Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 2
Apr 2021
Turn off MathJax
Article Contents
Liang Wang, Shouting Zhang, Yi Fang, Li Tang. Integrated Exploration Model for Concealed Ore Deposit: A Case Study from Shuitou Fluorite Deposit, Inner Mongolia, North China. Journal of Earth Science, 2021, 32(2): 370-389. doi: 10.1007/s12583-021-1427-x
Citation: Liang Wang, Shouting Zhang, Yi Fang, Li Tang. Integrated Exploration Model for Concealed Ore Deposit: A Case Study from Shuitou Fluorite Deposit, Inner Mongolia, North China. Journal of Earth Science, 2021, 32(2): 370-389. doi: 10.1007/s12583-021-1427-x

Integrated Exploration Model for Concealed Ore Deposit: A Case Study from Shuitou Fluorite Deposit, Inner Mongolia, North China

doi: 10.1007/s12583-021-1427-x
More Information
  • Corresponding author: Shouting Zhang, zst@cugb.edu.cn; Li Tang, ltang@cugb.edu.cn
  • Received Date: 21 Nov 2020
  • Accepted Date: 03 Feb 2021
  • Publish Date: 01 Apr 2021
  • The demand for fluorite resource is increasing rapidly as most fluorite deposits on Earth's surface have been exhausted. The newly discovered fluorite deposits in Inner Mongolia are hosted by Permian metamorphosed sandy slate, intermediate-acid intrusive rocks and Cretaceous volcanic sedimentary rocks. The ore bodies are strictly controlled by faults and buried by cover rocks. The feasibility and effectiveness of multi-techniques for prospecting concealed fluorite ore bodies are evaluated, and 10 anomalies are delineated. On the basis of geological features and effectiveness of different methods, the optimum combinations of ore prospecting techniques are proposed for the exploration of zonal type and burial type concealed fluorite ore bodies. Based on comprehensive researches, an integrated exploration model is proposed: (ⅰ) select key prospecting targets based on geological backgrounds, regional geochemical anomalies of F and Ca, and remote sensing images; (ⅱ) identify the spatial distribution of low resistivity anomaly and ore-controlling structure from geophysical survey; (ⅲ) evaluate the mineralization potential in fault zone based on F and Ca anomalies in key sections selected from low resistivity anomaly zones; and (ⅳ) evaluate the mineralization potential and reveal the spatial distribution of fluorite ore bodies and ore-controlling faults based on integrated geophysical and geochemical anomalies. The integrated exploration model is verified to be a powerful tool for prospecting concealed fluorite ore bodies in coverage area.

     

  • loading
  • Bedini, E., 2019. Application of WorldView-3 Imagery and ASTER TIR Data to Map Alteration Minerals Associated with the Rodalquilar Gold Deposits, Southeast Spain. Advances in Space Research, 63(10): 3346-3357. https://doi.org/10.1016/j.asr.2019.01.047
    Cameron, E. M., Hamilton, S. M., Leybourne, M. I., et al., 2004. Finding Deeply Buried Deposits Using Geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7-32. https://doi.org/10.1144/1467-7873/03-019
    Camprubí, A., González-Partida, E., Richard, A., et al., 2019. MVT-Like Fluorite Deposits and Oligocene Magmatic-Hydrothermal Fluorite-Be-U-Mo-P-V Overprints in Northern Coahuila, Mexico. Minerals, 9(1): 58-85. https://doi.org/10.3390/min9010058
    Cao, H. W., Zhang, S. T., Fang, Y., 2013. ESR Dating of Quartz from Linxi Fluorite Deposits, Inner Mongolia, and Its Geogical Implications. Geoscience, 27(4): 888-894(in Chinese with English Abstract)
    Cao, H. W., Zhang, S. T., Gao, Y. Z., et al., 2014. REE Geochemistry of Fluorite from Linxi Fluorite Deposit and Its Geological Implications, Inner Mongolia Autonomous Region. Geochimica, 43(2): 131-140(in Chinese with English Abstract) http://www.researchgate.net/publication/312459121_REE_geochemistry_of_fluorite_from_linxi_fluorite_deposit_and_its_geological_implications_Inner_Mongolia_autonomous_region
    Castorina, F., Masi, U., Gorello, I., 2020. Rare Earth Element and Sr-Nd Isotopic Evidence for the Origin of Fluorite from the Silius Vein Deposit (Southeastern Sardinia, Italy). Journal of Geochemical Exploration, 215: 106535. https://doi.org/10.1016/j.gexplo.2020.106535
    Chen, W. J., Hao, Q. Q., Chu, S. X., et al., 2017. Application of Very Low Frequency Electromagnetic Method to Positioning of Concealed Metal Deposits: An Example of Copper Polymetallic Ore Occurrences in the Southwest Greater Hinggan Mountains. Geology and Exploration, 53(3): 528-532(in Chinese with English Abstract)
    Chifeng Natural Resources Bureau, 2019. Annals of Chifeng City Minerals. Science Press, Beijing. 233-258(in Chinese)
    Clark, J. R., 1993. Enzyme-Induced Leaching of B-Horizon Soils for Mineral Exploration in Areas of Glacial Overburden. Transactions——Institution of Mining & Metallurgy, Section B, 102: B19-B29 http://www.researchgate.net/publication/285023661_Enzyme-induced_leaching_of_B-horizon_soils_for_mineral_exploration_in_areas_of_glacial_overburden
    Erickson, R. L., 1993. Presidental Address at the Third Annual General Meet of the Aossciation of Exploration Geochemists. Ceochemical Exploration, 32(40): 175-191
    Eze, C. L., Mamah, L. I., Israel-Cookey, C., 2004. Very Low Frequency Electromagnetic (VLF-EM) Response from a Lead Sulphide Lode in the Abakaliki Lead/Zinc Field, Nigeria. International Journal of Applied Earth Observation and Geoinformation, 5(2): 159-163. https://doi.org/10.1016/j.jag.2004.01.004
    Fang, Y., 2014. The Study of Comprehensive Exploration Methods for the Prodiction of Concealed Fluorite Deposit in East China: [Dissertation]. China University of Geoscineces, Beijing. 77-96(in Chinese)
    Fang, Y., Zhang, S. T., Zou, H., et al., 2014. Comprehensive Exploration Method of Fluorite Deposit in Grasslands Covered Area: A Case Study of the Saiboluogou Fluorite Deposit in Linxi, Inner Mongolia, China. Journal of Chendu University of Thecnology, 41(1): 94-101(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG201401012.htm
    Fu, W. X., Yin, B. X., Yang, W. M., 2015. Application of EH-4 Electromagnetic Imaging System in the Exploration of Concealed Polymetallic Ore deposits: A Case Study of Errenshan-Huangshipogou Polymetallic Ore Deposit. Geophysical and Geochemical Exploration, 39(3): 485-489(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH201503008.htm
    Gigoux, M., Brigaud, B., Pagel, M., et al., 2016. Genetic Constraints on World-Class Carbonate-and Siliciclastic-Hosted Stratabound Fluorite Deposits in Burgundy (France) Inferred from Mineral Paragenetic Sequence and Fluid Inclusion Studies. Ore Geology Reviews, 72(2): 940-962. https://doi.org/10.1016/j.oregeorev.2015.09.013
    González-Partida, E., Camprubí, A., Carrillo-Chávez, A., et al., 2019. Giant Fluorite Mineralization in Central Mexico by Means of Exceptionally Low Salinity Fluids: An Unusual Style among MVT Deposits. Minerals, 9(1): 35-56. https://doi.org/10.3390/min9010035
    Hall, G. E. M., Vaive, J. E., Beer, R., et al., 1996. Selective Leaches Revisited, with Emphasis on the Amorphous Fe Oxyhydroxide Phase Extraction. Journal of Geochemical Exploration, 56(1): 59-78. https://doi.org/10.1016/0375-6742(95)00050-x
    Kelley, D. L., Hall, G. E. M., Closs, L. G., et al., 2003. The Use of Partial Extraction Geochemistry for Copper Exploration in Northern Chile. Geochemistry: Exploration, Environment, Analysis, 3(1): 85-104. https://doi.org/10.1144/1467-787302-048
    Kravchinsky, V. A., Cogne, J. P., Harbert, W. P., et al., 2002. Evolution of the Mongol-Okhotsk Ocean as Constrained by New Palaeomagnetic Data from the Mongol-Okhotsk Suture Zone, Siberia. Geophysical Journal International, 148(1): 34-57. https://doi.org/10.1046/j.1365-246x.2002.01557.x
    Lampinen, H. M., Laukamp, C., Occhipinti, S. A., et al., 2017. Delineating Alteration Footprints from Field and ASTER SWIR Spectra, Geochemistry, and Gamma-Ray Spectrometry above Regolith-Covered Base Metal Deposits-An Example from Abra, Western Australia. Economic Geology, 112(8): 1977-2003. https://doi.org/10.5382/econgeo.2017.4537
    Li, F., Wang, Y. H., Wu, W. X., 2009. Application of EH-4 Electromagnetic Imaging System in the Detection of Concealed Structures. Geology of China, 36(6): 1375-1381(in Chinese with English Abstract)
    Li, S. Z., Zang, Y. B., Wang, P. C., et al., 2017. Mesozoic Tectonic Transition in South China and Initiation of Palaeo-Pacific Subduction, Earth Science Frontiers, 24(4): 213-225(in Chinese with English Abstract) http://www.researchgate.net/publication/319455394_Mesozoic_tectonic_transition_in_South_China_and_initiation_of_Palaeo-Pacific_subduction
    Li, X. Y., Zou, H., Zhang, Q., et al., 2018. Application and Analysis of Portable X-Ray Fluorescence Analyzer on Fluorite Exploration in Shallow Cover Area. Computing Techniques for Geophysical and Geochemical Exploration, 45(5): 125-132(in Chinese with English Abstract) http://www.researchgate.net/publication/330479612_Application_and_analysis_of_portable_X-ray_fluorescence_analyzer_on_fluorite_exploration_in_shallow_cover_area
    Lin, H. H., 1991. Experimental Study on Geochemical Prospecting Methods for the Batu Fluorite Deposit in Longquan County, Zhejiang Province. Geophysical and Geochemical Exploration, 15(3): 225-235(in Chinese with English Abstract)
    Liu, B., Wu, Q. H., Li, H., et al., 2020. Fault-Controlled Fluid Evolution in the Xitian W-Sn-Pb-Zn-Fluorite Mineralization System (South China): Insights from Fluorite Texture, Geochemistry and Geochronology. Ore Geology Reviews, 116(8): 103233. https://doi.org/10.1016/j.oregeorev.2019.103233
    Liu, M., Lai, S. C., Zhang, D., et al., 2019. Early-Middle Triassic Intrusions in Western Inner Mongolia, China: Implications for the Final Orogenic Evolution in Southwestern Xing-Meng Orogenic Belt. Journal of Earth Science, 30(5): 977-995. https://doi.org/10.1007/s12583-019-1015-5
    Liu, W., Siebel, W., Li, X. J., et al., 2005. Petrogenesis of the Linxi Granitoids, Northern Inner Mongolia of China: Constraints on Basaltic Underplating. Chemical Geology, 219(1/2/3/4): 5-35. https://doi.org/10.1016/j.chemgeo.2005.01.013
    Lu, M., 2019. Penetrating Geochemical Exploration Applied to Mineral Exploration in Covered Areas and Its Mechanism: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract)
    Magotra, R., Namga, S., Singh, P., et al., 2017. A New Classification Scheme of Fluorite Deposits. International Journal of Geosciences, 8(4): 599-610. https://doi.org/10.4236/ijg.2017.84032
    Meng, Y. S., Zhang, R. Z., Liu, R. D., et al., 2017. Application of Multiple Geophysical Methods to Prospect Concealed Ores Beneath Quaternary Cover: A Case Study from a Copper-Polymetallic Deposit. Technology and Application of Environmental and Engineering Geophysics, 243-249. https://doi.org/10.1007/978-981-10-3244-8_28
    Metelkin, D. V., Gordienko, I. V., Klimuk, V. S., 2007. Paleomagnetism of Upper Jurassic Basalts from Transbaikalia: New Data on the Time of Closure of the Mongol-Okhotsk Ocean and Mesozoic Intraplate Tectonics of Central Asia. Russian Geology and Geophysics, 48(10): 825-834. https://doi.org/10.1016/j.rgg.2007.09.004
    Ouyang, H. G., Mao, J. W., Zhou, Z. H., et al., 2015. Late Mesozoic Metallogeny and Intracontinental Magmatism, Southern Great Xing'an Range, Northeastern China. Gondwana Research, 27(3): 1153-1172. https://doi.org/10.1016/j.gr.2014.08.010
    Ouyang, H. G., Xu, X. L., Mao, J. W., et al., 2014. The Nature and Timing of Ore Formation in the Budunhua Copper Deposit, Southern Great Xing'an Range. Acta Geologica Sinica——English Edition, 88(S2): 29-30. https://doi.org/10.1111/1755-6724.12367_15
    Öztürk, H., Altuncu, S., Hanilçi, N., et al., 2019. Rare Earth Element-Bearing Fluorite Deposits of Turkey: An Overview. Ore Geology Reviews, 105(3-4): 423-444. https://doi.org/10.1016/j.oregeorev.2018.12.021
    Pei, Q. M., Zhang, S. T., Hayashi, K. I., et al., 2018. Permo-Triassic Granitoids of the Xing'an-Mongolia Segment of the Central Asian Orogenic Belt, Northeast China: Age, Composition, and Tectonic Implications. International Geology Review, 60(9): 1172-1194. https://doi.org/10.1080/00206814.2017.1377121
    Pei, Q. M., Zhang, S. T., Santosh, M., et al., 2017. Geochronology, Geochemistry, Fluid Inclusion and C, O and Hf Isotope Compositions of the Shuitou Fluorite Deposit, Inner Mongolia, China. Ore Geology Reviews, 83(Part B): 174-190. https://doi.org/10.1016/j.oregeorev.2016.12.022
    Penland, C., Sardeshmukh, P. D., 1995. Error and Sensitivity Analysis of Geophysical Eigensystems. Journal of Climate, 8(8): 1988-1998. https://doi.org/10.1175/1520-0442(1995)008<1988:easaog>2.0.co;2 doi: 10.1175/1520-0442(1995)008<1988:easaog>2.0.co;2
    Piorek, S., 1997. Field-Portable X-Ray Fluorescence Spectrometry: Past, Present, and Future. Field Analytical Chemistry & Technology, 1(6): 317-329. https://doi.org/10.1002/(sici)1520-6521(199712)1:6<317::aid-fact2>3.0.co;2-n doi: 10.1002/(sici)1520-6521(199712)1:6<317::aid-fact2>3.0.co;2-n
    Schlegel, T. U., Wagner, T., Fusswinkel, T., 2020. Fluorite as Indicator Mineral in Iron Oxide-Copper-Gold Systems: Explaining the IOCG Deposit Diversity. Chemical Geology, 548: 119674. https://doi.org/10.1016/j.chemgeo.2020.119674
    Sha, J. G., Hirano, H., Yao, X. G., et al., 2008. Late Mesozoic Transgressions of Eastern Heilongjiang and Their Significance in Tectonics, and Coal and Oil Accumulation in Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 263(3/4): 119-130. https://doi.org/10.1016/j.palaeo.2008.02.008
    Shao, J. A., Wang, Y., Tang, K. D., 2017. A Reflection on the Xarmoron Tectonomagmatic Belt, Inner Mongolia, China. Acta Petrologica Sinica, 33(10): 3002-3010(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201710002.htm
    Shu, Q. H., Lai, Y., Zhou, Y. T., et al., 2015. Zircon U-Pb Geochronology and Sr-Nd-Pb-Hf Isotopic Constraints on the Timing and Origin of Mesozoic Granitoids Hosting the Mo Deposits in Northern Xilamulun District, NE China. Lithos, 238: 64-75. https://doi.org/10.1016/j.lithos.2015.09.014
    Song, K. R., 2019. Mineralization Relationship between Fluorite and Silver Polymetallic Ore and Its Prospecting Significance in Linxi Area, Inner Mongolia: [Dissertation]. China University of Geosciences, Beijing. 56-68(in Chinese with English Abstract)
    Song, K. R., Tang, L., Zhang, S. T., et al., 2019. Genesis of the Bianjiadayuan Pb-Zn Polymetallic Deposit, Inner Mongolia, China: Constraints from In-Situ Sulfur Isotope and Trace Element Geochemistry of Pyrite. Geoscience Frontiers, 10(5): 1863-1877. https://doi.org/10.1016/j.gsf.2019.02.004
    Sun, X., Deng, J., Yang, L. Q., et al., 2010. REE and Sr-Nd Isotope Geochemistry for Yixian Fluorite Deposit, Western Liaoning Province, China, and Its Geological Implications. Journal of Earth Science, 21(2): 227-235. https://doi.org/10.1007/s12583-010-0020-5
    Sun, X., Yang, Z. R., Xu, D. D., 2008. Prediction of Fluorite Mineralization in Yixian Based on Fuzzy Neural Network. Contributions to Geology and Mineral Resources Research, 23(2): 149-152(in Chinese with English Abstract)
    Sun, X., Yang, Z. R., Wang, Y. C., et al., 2009. Sr Isotopic Composition and Genesis in Yixian Fluorite Deposit. Geological Science and Technology Information, 28(1): 82-86(in Chinese with English Abstract)
    Tang, N., Tang, J. X., Guo, N., et al., 2015. Application of Short-Wave Infrared Spectrometer in the Study of Alteration Zone of Ore Deposits. Acta Mineralogica Sinica, 35(s1): 925-926(in Chinese with English Abstract)
    Thabeng, O. L., Merlo, S., Adam, E., 2019. High-Resolution Remote Sensing and Advanced Classification Techniques for the Prospection of Archaeological Sites' Markers: The Case of Dung Deposits in the Shashi-Limpopo Confluence Area (Southern Africa). Journal of Archaeological Science, 102: 48-60. https://doi.org/10.1016/j.jas.2018.12.003
    Wang, C. M., Zhang, S. T., Deng, J., 2006. Tectonic Evolution and Mineralization of the Southern Greater Hinggan Mountains: [Proceedings]. National Doctoral Academic Forum, Beijing (in Chinese with English Abstract)
    Wang, J. P., Zhu, J. B., Li, J., et al., 2018. Prediction Model and Resource Potential Assessment of Fluorite Deposit in China. Earth Science Frontiers, 25(3): 172-178(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201803017.htm
    Wang, L., Pei, Q. M., Cao, H. W., et al., 2018. Characteristics of Ore-Forming Fluids and Genesis of Xiaobeigou Fluorite Deposit in Linxi Area, Inner Mongolia. Journal of Guilin University of Technology, 38(2): 189-198. (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX201802002.htm
    Wang, L., Tang, L., Zhang, S. T., et al., 2020. Genesis of the Yujiadian F-Pb-Zn-Ag Deposit, Inner Mongolia, NE China: Constraints from Geochemistry, Fluid Inclusion, Zircon Geochronology and Stable Isotopes. Ore Geology Reviews, 122: 103528. https://doi.org/10.1016/j.oregeorev.2020.103528
    Wang, S. J., Li, S. C., Li, W. J., et al., 2020. Tectonic Evolution of Southeast Central Asian Orogenic Belt: Evidence from Geochronological Data and Paleontology of the Early Paleozoic Deposits in Inner Mongolia. Journal of Earth Science, 31(4): 743-756. https://doi.org/10.1007/s12583-020-1326-6
    Wang, X. Q., 1998. Leaching of Mobile Forms of Metals in Overburden: Development and Application. Journal of Geochemical Exploration, 61(1/2/3): 39-55. https://doi.org/10.1016/s0375-6742(97)00039-3
    Wang, Z. L., Zhang, S. T., Liao, X. H., et al., 2012. Application in Mineral Prospecting of Integrated Techniques of X-Ray Fluorescence Spectrometer and Geophysical Apparent Resistivity Measurement: A Case Study on Biliutai Ag-Pb-Zn Polymetallic Deposit, Inner Mongolia. Mineral Exploration, 3(6): 811-817(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSJS201206014.htm
    Wilde, S. A., 2015. Final Amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean Closure Versus Paleo-Pacific Plate Subduction-A Review of the Evidence. Tectonophysics, 662(2015): 345-362. https://doi.org/10.1016/j.tecto.2015.05.006
    Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022
    Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
    Xia, B. W., Cao, H. W., Pei, Q. M., et al., 2016. Exploration of Fluorite Deposit by the Combination of VLF-EM and EH4 on Shallow-Covered Area: A Case Study of the Shuitou Deposit. Journal of Guilin University of Technology, 36(2): 228-233(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX201602005.htm
    Xian, Y., 2014. Analysis of Componet in Fluorite Using Pressed Oowder Pellet X-Ray Fluorescence Spectrometry Combined with Infrared Spectroscopy. Chinese Journal of Inorganic Analytical Chemistry, 4(1): 50-52(in Chinese with English Abstract)
    Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1-21. https://doi.org/10.1029/2002tc001484
    Xie, X. J., 1996. Exploration Geochemitry: Present Suatus and Prospects. Geological Reviews, 42: 346-356(in Chinese with English Abstract)
    Xin, F. C., Xin, L., Li, Z. D., 2008. The Geological Significance of the Ratio Parameters Measured by Gamma Spectrometry and Its Application in the Search for Concealed Gold Deposits. Geology and Resources, 16(4): 306-310(in Chinese with English Abstract)
    Xu, D. Q., 2009. Geological Setting, Features and Origin of the Sumochagan Obo Supre-Large Fluorite Mineralized District: [Dissertation]. Chinese Academy of Geological Sciences, Beijing. 1-145(in Chinese with English Abstract)
    Xu, Z. Z., Zhang, S. T., 2013. Spatiotemporal Evolution Sequence of Fluorite Ore and Analysis and Evaluation of Typical Fluorite Ore Fields in Zhejiang Province. Geological Publishing House, Beijing. 102-132(in Chinese)
    Yang, C. C., Han, G. M., Yang, Y. B., et al., 2013. The Application of Gacity Method and Magnetic Method in Prospecting Work in DaXing'an Mountain Range. Progress in Geophysics, 28(3): 1472-1482(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201303041.htm
    Yang, Z. M., Hou, Z. Q., Yang, Z. S., et al., 2012. Application of Short Wavelength Infrared (SWIR) Technique in Exploration of Poorly Eroded Porphyry Cu District: A Case Study of Niancun Ore Distric, Tiber. Minerals Deposits, 31(4): 699-717(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201204005.htm
    Yu, W., Wang, M., Shang, P. Q., et al., 2019. Application of High-Caauracy Ground Survey to the Exploration of Fluorite Deposits. Journal of Geology, 43(3): 428-433(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-JSDZ201903012.htm
    Yuan, M. W., Li, S. R., Li, C. L., et al., 2018. Geochemical and Isotopic Composition of Auriferous Pyrite from the Yongxin Gold Deposit, Central Asian Orogenic Belt: Implication for Ore Genesis. Ore Geology Reviews, 93: 255-267. https://doi.org/10.1016/j.oregeorev.2018.01.002
    Zeng, Q. D., Liu, J. M., Zhang, Z. L., 2010. Re-Os Geochronology of Porphyry Molybdenum Deposit in South Segment of Da Hinggan Mountains, Northeast China. Journal of Earth Science, 21(4): 392-401. https://doi.org/10.1007/s12583-010-0102-4
    Zeng, Z. F., 2013. Geochemical Characteristics and Genesis of Fluorite Deposits in Linxi Region, Inner Mongolia: [Dissertation]. China University of Geoscineces, Beijing. 23-65(in Chinese)
    Zhai, D., Williams-Jones, A. E., Liu, J., et al., 2020. The Genesis of the Giant Shuangjianzishan Epithermal Ag-Pb-Zn Deposit, Inner Mongolia, Northeastern China. Economic Geology, 115(1): 101-128. https://doi.org/10.5382/econgeo.4695
    Zhang, H. Y., Zhai, D. G., Liu, J. J., et al., 2019. Fluid Inclusion and Stable (H-O-C) Isotope Studies of the Giant Shuangjianzishan Epithermal Ag-Pb-Zn Deposit, Inner Mongolia, NE China. Ore Geology Reviews, 115(B6): 103170. https://doi.org/10.1016/j.oregeorev.2019.103170
    Zhang, J. H., Gao, S., Ge, W. C., et al., 2010. Geochronology of the Mesozoic Volcanic Rocks in the Great Xing'an Range, Northeastern China: Implications for Subduction-Induced Delamination. Chemical Geology, 276(3/4): 144-165. https://doi.org/10.1016/j.chemgeo.2010.05.013
    Zhang, S. T., Cao, H. W., Zhen, L., et al., 2014. Characteristics of Ore-Forming Fluids and Mineralization Processes of the Shuitou Fluorite Deposit in Linxi, Inner Mongolia Autonomous Region. Earth Science Frontiers, 21(5): 31-40(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201405005.htm
    Zhang, X. B., Wang, K. Y., Wang, C. Y., et al., 2017. Age, Genesis, and Tectonic Setting of the Mo-W Mineralized Dongshanwan Granite Porphyry from the Xilamulun Metallogenic Belt, NE China. Journal of Earth Science, 28(3): 433-446. https://doi.org/10.1007/s12583-016-0934-1
    Zhang, Y. S., Wang, L., Gao, Y. Z., 2020. Geological Characteristics, Types and Utilization Value of Shuitou Fluorite Deposit in Linxi County, Inner Mongolia. Geology in China. https://kns.cnki.net/kcms/detail/11.1167.P.20200805.1340.004.html (in Chinese with English Abstract)
    Zhang, Z. L., Zeng, Q. D., Ye, J., et al., 2008. Application of VLF-EM in Forecasting of Ore Exploration. Geology and Prospecting, 44(1): 67-69(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200801015.htm
    Zhao, Y., Pei, Q., Zhang, S. T., et al., 2020. Formation Timing and Genesis of M Adiu Fluorite Deposit in East Qinling, China: C onstraints from Fluid Inclusion, Geochemistry, and H-O-Sr-Nd Isotopes. Geological Journal, 55(4): 2532-2549. https://doi.org/10.1002/gj.3522
    Zhu, L. P., Bao, X. H., 1996. Remote Sensing Prospecting for Fluorite Deposit in Wuyi, Zhejiang Province. Remote Sensing of Environment, 11(2): 267-272(in Chinese with English Abstract) http://www.jourlib.org/paper/1468076
    Zhu, P. P., Cheng, Q. M., Chen, G. X., 2019. New Fractal Evidence of Pacific Plate Subduction in the Late Mesozoic, Great Xing'an Range, Northeast China. Journal of Earth Science, 30(5): 1031-1040. https://doi.org/10.1007/s12583-019-1216-y
    Zhu, Y. F., An, F., Feng, W. Y., et al., 2016. Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region. Journal of Earth Science, 27(3): 491-506. https://doi.org/10.1007/s12583-016-0673-7
    Zou, H., Pirajno, F., Zhang, Q., et al., 2019. New Evidence from the Wuliji'Oboo Fluorite Deposit for the Role of the Paleo-Pacific Plate and Mongol-Okhotsk Suture in Creating Extensive Fluorite Mineralization in the Great Xing'an Range, NE China. Geological Journal, 55(5): 3654-3678. https://doi.org/10.1002/gj.3601
    Zou, L., Chen, X. Q., 2005. Geochemical Anomalies of Calcium and Fluorine can Delineate the Target Area of Fluorite Ore. West-China Exploration Engineering, 17(3): 85-86(in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views(371) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return