Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 5
Oct 2021
Turn off MathJax
Article Contents
Zhen Guo, Yu Huang, Adnan Aydin. Double-Frequency Microseisms on the Thick Unconsolidated Sediments in Eastern and Southeastern Coasts of United States: Sources and Applications on Seismic Site Effect Evaluation. Journal of Earth Science, 2021, 32(5): 1190-1201. doi: 10.1007/s12583-021-1426-y
Citation: Zhen Guo, Yu Huang, Adnan Aydin. Double-Frequency Microseisms on the Thick Unconsolidated Sediments in Eastern and Southeastern Coasts of United States: Sources and Applications on Seismic Site Effect Evaluation. Journal of Earth Science, 2021, 32(5): 1190-1201. doi: 10.1007/s12583-021-1426-y

Double-Frequency Microseisms on the Thick Unconsolidated Sediments in Eastern and Southeastern Coasts of United States: Sources and Applications on Seismic Site Effect Evaluation

doi: 10.1007/s12583-021-1426-y
More Information
  • Corresponding author: Yu Huang, yhuang@tongji.edu.cn
  • Received Date: 29 Jan 2021
  • Accepted Date: 06 Apr 2021
  • Publish Date: 01 Oct 2021
  • This study presents a systematic analysis of double-frequency (DF) microseisms recorded on the unconsolidated sediments in the eastern and southeastern coasts of United States. For all recordings, the site effect parameters (predominant frequency (f0), amplification factor and unconsolidated sediment thickness (UST)) are obtained by Nakamura method and the DF spectra are classified into five groups in terms of the DF peak patterns and the recording locations relative to the coastline. The frequencies and energy levels of the DF peaks in horizontal direction and the amplification factors are associated with the UST which is resulted from seismic site effect. By polarization analysis, the primary vibration directions of the DF peaks are identified and presented as great circles passing through the recording stations intersecting mainly along the continental slope. Correlation analyses of time histories of the DF energy and the ocean wave climate observed at buoys show that the low (< 0.2 Hz) and high (>0.2 Hz) frequency DF microseisms are generated in the deep ocean and the continental shelf respectively. It is concluded that the continental slope plays a significant role in the generation of DF microseisms as it causes reflection of waves from the open ocean, initiating standing waves.

     

  • loading
  • Abd el-aal, A. K., 2018. New Relationship between Fundamental Site Frequency and Thickness of Soft Sediments from Seismic Ambient Noise. Journal of Seismology, 22(5): 1315-1323. https://doi.org/10.1007/s10950-018-9753-x
    Ardhuin, F., Stutzmann, E., Schimmel, M., et al., 2011. Ocean Wave Sources of Seismic Noise. Journal of Geophysical Research Atmospheres, 116(C9): C09004. https://doi.org/10.1029/2011jc006952
    Bard, P. -Y., 1999. Microtremor Measurements: A Tool for Site Effect Estimation? Proc. 2nd Int. Symp. on the Effects of Surface Geology on Seismic Motion, Yokohama
    Bard, P. -Y., SESAME-Team, 2005. Guideline for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations-Measurements, Processing and Interpretations. SESAME European Research Project EVG1-CT-2000-00026, D23.12
    Bodin, P., Smith, K., Horton, S., et al., 2001. Microtremor Observations of Deep Sediment Resonance in Metropolitan Memphis, Tennessee. Engineering Geology, 62(1/2/3): 159-168. https://doi.org/10.1016/S0013-7952(01)00058-8
    Bromirski, P. D., 2002. The Near-Coastal Microseism Spectrum: Spatial and Temporal Wave Climate Relationships. Journal of Geophysical Research Atmospheres, 107(B8): 2166. https://doi.org/10.1029/2001jb000265
    Bromirski, P. D., Duennebier, F. K., Stephen, R. A., 2005. Mid-Ocean Microseisms. Geochemistry, Geophysics, Geosystems, 6(4): Q04009. https://doi.org/10.1029/2004gc000768
    Dorman, L. M., Schreiner, A. E., Bibee, L. D., et al., 1993. Deep-Water Sea-Floor Array Observations of Seismo-Acoustic Noise in the Eastern Pacific and Comparisons with Wind and Swell. In: Kerman, B., ed., Natural Physical Source of Underwater Sound, Springer, New York
    Essen, H. H., Krüger, F., Dahm, T., et al., 2003. On the Generation of Secondary Microseisms Observed in Northern and Central Europe. Journal of Geophysical Research: Solid Earth, 108(B10): 2506. https://doi.org/10.1029/2002jb002338
    Fenneman, N. M., 1916. Physiographic Divisions of the United States. Annals of the Association of American Geographers, 6(1): 19-98. https://doi.org/10.1080/00045601609357047
    Gerstoft, P., Bromirski, P. D., 2016. "Weather Bomb" Induced Seismic Signals. Science (New York, N Y), 353(6302): 869-870. https://doi.org/10.1126/science.aag1616
    Guo, Z., Aydin, A., 2015. Double-Frequency Microseisms in Ambient Noise Recorded in Mississippi. Bulletin of the Seismological Society of America, 105(3): 1691-1710. https://doi.org/10.1785/0120140299
    Guo, Z., Aydin, A., 2016. A Modified HVSR Method to Evaluate Site Effect in Northern Mississippi Considering Ocean Wave Climate. Engineering Geology, 200: 104-113. https://doi.org/10.1016/j.enggeo.2015.12.012
    Guo, Z., Aydin, A., Kuszmaul, J. S., 2014. Microtremor Recordings in Northern Mississippi. Engineering Geology, 179: 146-157. https://doi.org/10.1016/j.enggeo.2014.07.001
    Guo, Z., Huang, Y., Aydin, A., et al., 2020b. Identifying the Frequency Dependent Interactions between Ocean Waves and the Continental Margin on Seismic Noise Recordings, J. Mar. Sci. Eng., 8: 134. https://doi.org/10.3390/jmse8020134
    Guo, Z., Xue, M., Aydin, A., et al., 2020a. Exploring Source Regions of Single- and Double-Frequency Microseisms Recorded in Eastern North American Margin (ENAM) by Cross-Correlation. Geophysical Journal International, 220(2): 1352-1367. https://doi.org/10.1093/gji/ggz470
    Hardin, G. C., 1962. Notes on Cenozoic Sedimentation in the Gulf Coast Geosyncline, USA. In: Rainwater, E. H., Zingula, R. P., eds., Geology of the Gulf Coast and Central Texas and Guidebook of Excursions. Houston Geological Society, Houston
    Kedar, S., Longuet-Higgins, M., Webb, F., et al., 2008. The Origin of Deep Ocean Microseisms in the North Atlantic Ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2091): 777-793. https://doi.org/10.1098/rspa.2007.0277
    Koper, K. D., Burlacu, R., 2015. The Fine Structure of Double-Frequency Microseisms Recorded by Seismometers in North America. Journal of Geophysical Research: Solid Earth, 120(3): 1677-1691. https://doi.org/10.1002/2014jb011820
    Langston, C. A., Horton, S. P., 2014. Three-Dimensional Seismic-Velocity Model for the Unconsolidated Mississippi Embayment Sediments from H/V Ambient Noise Measurements. Bulletin of the Seismological Society of America, 104(5): 2349-2358. https://doi.org/10.1785/0120140026
    Li, H. Y., Liu, X., Li, X. F., et al., 2011. Rayleigh Wave Group Velocity Distribution in Ningxia. Journal of Earth Science, 22(1): 117-123. https://doi.org/10.1007/s12583-011-0162-0
    Longuet-Higgins, M. S., 1950. A Theory for the Generation of Microseisms, Philos. Trans. R. Soc. London, 243: 1-35
    Lynner, C., Porritt, R. W., 2017. Crustal Structure across the Eastern North American Margin from Ambient Noise Tomography. Geophysical Research Letters, 44(13): 6651-6657. https://doi.org/10.1002/2017gl073500
    Nakamura, Y., 1989. Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), 30(1): 25-33 http://www.researchgate.net/publication/237128828_A_method_for_dynamic_characteristics_estimation_of_subsurface_using_microtremor_on_the_ground_surfac
    Obrebski, M. J., Ardhuin, F., Stutzmann, E., et al., 2012. How Moderate Sea States can Generate Loud Seismic Noise in the Deep Ocean. Geophysical Research Letters, 39(11): L11601. https://doi.org/10.1029/2012gl051896
    Parolai, S., 2002. New Relationships between Vs, Thickness of Sediments, and Resonance Frequency Calculated by the H/V Ratio of Seismic Noise for the Cologne Area (Germany). Bulletin of the Seismological Society of America, 92(6): 2521-2527. https://doi.org/10.1785/0120010248
    Paskevich, V., 2005. Srtm30plus-na_pctshade. tif——RTM30PLUS Color-Encoded Shaded Relief Image of North America (Approximately 1 km)——GeoTIFF Image: Open-File Report 2005-1001, U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center, Woods Hole
    Qin, W. B., Zhang, S. X., Li, M. K., et al., 2018. Distribution of Intra-Crustal Low Velocity Zones beneath Yunnan from Seismic Ambient Noise Tomography. Journal of Earth Science, 29(6): 1409-1418. https://doi.org/10.1007/s12583-017-0815-8
    Rhie, J., Romanowicz, B., 2006. A Study of the Relation between Ocean Storms and the Earth's Hum. Geochemistry, Geophysics, Geosystems, 7(10): Q10004. https://doi.org/10.1029/2006gc001274
    Rybin, A. K., Bataleva, E. A., Nepeina, K. S., et al., 2020. Definition of the Seismic Field of the Underground Sources in the Ambient Seismic Noise in the Tien Shan Region Using a Three-Component Gradient System. Journal of Earth Science, 31(5): 988-992. https://doi.org/10.1007/s12583-020-1327-5
    Sautter, L. R., 2004. A Profile of the Southeast U.S. Continental Margin. Estuary to the Abyss, Explorations, National Oceanic and Atmospheric Administration (NOAA), http://oceanexplorer.noaa.gov/explorations/04etta/background/profile/profile.html
    Schimmel, M., Stutzmann, E., Ardhuin, F., et al., 2011. Polarized Earth's Ambient Microseismic Noise. Geochemistry, Geophysics, Geosystems, 12(7): Q07014. https://doi.org/10.1029/2011gc003661
    Schwab, W. C., Gayes, P. T., Morton, R. A., et al., 2009. Coastal Change along the Shore of Northeastern South Carolina: The South Carolina Coastal Erosion Study, U.S. Geological Survey Open-File Report 2008-1206. http://pubs.usgs.gov/of/2008/1206/
    Seht, M. I. -v, Wohlenberg, J., 1999. Microtremor Measurements Used to Map Thickness of Soft Sediments. Bulletin of the Seismological Society of America, 89(1): 250-259. https://doi.org/10.1785/bssa0890010250
    Seht, M. I. -v., Wohlenberg, J., 1999. Microtremor Measurements Used to Map Thickness of Soft Sediments. Bull. Seismol. Soc. Am., 89: 250-259
    Stephen, R. A., Spiess, F. N., Collins, J. A., et al., 2003. Ocean Seismic Network Pilot Experiment, Geochem. Geophys. Geosyst., 4:1092. https://doi.org/10.1029/2002GC000485
    Tan, J., Li, H. Y., Li, X. F., et al., 2015. Radial Anisotropy in the Crust beneath the Northeastern Tibetan Plateau from Ambient Noise Tomography. Journal of Earth Science, 26(6): 864-871. https://doi.org/10.1007/s12583-015-0543-x
    Tian, B. Q., Du, Y. N., You, Z. W., et al., 2019. Measuring the Sediment Thickness in Urban Areas Using Revised H/V Spectral Ratio Method. Engineering Geology, 260:105223. https://doi.org/10.1016/j.enggeo.2019.105223
    Traer, J., Gerstoft, P., Bromirski, P. D., et al., 2012. Microseisms and Hum from Ocean Surface Gravity Waves. Journal of Geophysical Research: Solid Earth, 117(B11): B11307. https://doi.org/10.1029/2012jb009550
    Wang, K., Luo, Y. H., Zhao, K. F., et al., 2014. Body Waves Revealed by Spatial Stacking on Long-Term Cross-Correlation of Ambient Noise. Journal of Earth Science, 25(6): 977-984. https://doi.org/10.1007/s12583-014-0495-6
    Webb, S. C., 1998. Broadband Seismology and Noise under the Ocean. Reviews of Geophysics, 36(1): 105-142. https://doi.org/10.1029/97rg02287
    Wu, L. H., Wang, D., Lei, Z. G., et al., 2020. Campus Vibration in Nanwangshan Campus, China University of Geosciences at Wuhan Monitored by Short-Period Seismometers. Journal of Earth Science, 31(5): 950-956. https://doi.org/10.1007/s12583-020-1332-8
    Xu, X. M., Li, H. Y., Gong, M., et al., 2011. Three-Dimensional S-Wave Velocity Structure in Eastern Tibet from Ambient Noise Rayleigh and Love Wave Tomography. Journal of Earth Science, 22(2): 195-204. https://doi.org/10.1007/s12583-011-0172-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(214) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return