic Magmatism in the Wind River Range, Wyoming. Precambrian Research, 89(3/4): 145–173. https://doi.org/10.1016/s0301-9268(97)00082-x
    Gao, L., Liu, S. W., Sun, G. Z., et al., 2018. Petrogenesis of Late Neoarchean High-K Granitoids in the Western Shandong Terrane, North China Craton, and Their Implications for Crust-Mantle Interactions. Precambrian Research, 315: 138–161. https://doi.org/10.1016/j.precamres.2018.07.006
    Geng, Y. S., Liu, F. L., Yang, C. H., 2006. Magmatic Event at the End of the Archean in Eastern Hebei Province and Its Geological Implication. Acta Geologica Sinica—English Edition, 80(6): 819–833. https://doi.org/10.1111/j.1755-6724.2006.tb00305.x
    Geng, Y. S., Shen, Q. H., Ren, L. D., 2010. Late Neoarchean to Early Paleoproterozoic Magmatic Events and Tectonothermal Systems in the North China Craton. Acta Petrologica Sinica, 26(7): 1945–1966 (in Chinese with English Abstract) http://www.researchgate.net/publication/279548372_Late_Neoarchean_to_Early_Paleoproterozoic_magmatic_events_and_tectonothermal_systems_in_the_North_China_Craton
    Geng, Y. S., Du, L. L., Ren, L. D., 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2/3): 517–529. https://doi.org/10.1016/j.gr.2011.07.006
    Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. https://doi.org/10.1016/s0016-7037(99)00343-9
    Guo, R. R., Liu, S. W., Wyman, D., et al., 2015. Neoarchean Subduction: A Case Study of Arc Volcanic Rocks in Qinglong-Zhuzhangzi Area of the Eastern Hebei Province, North China Craton. Precambrian Research, 264: 36–62. https://doi.org/10.1016/j.precamres.2015.04.007
    Guo, B. R., Liu, S. W., Santosh, M., et al., 2017. Neoarchean Arc Magmatism and Crustal Growth in the North-Eastern North China Craton: Evidence from Granitoid Gneisses in the Southern Jilin Province. Precambrian Research, 303: 30–53. https://doi.org/10.1016/j.precamres.2016.12.009
    Guo, B. R., Liu, S. W., Chen, X., et al., 2018. K-Rich Granitoid Magmatism at the Archean-Proterozoic Transition in Southern Jilin: Insights into the Neoarchean Crustal Evolution of the Northeastern Part of the North China Craton. Gondwana Research, 58: 87–104. https://doi.org/10.1016/j.gr.2018.02.013
    Hawkesworth, C. J., Kemp, A. I. S., 2006a. Evolution of the Continental Crust. Nature, 443(7113): 811–817. https://doi.org/10.1038/nature05191
    Hawkesworth, C. J., Kemp, A. I. S., 2006b. The Differentiation and Rates of Generation of the Continental Crust. Chemical Geology, 226(3/4): 134–143. https://doi.org/10.1016/j.chemgeo.2005.09.017
    Hawkesworth, C. J., Kemp, A. I. S., 2006c. Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution. Chemical Geology, 226(3/4): 144–162. https://doi.org/10.1016/j.chemgeo.2005.09.018
    Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297–314. https://doi.org/10.1016/0012-821x(88)90132-x
    Hollings, P., Wyman, D., 1999. Trace Element and Sm-Nd Systematics of Volcanic and Intrusive Rocks from the 3 Ga Lumby Lake Greenstone Belt, Superior Province: Evidence for Archean Plume-Arc Interaction. Lithos, 46(2): 189–213. https://doi.org/10.1016/s0024-4937(98)00062-0
    Hurley, P. M., Rand, J. R., 1969. Pre-Drift Continental Nuclei. Science, 164(3885): 1229–1242. https://doi.org/10.1126/science.164.3885.1229
    Jahn, B. M., Glikson, A. Y., Peucat, J. J., et al., 1981. REE Geochemistry and Isotopic Data of Archean Silicic Volcanics and Granitoids from the Pilbara Block, Western Australia: Implications for the Early Crustal Evolution. Geochimica et Cosmochimica Acta, 45(9): 1633–1652. https://doi.org/10.1016/s0016-7037(81)80002-6
    Jahn, B. M., Auvray, B., Shen, Q. H., et al., 1988. Archean Crustal Evolution in China: The Taishan Complex, and Evidence for Juvenile Crustal Addition from Long-Term Depleted Mantle. Precambrian Research, 38(4): 381–403. https://doi.org/10.1016/0301-9268(88)90035-6
    Jayananda, M., Chardon, D., Peucat, J. J., et al., 2006. 2.61 Ga Potassic Granites and Crustal Reworking in the Western Dharwar Craton, Southern India: Tectonic, Geochronologic and Geochemical Constraints. Precambrian Research, 150(1/2): 1–26. https://doi.org/10.1016/j.precamres.2006.05.004 http://www.sciencedirect.com/science/article/pii/S030192680600132X
    Jian, P., Zhang, Q., Liu, D. Y., et al., 2005. SHRIMP Dating and Geological Significance of Late Achaean High-Mg Diorite (Sanukite) and Hornblende-Granite at Guyang of Inner Mongolia. Acta Petrologica Sinica, 21(1): 151–157 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200501016.htm
    Jian, P., Kröner, A., Windley, B. F., et al., 2012. Episodic Mantle Melting-Crustal Reworking in the Late Neoarchean of the Northwestern North China Craton: Zircon Ages of Magmatic and Metamorphic Rocks from the Yinshan Block. Precambrian Research, 222/223: 230–254. https://doi.org/10.1016/j.precamres.2012.03.002
    Jiang, N., Guo, J. H., Zhai, M. G., et al., 2010. ~2.7Ga Crust Growth in the North China Craton. Precambrian Research, 179(1/2/3/4): 37–49. https://doi.org/10.1016/j.precamres.2010.02.010
    Jiang, Y. H., Liu, Z., Jia, R. Y., et al., 2012. Miocene Potassic Granite-Syenite Association in Western Tibetan Plateau: Implications for Shoshonitic and High Ba-Sr Granite Genesis. Lithos, 134/135: 146–162. https://doi.org/10.1016/j.lithos.2011.12.012
    Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103–125. https://doi.org/10.1016/j.gr.2012.12.023
    Kusky, T. M., Polat, A., 1999. Growth of Granite-Greenstone Terranes at Convergent Margins, and Stabilization of Archean Cratons. Tectonophysics, 305(1/2/3): 43–73. https://doi.org/10.1016/s0040-1951(99)00014-1
    Kusky, T. M., Li, J. H., Santosh, M., 2007. The Paleoproterozoic North Hebei Orogen: North China Craton's Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1/2): 4–28. https://doi.org/10.1016/j.gr.2006.11.012
    Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162: 387–432. https://doi.org/10.1016/j.earscirev.2016.09.002
    Kusky, T. M., Windley, B. F., Polat, A., 2018. Geological Evidence for the Operation of Plate Tectonics Throughout the Archean: Records from Archean Paleo-Plate Boundaries. Journal of Earth Science, 29(6): 1291–1303. https://doi.org/10.1007/s12583-018-0999-6
    Laurent, O., Nicoli, G., Zeh, A., et al., 2014. Comment on "Ultrahigh Temperature Granulites and Magnesian Charnockites: Evidence for the Neoarchean Accretion along the Northern Margin of the Kaapvaal Craton" by Rajesh et al. Precambrian Research, 255: 455–458. https://doi.org/10.1016/j.precamres.2014.07.010
    Li, L., Yang, Y. Q., Yang, C. H., et al., 2017. The Petrogenesis and Tectonic Setting of ~2.5 Ga A-Type Granite in the Zanhuang Complex: An Example from the Huangcha Granite. Acta Petrologica Sinica, 33: 2850–2866 (in Chinese with English Abstract) http://www.researchgate.net/publication/320145036_The_petrogenesis_and_tectonic_setting_of_ca_2_5Ga_A-type_granite_in_the_Zanhuang_complexAn_example_from_the_Huangcha_granite
    Li, L., Zhai, W. J., 2019. Geochemistry and Petrogenesis of the ~2.5 Ga High-K Granitoids in the Southern North China Craton. Journal of Earth Science, 30(3): 647–665. https://doi.org/10.1007/s12583-019-0895-8
    Li, X. P., Schertl, H. P., Reinhardt, J., 2019. Preface: Metamorphism and Orogenic Belts—Response from Micro- to Macro-Scale. Journal of Earth Science, 30(6): 1075–1083. https://doi.org/10.1007/s12583-019-1269-y
    Liu, D. Y., Wilde, S. A., Wan, Y. S., et al., 2008. New U-Pb and Hf Isotopic Data Confirm Anshan as the Oldest Preserved Segment of the North China Craton. American Journal of Science, 308(3): 200–231. https://doi.org/10.2475/03.2008.02
    Liu, D. Y., Wilde, S. A., Wan, Y. S., et al., 2009. Combined U-Pb, Hafnium and Oxygen Isotope Analysis of Zircons from Meta-Igneous Rocks in the Southern North China Craton Reveal Multiple Events in the Late Mesoarchean–Early Neoarchean. Chemical Geology, 261(1/2): 140–154. https://doi.org/10.1016/j.chemgeo.2008.10.041
    Liu, F. F., Zhou, Y. Q., 2019. Nd Isotopic and Model Age Study of the Shandong Province, North China Craton: Implications for Correlation with South Korea. Journal of Earth Science, 30(5): 938–951. https://doi.org/10.1007/s12583-019-1213-1
    Liu, F. L., Gerdes, A., Xue, H. M., 2009. Differential Subduction and Exhumation of Crustal Slices in the Sulu HP-UHP Metamorphic Terrane: Insights from Mineral Inclusions, Trace Elements, U-Pb and Lu-Hf Isotope Analyses of Zircon in Orthogneiss. Journal of Metamorphic Geology, 27(9): 805–825. https://doi.org/10.1111/j.1525-1314.2009.00833.x
    Liu, J. B., Chen, N. S., Su, W., 2018. Tectonic Boundary and Ceasing Time of Amalgamation between the North China Craton and the North Qinling Belt. Journal of Earth Science, 29(5): 1074–1080. https://doi.org/10.1007/s12583-018-0847-8
    Liu, J. H., Liu, F. L., Ding, Z. J., et al., 2017. Petrogenesis and Tectonic Implications of the Charnockites in the Yishui Terrane, North China Craton. Precambrian Research, 303: 315–331. https://doi.org/10.1016/j.precamres.2017.04.013
    Lu, Z. L., Song, H. X., Du, L. L., et al., 2014. Delineation of the ~2.7 Ga TTG Gneisses in the Fuping Complex, North China Craton and Its Geological Significance. Acta Petrologica Sinica, 30(10): 2872–2884 (in Chinese with English Abstract) http://www.researchgate.net/publication/286135415_Delineation_of_the_ca_2_7Ga_TTG_gneisses_in_the_Fuping_Complex_North_China_Craton_and_its_geological_significance
    Ma, S. T., Li, X. P., Liu, H., et al., 2019. Ultrahigh Temperature Metamorphic Record of Pelitic Granulites in the Huangtuyao Area of the Huai'an Complex, North China Craton. Journal of Earth Science, 30(6): 1178–1196. https://doi.org/10.1007/s12583-019-1245-6
    Ma, X. D., Fan, H. R., Guo, J. H., 2013a. Neoarchean Magmatism, Metamorphism in the Yinshan Block: Implication for the Genesis of BIF and Crustal Evolution. Acta Petrologica Sinica, 29(7): 2329–2339. https://doi.org/10.1002/ppp.1771 (in Chinese with English Abstract)
    Ma, X. D., Guo, J. H., Liu, F., et al., 2013b. Zircon U-Pb Ages, Trace Elements and Nd-Hf Isotopic Geochemistry of Guyang Sanukitoids and Related Rocks: Implications for the Archean Crustal Evolution of the Yinshan Block, North China Craton. Precambrian Research, 230: 61–78. https://doi.org/10.1016/j.precamres.2013.02.001
    Martin, H., 1986. Effect of Steeper Archean Geothermal Gradient on Geochemistry of Subduction-Zone Magmas. Geology, 14(9): 753–756. https://doi.org/10.1130/0091-7613(1986)14753:eosagg>2.0.co;2 doi: 10.1130/0091-7613(1986)14753:eosagg>2.0.co;2
    Martin, H., 1994. The Archean Grey Gneisses and the Genesis of Continental Crust. In: Condie, K. C., ed., Archean Crustal Evolution. Elsevier, Amsterdam. 205–259. https://doi.org/10.1016/s0166-2635(08)70224-x
    Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relation-ships and some Implications for Crustal Evolution. Lithos, 79(1/2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.048
    Middlemost, E. A. K., 1985. Magmas and Magmatic Rocks. Longman, London. 306–314
    Moyen, J. F., Martin, H., Jayananda, M., et al., 2003. Late Archaean Granites: A Typology Based on the Dharwar Craton (India). Precambrian Research, 127(1/2/3): 103–123. https://doi.org/10.1016/s0301-9268(03)00183-9
    Moyen, J. F., Martin, H., 2012. Forty Years of TTG Research. Lithos, 148: 312–336. https://doi.org/10.1016/j.lithos.2012.06.010
    Ouyang, D. J., Guo, J. H., Liou, P., et al., 2020. Petrogenesis and Tectonic Implications of 2.45 Ga Potassic A-Type Granite in the Daqingshan Area, Yinshan Block, North China Craton. Precambrian Research, 336: 105435. https://doi.org/10.1016/j.precamres.2019.105435
    Peng, P., 2015. Precambrian Mafic Dyke Swarms in the North China Craton and Their Geological Implications. Science China Earth Sciences, 58(5): 649–675. https://doi.org/10.1007/s11430-014-5026-x
    Petford, N., Atherton, M. P., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491–1521. https://doi.org/10.1093/petrology/37.6.1491
    Polat, A., Kusky, T., Li, J. H., et al., 2005. Geochemistry of Neoarchean (~2.55–2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth. Geological Society of America Bulletin, 117(11): 1387–1399. https://doi.org/10.1130/b25724.1
    Polat, A., Herzberg, C., Munker, C., et al., 2006. Geochemical and Petrological Evidence for a Suprasubduction Zone Origin of Neoarchean (ca. 2.5 Ga) Peridotites, Central Orogenic Belt, North China Craton. Geological Society of America Bulletin, 118(7/8): 771–784. https://doi.org/10.1130/b25845.1
    Ren, P., Xie, H. Q., Wang, S. J., et al., 2015. 2.5–2.7 Ga Tectonomagmatic Thermal Events in Western Shandong: Field Geology and Zircon SHRIMP Dating of TTG Intrusive Rocks before Huangqian Reservoir, Taishan Mounttain. Geological Review, 61(5): 1068–1078 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201505010.htm
    Ren, P., Xie, H. Q., Wang, S. J., et al., 2016. A ~2.60 Ga Tectono-Thermal Event in Western Shandong Province, North China Craton from Zircon U-Pb-O Isotopic Evidence: Plume or Convergent Plate Boundary Process. Precambrian Research, 281: 236–252. https://doi.org/10.1016/j.precamres.2016.05.016
    Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557): 571–578. https://doi.org/10.1038/378571a0
    Samuel, V. O., Santosh, M., Liu, S., et al., 2014. Neoarchean Continental Growth through Arc Magmatism in the Nilgiri Block, Southern India. Precambrian Research, 245: 146–173. https://doi.org/10.1016/j.precamres.2014.02.002
    Shen, Q. H., 2008. Further Discussion on the New Progress in the Study of Early Precambrian Stratigraphy of China. Journal of Stratigraphy, 32(3): 231–238 (in Chinese with English Abstract) doi: 10.3969/j.issn.0253-4959.2008.03.001
    Shirey, S. B., Hanson, G. N., 1984. Mantle-Derived Archaean Monozodiorites and Trachyandesites. Nature, 310(5974): 222–224. https://doi.org/10.1038/310222a0
    Smithies, R. H., 2000. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182(1): 115–125. https://doi.org/10.1016/s0012-821x(00)00236-3
    Song, H. X., Yang, C. H., Du, L. L, et al., 2018. Delineation of the ~2. 7 Ga TTG Gneisses in Zanhuang Complex, Hebei Province, and Its Geological Significance. Acta Petrologica Sinica, 34(6): 1599–1611 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201806004.htm
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tarney, J., Jones, C. E., 1994. Trace Element Geochemistry of Orogenic Igneous Rocks and Crustal Growth Models. Journal of the Geological Society, 151(5): 855–868. https://doi.org/10.1144/gsjgs.151.5.0855
    Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241–265. https://doi.org/10.1029/95rg00262
    Van Kranendonk, M. J., Smithies, R. H., Hickman, A. H., et al., 2010. Evidence for Mesoarchean (~3.2 Ga) Rifting of the Pilbara Craton: The Missing Link in an Early Precambrian Wilson Cycle. Precambrian Research, 177(1/2): 145–161. https://doi.org/10.1016/j.precamres.2009.11.007
    Wan, Y. S., Liu, D. Y., Song, B., et al., 2005. Geochemical and Nd Isotopic Compositions of 3.8 Ga Meta-Quartz Dioritic and Trondhjemitic Rocks from the Anshan Area and Their Geological Significance. Journal of Asian Earth Sciences, 24(5): 563–575. https://doi.org/10.1016/j.jseaes.2004.02.009
    Wan, Y. S., Ho, K. S., Liu, D. Y., et al., 2012. Micro-Scale Heterogeneity of Andesite from Chilungshan, Northern Taiwan: Evidence from Melt Inclusions, Geochronology and Hf-O Isotopes of Zircons. Chemical Geology, 328: 244–258. https://doi.org/10.1016/j.chemgeo.2011.11.025
    Wan, Y. S., Ma, M. Z., Dong, C. Y., et al., 2015. Widespread Late Neoarchean Reworking of Meso- to Paleoarchean Continental Crust in the Anshan-Benxi Area, North China Craton, as Documented by U-Pb-Nd-Hf-O Isotopes. American Journal of Science, 315: 620–670. https://doi.org/10.2475/07.2015.02
    Wang, C. C., Liu, Y. C., Zhang, P. G., et al., 2017. Zircon U-Pb Geochronology and Geochemistry of Two Types of Paleoproterozoic Granitoids from the Southeastern Margin of the North China Craton: Constraints on Petrogenesis and Tectonic Significance. Precambrian Research, 303: 268–290. https://doi.org/10.1016/j.precamres.2017.04.015
    Wang, W., Liu, S. W., Santosh, M., et al., 2015. Late Paleoproterozoic Geodynamics of the North China Craton: Geochemical and Zircon U-Pb-Hf Records from a Volcanic Suite in the Yanliao Rift. Gondwana Research, 27(1): 300–325. https://doi.org/10.1016/j.gr.2013.10.004
    Wang, W., Liu, S., Cawood, P. A., et al., 2016. Late Neoarchean Subduction-Related Crustal Growth in the Northern Liaoning Region of the North China Craton: Evidence from ~2.55 to 2.50 Ga Granitoid Gneisses. Precambrian Research, 281: 200–223. https://doi.org/10.1016/j.precamres.2016.05.018
    Wei, G. D., Kong, F. M., Liu, H., et al., 2019. Petrology, Metamorphic P-T Paths and Zircon U-Pb Ages for Paleoproterozoic Mafic Granulites from Xuanhua, North China Craton. Journal of Earth Science, 30(6): 1197–1214. https://doi.org/10.1007/s12583-019-1251-8
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202
    Windley, B. F., Garde, A. A., 2009. Arc-Generated Blocks with Crustal Sections in the North Atlantic Craton of West Greenland: Crustal Growth in the Archean with Modern Analogues. Earth-Science Reviews, 93(1/2): 1–30. https://doi.org/10.1016/j.earscirev.2008.12.001
    Wu, J., Zhai, M. G., Zhang, H. F., et al., 2018. Petrologic Indicators of Prograde Metamorphism in Paleoproterozoic Garnet Mafic Granulites from the Huai'an Complex, North China Craton. Science Bulletin, 63(2): 81–84. https://doi.org/10.1016/j.scib.2017.12.017
    Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23: 185–220 (in Chinese with English Abstract) http://www.oalib.com/paper/1492671
    Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3/4): 339–362. https://doi.org/10.1016/j.precamres.2008.10.002
    Wyman, D. A., 1999. A 2.7 Ga Depleted Tholeiite Suite: Evidence of Plume-Arc Interaction in the Abitibi Greenstone Belt, Canada. Precambrian Research, 97(1/2): 27–42. https://doi.org/10.1016/s0301-9268(99)00018-2
    Xu, H. J., Zhang, J. F., 2018. Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane. Journal of Earth Science, 29(1): 30–42. https://doi.org/10.1007/s12583-017-0805-x
    Xu, Y., Polat, A., Meng, X., et al., 2019. The Late Neoarchean Transition from Low- to High-K Granitoids in Western Liaoning Province, NE China: Clues from Geochemistry and Zircon U-Pb-Hf-O Isotopes. Gondwana Research, 76: 224–245. https://doi.org/10.1016/j.gr.2019.06.013
    Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2008. Petrogenesis and Geodynamics of Late Archean Magmatism in Eastern Hebei, Eastern North China Craton: Geochronological, Geochemical and Nd-Hf Isotopic Evidence. Precambrian Research, 167(1/2): 125–149. https://doi.org/10.1016/j.precamres.2008.07.004
    Yang, T. X., Huangfu, P. P., Zhang, Y., 2019. Differentiation of Continental Subduction Mode: Numerical Modeling. Journal of Earth Science, 30(4): 809–822. https://doi.org/10.1007/s12583-017-0946-y
    Yang, Z. L., Hu, X. J., Wang, S. Q., et al., 2021. Identification of Precambrian Strata in Early Paleozoic Accretion Zone on Southern Margin of Xing-Meng Orogenic Belt and Its geological Significance. Earth Science, 46(8): 2786–2803. https://doi.org/10.3799/dqkx.2020.281 (in Chinese with English Abstract)
    Zhai, M. G., Bian, A. G., 2000. The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and Its Breakup during Late Palaeoproterozoic and Mesoproterozoic. Science in China Series D, 43: 219–232 (in Chinese) doi: 10.1007/BF02911947
    Zhai, M. G., Guo, J. H., Liu, W. J., 2005. Neoarchean to Paleoproterozoic Continental Evolution and Tectonic History of the North China Craton: A Review. Journal of Asian Earth Sciences, 24(5): 547–561. https://doi.org/10.1016/j.jseaes.2004.01.018
    Zhai, M. G., 2010. Tectonic Evolution and Metallogenesis of North China Craton. Mineral Deposits, 29(1): 24–36. https://doi.org/10.16111/j.0258-7106.2010.01.006 (in Chinese with English Abstract)
    Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 54(8): 1110–1120. https://doi.org/10.1007/s11430-011-4250-x
    Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6–25. https://doi.org/10.1016/j.gr.2011.02.005
    Zhai, M. G., 2014. Multi-Stage Crustal Growth and Cratonization of the North China Craton. Geoscience Frontiers, 5: 457–469. https://doi.org/10.1016/j.gsf.2014.01.003
    Zhai, M. G., Zhang, Q., Chen, G. N., et al., 2016. Adventure on the Research of Continental Evolution and Related Granite Geochemistry. Chinese Science Bulletin, 61: 1414–1420 (in Chinese) doi: 10.1360/N972015-01272
    Zhai, M. G., Zhang, L. C., Chen, B., 2018. Major Precambrian Geological Events and Metallogenesis in North China Craton. Science Press, Beijing (in Chinese with English Abstract)
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202. https://doi.org/10.1016/j.precamres.2004.10.002
    Zhao, G. C., Wilde, S. A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex: Constraints on Late Archean to Paleoproterozoic Magmatic and Metamorphic Events in the Trans-North China Orogen. American Journal of Science, 308(3): 270–303. https://doi.org/10.2475/03.2008.04
    Zhao, T. Y., Cawood, P. A., Wang, K., et al., 2019. Neoarchean and Paleoproterozoic K-Rich Granites in the Phan Si Pan Complex, North Vietnam: Constraints on the Early Crustal Evolution of the Yangtze Block. Precambrian Research, 332: 105395. https://doi.org/10.1016/j.precamres.2019.105395
    Zhao, Y., Li, N. B., Jiang, Y. H., et al., 2017. Petrogenesis of the Late Archean (~2.5 Ga) Na- and K-Rich Granitoids in the Zhongtiao-Wangwu Region and Its Tectonic Significance for the Crustal Evolution of the North China Craton. Precambrian Research, 303: 590–603. https://doi.org/10.1016/j.precamres.2017.07.037
    Zhao, Y., Zheng, J. P., Xiong, Q., 2019. Zircon from Orogenic Peridotite: An Ideal Indicator for Mantle-Crust Interaction in Subduction Zones. Journal of Earth Science, 30(3): 666–678. https://doi.org/10.1007/s12583-019-1220-2
    Zhao, Z. P., 1993. Precambrian Crustal Evolution of the Sino-Korean Quasi-platform. Science Press, Beijing. 444 (in Chinese with English Abstract)
    Zhang, J., Zhang, H. F., Lu, X. X., 2013. Zircon U-Pb Age and Lu-Hf Isotope Constraints on Precambrian Evolution of Continental Crust in the Songshan Area, the South-Central North China Craton. Precambrian Research, 226: 1–20. https://doi.org/10.1016/j.precamres.2012.11.015
    Zhang, H. F., Zhai, M. G., Santosh, M., et al., 2011. Geochronology and Petrogenesis of Neoarchean Potassic Meta-Granites from Huai'an Complex: Implications for the Evolution of the North China Craton. Gondwana Research, 20(1): 82–105. https://doi.org/10.1016/j.gr.2011.01.009
    Zhang, H. F., Luo, Z. B., Wang, H. Z., 2013. Paleoproterozic 2.0 Ga Meta-Granite in the Liangcheng Area, Inner Mongolia: Constraint on Regional Ultra-High Temperature Metamorphism. Acta Petrologica Sinica, 29(7): 2391–2404 (in Chinese with English Abstract) http://d.wanfangdata.com.cn/Periodical/ysxb98201307009
    Zhang, H. F., Wang, H. Z., Dou, J. Z., et al., 2015. Geochemistry and Genesis of the Late Archean Low-Al and High-Al TTGs from the Huai'an Terrane, North China Craton. Acta Petrologica Sinica, 31(6): 1518–1534 (in Chinese with English Abstract) http://www.researchgate.net/publication/282271551_Geochemistry_and_genesis_of_the_Late_Archean_Low-Al_and_High-Al_TTGs_from_the_Huai'_an_terrane_North_China_Craton
    Zhang, L., Zhu, J. J., Xia, B., et al., 2019. Metamorphism and Zircon Geochronological Studies of Metagabbro Vein in the Yushugou Granulite-Peridotite Complex from South Tianshan, China. Journal of Earth Science, 30(6): 1215–1229. https://doi.org/10.1007/s12583-019-1254-5
    Zhang, S. M., He, Z. Y, Zhao, P. B., et al., 2021. Zircon U-Pb Chronology and Geochemistry of the Wuliji Intrusions in the Northern Alxa Block: Constraints on the Tectonic Evolution of the Southern Altaids. Earth Science, 46(1): 101–121. https://doi.org/10.3799/dqkx.2019.259 (in Chinese with English Abstract)
    Zhang, W. B., Wang, F. X., Liu, Y. F., et al., 2022. Zircon Geochronology and Hf Isotope of Intermediate Acidity Magmatic Rocks in the Island Arc Terrane of South Mongolia and Their Geological Significance. Earth Science, 47(8): 2824–2838. https://doi.org/10.3799/dqkx.2021.197 (in Chinese with English Abstract)
    Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2009. Neoarchean (2.7–2.8 Ga) Accretion beneath the North China Craton: U-Pb Age, Trace Elements and Hf Isotopes of Zircons in Diamondiferous Kimberlites. Lithos, 112(3/4): 188–202. https://doi.org/10.1016/j.lithos.2009.02.003
    Zhou, Y., Zhao, T., Wang, C. Y., et al., 2011. Geochronology and Geochemistry of 2.5 to 2.4 Ga Granitic Plutons from the Southern Margin of the North China Craton: Implications for a Tectonic Transition from Arc to Post-Collisional Setting. Gondwana Research, 20(1): 171–183. https://doi.org/10.1016/j.gr.2011.03.004
    Zhu, X. Y., Zhai, M. G., Chen, F. K., et al., 2013. ~2.7 Ga Crustal Growth in the North China Craton: Evidence from Zircon U-Pb Ages and Hf Isotopes of the Sushui Complex in the Zhongtiao Terrane. Journal of Geology, 121(3): 239–254. https://doi.org/10.1086/669977
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(195) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return