Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 3
Jun 2023
Turn off MathJax
Article Contents
Xin Li, Liang Liu, Xiaoying Liao, Yongsheng Gai, Tuo Ma, Guojian Geng, Tong Li. Metamorphic Evolution of Garnet Amphibolite from the Yaganbuyang Area in the South Altyn Orogen, West China: Insights from Phase Equilibria Modeling and Geochronology. Journal of Earth Science, 2023, 34(3): 640-657. doi: 10.1007/s12583-021-1439-6
Citation: Xin Li, Liang Liu, Xiaoying Liao, Yongsheng Gai, Tuo Ma, Guojian Geng, Tong Li. Metamorphic Evolution of Garnet Amphibolite from the Yaganbuyang Area in the South Altyn Orogen, West China: Insights from Phase Equilibria Modeling and Geochronology. Journal of Earth Science, 2023, 34(3): 640-657. doi: 10.1007/s12583-021-1439-6

Metamorphic Evolution of Garnet Amphibolite from the Yaganbuyang Area in the South Altyn Orogen, West China: Insights from Phase Equilibria Modeling and Geochronology

doi: 10.1007/s12583-021-1439-6
More Information
  • Corresponding author: Liang Liu, liuliang@nwu.edu.cn
  • Received Date: 19 Oct 2020
  • Accepted Date: 19 Feb 2021
  • Available Online: 08 Jun 2023
  • Issue Publish Date: 30 Jun 2023
  • Garnet amphibolite is one of the common metabasic rocks exposed in collisional orogenic belt, the metamorphic evolution of which is associated closely with orogenic processes. The Yaganbu-yang garnet amphibolites occur as blocks hosted by massive granitic gneiss, and consist mainly of hornblende, garnet, clinopyroxene, plagioclase, biotite, quartz with minor rutile/ilmenite and phengitic muscovite. These garnet amphibolites were interpreted to have experienced decompression-dominated evolution that can be divided into three generations (M1, M2, M3), based on the petrographic observations and phase equilibria modeling calculated by THERMOCALC. The assemblage of the first generation (M1) is inferred to possibly be dominated by garnet + omphacite + rutile + phengite + quartz, which is modeled to be roughly stable at P > 25 kbar and T > 800 ℃. The second generation (M2) is characterized by the local symplectites of clinopyroxene + plagioclase produced from omphacite, indicating a near-isothermal decompression from ~23.8 kbar/875 ℃ to ~10 kbar/852 ℃. The third generation (M3) is marked by the kelyphitic rims of plagioclase + hornblende around garnet and of hornblende + ilmenite around clinopyroxene, involving the late-stage retrogression from ~9.8 kbar/848 ℃ to ~5.8 kbar/645 ℃. Zircon U-Pb dating yielded one group metamorphic age of c. 500 Ma that is interpreted to represent the timing of the peak eclogite-facies metamorphism. A combination of petrography observation, phase modeling results and geochronology data suggests that the Yaganbuyang garnet amphibolites have once undergone eclogite-facies metamorphism by continental subduction rather than crustal thickening. Therefore, the Yaganbuyang area is an eastward extension part of the South Altyn HP-UHP metamorphic belt.

     

  • loading
  • Agard, P., Yamato, P., Jolivet, L., et al., 2009. Exhumation of Oceanic Blueschists and Eclogites in Subduction Zones: Timing and Mechanisms. Earth-Science Reviews, 92(1/2): 53–79. https://doi.org/10.1016/j.earscirev.2008.11.002
    Bader, T., Zhang, L. F., Li, X. W., 2019. Is the Songshugou Complex, Qinling Belt, China: An Eclogite Facies Neoproterozoic Ophiolite? Journal of Earth Science, 30(3): 460–475. https://doi.org/10.1007/s12583-019-1221-1
    Baldwin, J. A., Powell, R., Williams, M. L., et al., 2007. Formation of Eclogite, and Reaction during Exhumation to Mid-Crustal Levels, Snowbird Tectonic Zone, Western Canadian Shield. Journal of Metamorphic Geology, 25(9): 953–974. https://doi.org/10.1111/j.1525-1314.2007.00737.x
    Baldwin, J. A., Powell, R., White, R. W., et al., 2015. Using Calculated Chemical Potential Relationships to Account for Replacement of Kyanite by Symplectite in High Pressure Granulites. Journal of Metamorphic Geology, 33(3): 311–330. https://doi.org/10.1111/jmg.12122
    Cao, Y. T., Liu, L., Wang, C., et al., 2009. P-T Path of Early Paleozoic Pelitic High-Pressure Granulite from Danshiiiquan Area in Altyn Tagh. Acta Petrologica Sinica, 25(9): 2260–2270 (in Chinese with English Abstract) http://www.oalib.com/paper/1470536
    Cao, Y. T., Liu, L., Wang, C., et al., 2013. Determination and Implication of the HP Pelitic Granulite from the Munabulake Area in the South Altyn Tagh. Acta Petrologica Sinica, 29: 1727–1739 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201305021.htm
    Cao, Y. T., Liu, L., Wang, C., et al., 2015. Implication of Geochronological Data for the Para-Metamorphic Rocks from Bashekurgan Group of Changcheng System in Munabulake Area, South Altyn Tagh. Geological Bulletin of China, 34(8): 1447–1459 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-2552.2015.08.005
    Cao, Y. T., Liu, L., Chen, D. L., et al., 2017. Partial Melting during Exhumation of Paleozoic Retrograde Eclogite in North Qaidam, Western China. Journal of Asian Earth Sciences, 148(15): 223–240. https://doi.org/10.1016/j.jseaes.2017.09.009
    Cao, Y. T., Liu, L., Yang, W. Q., et al., 2019. Reconstruction the Process of Partial Melting of the Retrograde Eclogite from the North Qaidam, Western China: Constraints from Titanite U-Pb Dating and Mineral Chemistry. Journal of Earth Science, 30(6): 1166–1177. https://doi.org/10.1007/s12583-019-1253-6
    Che, Z. C., Sun, Y., 1996. The Age of the Altun Granulite Facies Complex and the Basement of the Tarim Basin. Regional Geology of China, 15(1): 51–57 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD601.007.htm
    Chen, X. Y., Tong, L. X., Zhang, C. L., et al., 2015. Retrograde Garnet Amphibolite from Eclogite of the Zhejiang Longyou Area: New Evidence of the Caledonian Orogenic Event in the Cathaysia Block. Chinese Science Bulletin, 60(13): 1207–1217 (in Chinese) doi: 10.1360/N972015-00094
    Chen, Y., 2019. Different Metamorphic Records between Subduction Initiation and Mature Subduction. Bulletin of Mineralogy Petrology and Geochemistry, 38(3): 490–498. https://doi.org/10.19658/j.issn.1007- 2802.2019.38.050 (in Chinese with English Abstract) doi: 10.19658/j.issn.1007-2802.2019.38.050
    Clarke, G. L., Powell, R., Fitzherbert, J. A., 2006. The Lawsonite Paradox: A Comparison of Field Evidence and Mineral Equilibria Modelling. Journal of Metamorphic Geology, 24(8): 715–725. https://doi.org/10.1111/j.1525-1314.2006.00664.x
    Coggon, R., Holland, T. J. B., 2002. Mixing Properties of Phengitic Micas and Revised Garnet-Phengite Thermobarometers. Journal of Metamorphic Geology, 20(7): 683–696. https://doi.org/10.1046/j.1525-1314.2002.00395.x
    Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469–500. https://doi.org/10.2113/0530469
    Dale, J., Holland, T., Powell, R., 2000. Hornblende-Garnet-Plagioclase Thermobarometry: A Natural Assemblage Calibration of the Thermodynamics of Hornblende. Contributions to Mineralogy and Petrology, 140(3): 353–362. https://doi.org/10.1007/s004100000187
    Davidson, A., 1990. Evidence for Eclogite Metamorphism in the Southwestern Grenville Province. Geological Survey of Canada Paper, 90-1C: 113–118
    Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermodynamic Model for Clino- and Orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6): 631–656. https://doi.org/10.1111/j.1525-1314.2007.00720.x
    Diener, J. F. A., Powell, R., 2012. Revised Activity-Composition Models for Clinopyroxene and Amphibole. Journal of Metamorphic Geology, 30(2): 131–142. https://doi.org/10.1111/j.1525-1314.2011.00959.x
    Dong, J., Wei, C. J., Geoffrey, G. L., et al., 2018. Metamorphic Evolution during Deep Subduction and Exhumation of Continental Crust: Insights from Felsic Granulites in South Altyn Tagh, West China. Journal of Petrology, 59(10): 1965–1990. https://doi.org/10.1093/petrology/egy086
    Dong, J., Wei, C. J., Zhang, J. X., 2019. Ultra High Temperature Metamorphism of Mafic Granulites from South Altyn Orogen, West China: A Result from the Rapid Exhumation of Deeply Subducted Continental Crust. Journal of Metamorphic Geology, 37(3): 315–338. https://doi.org/10.1111/jmg.12464
    Dong, J., Wei, C. J., Chen, J., et al., 2020. P-T-t Path of Garnetites in South Altyn Tagh, West China: A Complete Record of the Ultradeep Subduction and Exhumation of Continental Crust. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018881. https://doi.org/10.1029/2019jb018881
    Eide, E. A., Liou, J. G., 2000. High-Pressure Blueschists and Eclogites in Hong'an: A Framework for Addressing the Evolution of High- and Ultrahigh-Pressure Rocks in Central China. Lithos, 52(1/2/3/4): 1–22. https://doi.org/10.1016/S0024-4937(99)00081-x
    Elvevold, S., Gilotti, J., 2000. Pressure-Temperature Evolution of Retrogressed Kyanite Eclogites, Weinschenk Island, North-East Greenland Caledonides. Lithos, 53(2): 127–147. https://doi.org/10.1016/s0024-4937(00)00014-1
    Gai, Y. S., Liu, L., Wang, C., et al., 2017. Discovery of Coesite in Eclogite from Keqike Jianggalesayi: New Evidence for Ultrahigh-Pressure Metamorphism in South Altyn Tagh, Northwestern China. Science Bulletin, 62(15): 1048–1051. https://doi.org/10.1016/j.scib.2017.07.008
    Gai, Y. S., 2018. The Difference in Exhumation and the Anatectic Melting of High-Ultrahigh Pressure Metamorphic Rocks from South Altyn Tagh: [Dissertation]. Northwestern University, Xi'an (in Chinese with English Abstract)
    Godard, G., Mabit, J. L., 1998. Peraluminous Sapphirine Formed during Retrogression of a Kyanite-Bearing Eclogite from Pays de Léon, Armorican Massif, France. Lithos, 43(1): 15–29. https://doi.org/10.1016/s0024-4937(98)00004-8
    Grant, S. M., 1989. Tectonic Implications from Sapphirine-Bearing Lithologies, South-West Grenville Province, Canada. Journal of Metamorphic Geology, 7(6): 583–598. https://doi.org/10.1111/j.1525-1314.1989.tb00620.x
    Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9): 845–869. https://doi.org/10.1111/jmg.12211
    Grujic, D., Warren, C. J., Wooden, J. L., 2011. Rapid Synconvergent Exhumation of Miocene-Aged Lower Orogenic Crust in the Eastern Himalaya. Lithosphere, 3(5): 346–366. https://doi.org/10.1130/l154.1
    Guillot, S., Hattori, K., Agard, P., et al., 2009. Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review. In: Lallemand, S., Funiciello, F., eds., Subduction Zone Geodynamics. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. 175–205. https://doi.org/10.1007/978-3-540-87974-9_10
    Guo, M. J., Qian, J. H., Yin, C. Q., et al., 2021. Metamorphic Evolution and Tectonic Implications of Garnet Amphibo-lite from Yunzhongshan Terrane in Central North China Craton. Earth Science, 46(11): 3892–3909. https://doi.org/10.3799/dqkx.2021.016 (in Chinese with English Abstract)
    Hanchar, J. M., Miller, C. F., 1993. Zircon Zonation Patterns as Revealed by Cathodoluminescence and Backscattered Electron Images: Implications for Interpretation of Complex Crustal Histories. Chemical Geology, 110(1/2/3): 1–13. https://doi.org/10.1016/0009-2541(93)90244-d
    Hacker, B. R., Gerya, T. V., 2013. Paradigms, New and Old, for Ultrahigh-Pressure Tectonism. Tectonophysics, 603(5): 79–88. https://doi.org/10.1016/j.tecto.2013.05.026
    Holland, T., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formula-tion. Contributions to Mineralogy and Petrology, 145: 492–501. https://doi.org/10.1007/s00410-003-0464-z
    Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333–383. https://doi.org/10.1111/j.1525-1314.2010. 00923.x doi: 10.1111/j.1525-1314.2010.00923.x
    Janák, M., Krogh Ravna, E. J., Kullerud, K., et al., 2013. Discovery of Diamond in the Tromsø Nappe, Scandinavian Caledonides (N. Norway). Journal of Metamorphic Geology, 31(6): 691–703. https://doi.org/10.1111/jmg.12040
    Johansson, L., Möller, C., 1986. Formation of Sapphirine during Retrogression of a Basic High-Pressure Granulite, Roan, Western Gneiss Region, Norway. Contributions to Mineralogy and Petrology, 94(1): 29–41. https://doi.org/10.1007/bf00371223
    Kohn, M. J., Spear, F., 1990. Two New Barometers for Garnet Amphibolites with Applications to Eastern Vermont. American Mineralogist, 75: 89–96 http://ees2.geo.rpi.edu/MetaPetaRen/Publications/PDFpapers/Kohn%26Spear%20Hb-Pl%202.pdf
    Katayama, I., Maruyama, S., 2009. Inclusion Study in Zircon from Ultrahigh-Pressure Metamorphic Rocks in the Kokchetav Massif: An Excellent Tracer of Metamorphic History. Journal of the Geological Society, 166(4): 783–796. https://doi.org/10.1144/0016-76492008-019
    Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35(1): 219–246. https://doi.org/10.1127/ejm/9/3/0623
    Li, Y. S., Zhang, J. X., Yu, S. Y., et al., 2015. Origin of Early Paleozoic Garnet Peridotite and Associated Garnet Pyroxenite in the South Altyn Tagh, NW China: Constraints from Geochemistry, SHRIMP U-Pb Zircon Dating and Hf Isotopes. Journal of Asian Earth Sciences, 100: 60–77. https://doi.org/10.1016/j.jseaes.2015.01.004
    Liao, X. Y., Liu, L., Wang, Y. W., et al., 2016. Multi-Stage Metamorphic Evolution of Retrograde Eclogite with a Granulite-Facies Overprint in the Zhaigen Area of the North Qinling Belt, China. Gondwana Research, 30: 79–96. https://doi.org/10.1016/j.gr.2015.09.012
    Liati, A., Seidel, E., 1994. Sapphirine and Högbomite in Overprinted Kyanite-Eclogites of Central Rhodope, N. Greece: First Evidence of Granulite-Facies Metamorphism. European Journal of Mineralogy, 6(5): 733–738. https://doi.org/10.1127/ejm/6/5/0733
    Liati, A., Seidel, E., 1996. Metamorphic Evolution and Geochemistry of Kyanite Eclogites in Central Rhodope, Northern Greece. Contributions to Mineralogy and Petrology, 123: 293–307. https://doi.org/10.1007/s004100050157
    Liou, J. G., Zhang, R. Y., Ernst, W. G., et al., 1998. Chapter 2. High-Pressure Minerals from Deeply Subducted Metamorphic Rocks. Reviews in Mineralogy and Geochemistry, 37(1): 33–96. https://doi.org/10.1515/9781501509179-004
    Liou, J. G., Tsujimori, T., Zhang, R. Y., et al., 2004. Global UHP Metamorphism and Continental Subduction/Collision: The Himalayan Model. International Geology Review, 46(1): 1–27. https://doi.org/10.2747/0020-6814.46.1.1
    Liu, F. L., Xue, H. M., Xu, Z. Q., et al., 2006. SHRIMP U-Pb Zircon Dating from Eclogite Lens in Marble, Shuanghe Area, Dabie UHP Terrane: Restriction on the Prograde, UHP and Retrograde Metamorphic Ages. Acta Petrologica Sinica, 22(7): 1761–1778 (in Chinese with English Abstract) http://adsabs.harvard.edu/abs/2006AGUFM.V31A0564L
    Liu, J., Bohlen, S. R., Ernst, W. G., 1996. Stability of Hydrous Phases in Subducting Oceanic Crust. Earth and Planetary Science Letters, 143(1/2/3/4): 161–171. https://doi.org/10.1016/0012-821x(96)00130-6
    Liu, J. B., Ye, K., 2004. Transformation of Garnet Epidote Amphibolite to Eclo-gite, Western Dabie Mountains, China. Journal of Metamorphic Geology, 22(5): 383–394. https://doi.org/10.1111/j.1525-1314.2004.00520.x
    Liu, L., Che, Z. C., Wang, Y., et al., 1998. Sm-Nd Isochron Age Evidence of Early Paleozoic Ophiolite in Jinmangya Area. Chinese Science Bulletin, 43(8): 880–883 (in Chinese) doi: 10.1360/csb1998-43-8-880
    Liu, L., Che, Z. C., Wang, Y., et al., 1999. The Petrological Characters and Geotectonic Setting of High-Pressure Metamorphic Rock Belts in Altun Mountains. Acta Petrologica Sinica, 15(1): 57–64 (in Chinese with English Abstract)
    Liu, L., Sun, Y., Xiao, P. X., et al., 2002. Discovery of Ultrahighpressure Magnesite-Bearing Garnet Lherzolite (> 3.8 GPa) in the Altyn Tagh, Northwest China. Chinese Science Bulletin, 47(11): 881–886. https://doi.org/10.1360/02tb9197
    Liu, L., Sun, Y., Luo, J. H., et al., 2004. Ultra-High Pressure Metamorphism of Granitic Gneiss in the Yinggelisayi Area, Altun Mountains, NW China. Science in China Series D: Earth Sciences, 47(4): 338–346. https://doi.org/10.1360/02yd0466
    Liu, L., Chen, D. L., Zhang, A. D., et al., 2005. Ultrahigh Pressure (> 7 GPa) Gneissic K-Feldspar (-Bearing) Garnet Clinopyroxenite in the Altyn Tagh, NW China: Evidence from Clinopyroxene Exsolution in Garnet. Science in China Series D: Earth Sciences, 48(7): 1000–1010. https://doi.org/10.1360/04yd0166
    Liu, L., Zhang, J. F., Green, H. W. Ⅱ, et al., 2007. Evidence of Former Stishovite in Metamorphosed Sediments, Implying Subduction to > 350 km. Earth and Planetary Science Letters, 263(3/4): 180–191. https://doi.org/10.1016/j.epsl.2007.08.010
    Liu, L., Wang, C., Chen, D. L., et al., 2009. Petrology and Geochronology of HP-UHP Rocks from the South Altyn Tagh, Northwestern China. Journal of Asian Earth Sciences, 35(3/4): 232–244. https://doi.org/10.1016/j.jseaes.2008.10.007
    Liu, L., Yang, J. X., Chen, D. L., et al., 2010. Progress and Controversy in the Study of HP-UHP Metamorphic Terranes in the West and Middle Central China Orogen. Journal of Earth Science, 21(5): 581–597. https://doi.org/10.1007/s12583-010-0128-7
    Liu, L., Wang, C., Cao, Y. T., et al., 2012. Geochronology of Multi-Stage Metamorphic Events: Constraints on Episodic Zircon Growth from the UHP Eclogite in the South Altyn, NW China. Lithos, 136–139: 10–26. https://doi.org/10.1016/j.lithos.2011.09.014
    Liu, L., Kang, L., Cao, Y. T., et al., 2015. Early Paleozoic Granitic Magmatism Related to the Processes from Subduction to Collision in South Altyn, NW China. Science China Earth Sciences, 58(9): 1513–1522. https://doi.org/10.1007/s11430-015-5151-1
    Liu, L., Liao, X. Y., Wang, Y. W., et al., 2016. Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt in Central China: Insights on Continental Deep Subduction and Multiphase Exhumation. Earth-Science Reviews, 159: 58–81. https://doi.org/10.1016/j.earscirev. 2016.05.005 doi: 10.1016/j.earscirev.2016.05.005
    Liu, L., Zhang, J. F., Cao, Y. T., et al., 2018. Evidence of Former Stishovite in UHP Eclogite from the South Altyn Tagh, Western China. Earth and Planetary Science Letters, 484: 353–362. https://doi.org/10.1016/j.epsl.2017.12.023
    Liu, P. L., Jin, Z. M., 2022. Metamorphic Evolution of a Tremolite Marble from the Dabie UHP Terrane, China: A Focus on Zircon. Journal of Earth Science, 33(2): 493–506. https://doi.org/10.1007/s12583-020-1363-1
    Liu, X. C., Wei, C. J., Li, S. Z., et al., 2004. Thermobaric Structure of a Traverse across Western Dabieshan: Implications for Collision Tectonics between the Sino-Korean and Yangtze Cratons. Journal of Metamorphic Geology, 22(4): 361–379. https://doi.org/10.1111/j.1525-1314.2004.00519.x
    Liu, Y. S., 2011. Guide Book for ICPMSDataCal. China University of Geosciences, Wuhan. 1–32 (in Chinese)
    López, S. V., Gómez, P. M. Y., Azor, A., et al., 2003. Phase Diagram Sections Applied to Amphibolites: A Case Study from the Ossa-Morena/Central Iberian Variscan Suture (Southwestern Iberian Massif). Lithos, 68(1/2): 1–21. https://doi.org/10.1016/s0024-4937(03)00017-3
    Lou, Y. X., Wei, C. J., Liu, X. C., et al., 2013. Metamorphic Evolution of Garnet Amphibolite in the Western Dabieshan Eclogite Belt, Central China: Evidence from Petrography and Phase Equilibria Modeling. Journal of Asian Earth Sciences, 63: 130–138. https://doi.org/10.1016/j.jseaes.2012.11.031
    Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1/2): 94–107. https://doi.org/10.1016/j.precamres.2007.04.025
    Lü, Z., Wang, K., 2018. Metamorphic Evolution of Two Types of Garnet Amphibolites from UHP Terrane of Southwestern Tianshan, NW China. Earth Science, 43(1): 150–163 (in Chinese with English Abstract)
    Ma, T., Liu, L., Gai, Y. S., et al., 2018. Discovery of the High Pressure Granitic Granulite in South Altyn and It's Geological Significance. Acta Petrologica Sinica, 34(12): 3643–3657 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201812013.htm
    Miyashiro, A., 1994. Metamorphic Petrology. UCL Press Limited, London
    Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55–76. https://doi.org/10.1007/bf01226262
    Moulas, E., Kostopoulos, D., Connolly, J. A. D., et al., 2013. P-T Estimates and Timing of the Sapphirine-Bearing Metamorphic Overprint in Kyanite Eclogites from Central Rhodope, Northern Greece. Petrology, 21(5): 507–521. https://doi.org/10.1134/s0869591113050032
    Möller, C., 1998. Decompressed Eclogites in the Sveconorwegian (-Grenvillian) Orogen of SW Sweden: Petrology and Tectonic Implications. Journal of Metamorphic Geology, 16: 641–656. https://doi.org/10.1111/j.1525-1314.1998.00160.x
    Mustafa, H. A., Liao, F. X., Chen, N. S., et al., 2022. Early Paleoproterozoic Post-Collisional Basaltic Magmatism in Quanji Massif: Implications for Precambrian Plate Tectonic Regime in NW China. Journal of Earth Science, 33(3): 706–718. https://doi.org/10.1007/s12583-020-1062-y
    O'Brien, P. J., 1997. Garnet Zoning and Reaction Textures in Overprinted Eclogites, Bohemian Massif, European Variscides: A Record of Their Thermal History during Exhumation. Lithos, 41(1/2/3): 119–133. https://doi.org/10.1016/s0024-4937(97)82008-7
    O'Brien, P. J., Rötzler, J., 2003. High-Pressure Granulites: Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 21(1): 3–20. https://doi.org/10.1046/j.1525-1314.2003.00420.x
    Powell, R., Holland, T. J. B., 1988. An Internally Consistent Dataset with Uncertainties and Correlations: 3. Application to Geobarometry, Worked Examples and a Computer Program. Journal of Metamorphic Geology, 6(2): 173–204. https://doi.org/10.1111/j.1525-1314.1988.tb00415.x
    Powell, R., Holland, T. J. B., 2008. On Thermobarometry. Journal of Metamorphic Geology, 26(2): 155–179. https://doi.org/10.1111/j.1525-1314.2007.00756.x
    Qian, J. H., Wei, C. J., 2016. P-T-t Evolution of Garnet Amphibolites in the Wutai-Hengshan Area, North China Craton: Insights from Phase Equilibria and Geochronology. Journal of Metamorphic Geology, 34(5): 423–446. https://doi.org/10.1111/jmg.12186
    Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2
    Rubatto, D., Hermann, J., 2003. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps): Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 67(12): 2173–2187. https://doi.org/10.1016/s0016-7037(02)01321-2
    Rubatto, D., Regis, D., Hermann, J., et al., 2011. Yo-yo Subduction Recorded by Accessory Minerals in the Italian Western Alps. Nature Geoscience, 4(5): 338–342. https://doi.org/10.1038/ngeo1124
    Surour, A. A., 1995. Medium- to High-Pressure Garnet-Amphibolites from Gebel Zabara and Wadi Sikait, South Eastern Desert, Egypt. Journal of African Earth Sciences, 21(3): 443–457. https://doi.org/10.1016/0899-5362(95)00100-8
    Song, S. G., Yang, J. S., Xu, Z. Q., et al., 2003. Metamorphic Evolution of the Coesite-Bearing Ultrahigh-Pressure Terrane in the North Qaidam, Northern Tibet, NW China. Journal of Metamorphic Geology, 21(6): 631–644. https://doi.org/10.1046/j.1525-1314.2003.00469.x
    Sun, W. D., Williams, I. S., Li, S. G., 2002. Carboniferous and Triassic Eclogites in the Western Dabie Mountains, East-Central China: Evidence for Protracted Convergence of the North and South China Blocks. Journal of Metamorphic Geology, 20(9): 873–886. https://doi.org/10.1046/j.1525-1314.2002.00418.x
    Tual, L., Pitra, P., Möller, C., 2017. P-T Evolution of Precambrian Eclogite in the Sveconorwegian Orogen, SW Sweden. Journal of Metamorphic Geology, 35(5): 493–515. https://doi.org/10.1111/jmg.12242
    Wang, C., Liu, L., Chen, D. L., et al., 2011. Petrology, Geochemistry, Geochronology, and Metamorphic Evolution of Garnet Peridotites from South Altyn Tagh UHP Terrane, Northwestern China. Ultrahigh-Pressure Metamorphism. Elsevier, Amsterdam. 541–577. https://doi.org/10.1016/b978-0-12-385144-4.00016-3
    Wang, C., Liu, L., Yang, W. Q., et al., 2013. Provenance and Ages of the Altyn Complex in Altyn Tagh: Implications for the Early Neoproterozoic Evolution of Northwestern China. Precambrian Research, 230: 193–208. https://doi.org/10.1016/j.precamres.2013.02.003
    Wang, Y. W., Liu, L., Liao, X. Y., et al., 2016. Multi-Metamorphism of Amphibolite in the Qinling Complex, Qingyouhe Area: Revelation from Trace Elements and Mineral Inclusions in Zircons. Acta Petrologica Sinica, 32(5): 1467–1492 (in Chinese with English Abstract) http://search.cnki.net/down/default.aspx?filename=YSXB201605015&dbcode=CJFD&year=2016&dflag=pdfdown
    Warren, C. J., 2013. Exhumation of (Ultra-)High-Pressure Terranes: Concepts and Mechanisms. Solid Earth, 4(1): 75–92. https://doi.org/10.5194/se-4-75-2013
    Wei, C. J., Qian, J. H., Tian, Z. L., 2013. Metamorphic Evolution of Medium-Temperature Ultra-High Pressure (MT-UHP) Eclogites from the South Dabie Orogen, Central China: An Insight from Phase Equilibria Modelling. Journal of Metamorphic Geology, 31(7): 755–774. https://doi.org/10.1111/jmg.12043
    Wei, C. J., Powell, R., Clarke, G. L., 2004. Calculated Phase Equilibria for Low- and Medium-Pressure Metapelites in the KFMASH and KMnFMASH Systems. Journal of Metamorphic Geology, 22(5): 495–508. https://doi.org/10.1111/j.1525-1314.2004.00530.x
    White, R. W., Powell, R., Holland, T. J. B., et al., 2000. The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions: Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497–511. https://doi.org/10.1046/j.1525-1314.2000.00269.x
    White, R. W., Powell, R., Johnson, T. E., 2014a. The Effect of Mn on Mineral Stability in Metapelites Revisited: New a-x Relations for Manganese-Bearing Minerals. Journal of Metamorphic Geology, 32(8): 809–828. https://doi.org/10.1111/jmg.12095
    White, R. W., Powell, R., Holland, T. J. B., et al., 2014b. New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3): 261–286. https://doi.org/10.1111/jmg.12071
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
    Wiedenbeck, M., Hanchar, J. M., Peck, W. H., et al., 2004. Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, 28(1): 9–39. https://doi.org/10.1111/j.1751-908x.2004.tb01041.x
    Wu, K. K., Zhao, G. C., Sun, M., et al., 2013. Metamorphism of the Northern Liaoning Complex: Implications for the Tectonic Evolution of Neoarchean Basement of the Eastern Block, North China Craton. Geoscience Frontiers, 4(3): 305–320. https://doi.org/10.1016/j.gsf.2012.11.005
    XACGS (Xi'an Center of Geological Survey), 2003. Geological Map of the Suwushijie, Xinjiang China, Scale 1 : 250 000. Xi'an Center of Geological Survey, China Geological Survey, Xi'an (in Chinese with English Abstract)
    Xu, Y., Yang, Z. N., Deng, X., et al., 2021. Identification of Indosinian Tectonic Mélange Belt in West Dabie Orogenic Belt and Its Geological Significance. Earth Science, 46(4): 1173–1198. https://doi.org/10.3799/dqkx.2020.311 (in Chinese with English Abstract)
    Yang, J. S., Shi, R. D., Wu, C. L., et al., 2008. Petrology and SHRIMP Age of the Hongliugou Ophiolite at Milan, North AItun, at the Northern Margin of the Tibetan Plateau. Acta Petrologica Sinica, 24(7): 1567–1584 (in Chinese with English Abstract) http://www.researchgate.net/publication/282283369_Petrology_and_SHRIMP_age_of_the_Hongliugou_ophiolite_at_Milan_North_Altun_at_the_Northern_margin_of_the_Tibetan_plateau
    Zhang, A. D., Liu, L., Sun, Y., et al., 2004. SHRIMP U-Pb Zircon Ages for the UHP Metamorphosed Granitoid Gneiss in Altyn Tagh and Their Geological Significance. Chinese Science Bulletin, 49(23): 2527–2532. https://doi.org/10.1007/bf03183726
    Zhang, C. L., Zou, H. B., Li, H. K., et al., 2013. Tectonic Framework and Evolution of the Tarim Block in NW China. Gondwana Research, 23(4): 1306–1315. https://doi.org/10.1016/j.gr.2012.05.009
    Zhang, R. Y., Liou, J. G., 1994. Coesite-Bearing Eclogite in Henan Province, Central China: Detailed Petrography, Glaucophane Stability and P-T Path. European Journal of Mineralogy, 6(2): 217–234. https://doi.org/10.1127/ejm/6/2/0217
    Zhang, R. Y., Liou, J. G., Zheng, Y. F., et al., 2003. Transition of UHP Eclogites to Gneissic Rocks of Low-Amphibolite Facies during Exhumation: Evidence from the Dabie Terrane, Central China. Lithos, 70(3/4): 269–291. https://doi.org/10.1016/s0024-4937(03)00102-6
    Zhang, J. X., Zhang, Z. M., Xu, Z. Q., et al., 2001. Petrology and Geochronology of Eclogites from the Western Segment of the Altyn Tagh, Northwestern China. Lithos, 56(2/3): 187–206. https://doi.org/10.1016/s0024-4937(00)00052-9
    Zhang, J. X., Mattinson, C., Meng, F. C., et al., 2005. An Early Palaeozoic HP/HT Granulite-Garnet Peridotite Association in the South Altyn Tagh, NW China: P-T History and U-Pb Geochronology. Journal of Metamorphic Geology, 23(7): 491–510. https://doi.org/10.1111/j.1525-1314.2005.00585.x
    Zhang, J. X., Meng, F. C., Yu, S. Y., et al., 2007. Metamorphic History Recorded in High Pressure Mafic Granulites in the Luliangshan Mountains to the North of Qaidam Basin, Northwest China: Evidence from Petrology and Zircon SHRIMP Geochronology. Earth Science Frontiers, 14(1): 85–97 (in Chinese with English Abstract)
    Zhang, J. X., Mattinson, C. G., Yu, S. Y., et al., 2014. Combined Rutile-Zircon Thermometry and U-Pb Geochronology: New Constraints on Early Paleozoic HP/UHT Granulite in the South Altyn Tagh, North Tibet, China. Lithos, 200/201: 241–257. https://doi.org/10.1016/j.lithos.2014.05.006
    Zhao, G. C., Cawood, P., Lu, L. Z., 1999. Petrology and P-T History of the Wutai Amphibolites: Implications for Tectonic Evolution of the Wutai Complex, China. Precambrian Research, 93(2/3): 181–199. https://doi.org/10.1016/s0301-9268(98)00090-4
    Zheng, Y. F., Zhang, L. F., Liu, L., et al., 2013. Progress in the Study of Continental Deep Subduction and Ultrahigh Pressure Metamorphism. Bulletin of Mineralogy, Petrology and Geochemistry, 32(2): 135–158 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views(198) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return