Citation: | Xin Li, Liang Liu, Xiaoying Liao, Yongsheng Gai, Tuo Ma, Guojian Geng, Tong Li. Metamorphic Evolution of Garnet Amphibolite from the Yaganbuyang Area in the South Altyn Orogen, West China: Insights from Phase Equilibria Modeling and Geochronology. Journal of Earth Science, 2023, 34(3): 640-657. doi: 10.1007/s12583-021-1439-6 |
Garnet amphibolite is one of the common metabasic rocks exposed in collisional orogenic belt, the metamorphic evolution of which is associated closely with orogenic processes. The Yaganbu-yang garnet amphibolites occur as blocks hosted by massive granitic gneiss, and consist mainly of hornblende, garnet, clinopyroxene, plagioclase, biotite, quartz with minor rutile/ilmenite and phengitic muscovite. These garnet amphibolites were interpreted to have experienced decompression-dominated evolution that can be divided into three generations (M1, M2, M3), based on the petrographic observations and phase equilibria modeling calculated by THERMOCALC. The assemblage of the first generation (M1) is inferred to possibly be dominated by garnet + omphacite + rutile + phengite + quartz, which is modeled to be roughly stable at
Agard, P., Yamato, P., Jolivet, L., et al., 2009. Exhumation of Oceanic Blueschists and Eclogites in Subduction Zones: Timing and Mechanisms. Earth-Science Reviews, 92(1/2): 53–79. https://doi.org/10.1016/j.earscirev.2008.11.002 |
Bader, T., Zhang, L. F., Li, X. W., 2019. Is the Songshugou Complex, Qinling Belt, China: An Eclogite Facies Neoproterozoic Ophiolite? Journal of Earth Science, 30(3): 460–475. |
Baldwin, J. A., Powell, R., Williams, M. L., et al., 2007. Formation of Eclogite, and Reaction during Exhumation to Mid-Crustal Levels, Snowbird Tectonic Zone, Western Canadian Shield. Journal of Metamorphic Geology, 25(9): 953–974. https://doi.org/10.1111/j.1525-1314.2007.00737.x |
Baldwin, J. A., Powell, R., White, R. W., et al., 2015. Using Calculated Chemical Potential Relationships to Account for Replacement of Kyanite by Symplectite in High Pressure Granulites. Journal of Metamorphic Geology, 33(3): 311–330. https://doi.org/10.1111/jmg.12122 |
Cao, Y. T., Liu, L., Wang, C., et al., 2009. P-T Path of Early Paleozoic Pelitic High-Pressure Granulite from Danshiiiquan Area in Altyn Tagh. Acta Petrologica Sinica, 25(9): 2260–2270 (in Chinese with English Abstract) http://www.oalib.com/paper/1470536 |
Cao, Y. T., Liu, L., Wang, C., et al., 2013. Determination and Implication of the HP Pelitic Granulite from the Munabulake Area in the South Altyn Tagh. Acta Petrologica Sinica, 29: 1727–1739 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201305021.htm |
Cao, Y. T., Liu, L., Wang, C., et al., 2015. Implication of Geochronological Data for the Para-Metamorphic Rocks from Bashekurgan Group of Changcheng System in Munabulake Area, South Altyn Tagh. Geological Bulletin of China, 34(8): 1447–1459 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-2552.2015.08.005 |
Cao, Y. T., Liu, L., Chen, D. L., et al., 2017. Partial Melting during Exhumation of Paleozoic Retrograde Eclogite in North Qaidam, Western China. Journal of Asian Earth Sciences, 148(15): 223–240. https://doi.org/10.1016/j.jseaes.2017.09.009 |
Cao, Y. T., Liu, L., Yang, W. Q., et al., 2019. Reconstruction the Process of Partial Melting of the Retrograde Eclogite from the North Qaidam, Western China: Constraints from Titanite U-Pb Dating and Mineral Chemistry. Journal of Earth Science, 30(6): 1166–1177. https://doi.org/10.1007/s12583-019-1253-6 |
Che, Z. C., Sun, Y., 1996. The Age of the Altun Granulite Facies Complex and the Basement of the Tarim Basin. Regional Geology of China, 15(1): 51–57 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD601.007.htm |
Chen, X. Y., Tong, L. X., Zhang, C. L., et al., 2015. Retrograde Garnet Amphibolite from Eclogite of the Zhejiang Longyou Area: New Evidence of the Caledonian Orogenic Event in the Cathaysia Block. Chinese Science Bulletin, 60(13): 1207–1217 (in Chinese) doi: 10.1360/N972015-00094 |
Chen, Y., 2019. Different Metamorphic Records between Subduction Initiation and Mature Subduction. Bulletin of Mineralogy Petrology and Geochemistry, 38(3): 490–498. https://doi.org/10.19658/j.issn.1007- 2802.2019.38.050 (in Chinese with English Abstract) doi: 10.19658/j.issn.1007-2802.2019.38.050 |
Clarke, G. L., Powell, R., Fitzherbert, J. A., 2006. The Lawsonite Paradox: A Comparison of Field Evidence and Mineral Equilibria Modelling. Journal of Metamorphic Geology, 24(8): 715–725. https://doi.org/10.1111/j.1525-1314.2006.00664.x |
Coggon, R., Holland, T. J. B., 2002. Mixing Properties of Phengitic Micas and Revised Garnet-Phengite Thermobarometers. Journal of Metamorphic Geology, 20(7): 683–696. https://doi.org/10.1046/j.1525-1314.2002.00395.x |
Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469–500. https://doi.org/10.2113/0530469 |
Dale, J., Holland, T., Powell, R., 2000. Hornblende-Garnet-Plagioclase Thermobarometry: A Natural Assemblage Calibration of the Thermodynamics of Hornblende. Contributions to Mineralogy and Petrology, 140(3): 353–362. https://doi.org/10.1007/s004100000187 |
Davidson, A., 1990. Evidence for Eclogite Metamorphism in the Southwestern Grenville Province. Geological Survey of Canada Paper, 90-1C: 113–118 |
Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermodynamic Model for Clino- and Orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6): 631–656. https://doi.org/10.1111/j.1525-1314.2007.00720.x |
Diener, J. F. A., Powell, R., 2012. Revised Activity-Composition Models for Clinopyroxene and Amphibole. Journal of Metamorphic Geology, 30(2): 131–142. https://doi.org/10.1111/j.1525-1314.2011.00959.x |
Dong, J., Wei, C. J., Geoffrey, G. L., et al., 2018. Metamorphic Evolution during Deep Subduction and Exhumation of Continental Crust: Insights from Felsic Granulites in South Altyn Tagh, West China. Journal of Petrology, 59(10): 1965–1990. https://doi.org/10.1093/petrology/egy086 |
Dong, J., Wei, C. J., Zhang, J. X., 2019. Ultra High Temperature Metamorphism of Mafic Granulites from South Altyn Orogen, West China: A Result from the Rapid Exhumation of Deeply Subducted Continental Crust. Journal of Metamorphic Geology, 37(3): 315–338. https://doi.org/10.1111/jmg.12464 |
Dong, J., Wei, C. J., Chen, J., et al., 2020. P-T-t Path of Garnetites in South Altyn Tagh, West China: A Complete Record of the Ultradeep Subduction and Exhumation of Continental Crust. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018881. https://doi.org/10.1029/2019jb018881 |
Eide, E. A., Liou, J. G., 2000. High-Pressure Blueschists and Eclogites in Hong'an: A Framework for Addressing the Evolution of High- and Ultrahigh-Pressure Rocks in Central China. Lithos, 52(1/2/3/4): 1–22. https://doi.org/10.1016/S0024-4937(99)00081-x |
Elvevold, S., Gilotti, J., 2000. Pressure-Temperature Evolution of Retrogressed Kyanite Eclogites, Weinschenk Island, North-East Greenland Caledonides. Lithos, 53(2): 127–147. https://doi.org/10.1016/s0024-4937(00)00014-1 |
Gai, Y. S., Liu, L., Wang, C., et al., 2017. Discovery of Coesite in Eclogite from Keqike Jianggalesayi: New Evidence for Ultrahigh-Pressure Metamorphism in South Altyn Tagh, Northwestern China. Science Bulletin, 62(15): 1048–1051. https://doi.org/10.1016/j.scib.2017.07.008 |
Gai, Y. S., 2018. The Difference in Exhumation and the Anatectic Melting of High-Ultrahigh Pressure Metamorphic Rocks from South Altyn Tagh: [Dissertation]. Northwestern University, Xi'an (in Chinese with English Abstract) |
Godard, G., Mabit, J. L., 1998. Peraluminous Sapphirine Formed during Retrogression of a Kyanite-Bearing Eclogite from Pays de Léon, Armorican Massif, France. Lithos, 43(1): 15–29. https://doi.org/10.1016/s0024-4937(98)00004-8 |
Grant, S. M., 1989. Tectonic Implications from Sapphirine-Bearing Lithologies, South-West Grenville Province, Canada. Journal of Metamorphic Geology, 7(6): 583–598. https://doi.org/10.1111/j.1525-1314.1989.tb00620.x |
Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9): 845–869. https://doi.org/10.1111/jmg.12211 |
Grujic, D., Warren, C. J., Wooden, J. L., 2011. Rapid Synconvergent Exhumation of Miocene-Aged Lower Orogenic Crust in the Eastern Himalaya. Lithosphere, 3(5): 346–366. https://doi.org/10.1130/l154.1 |
Guillot, S., Hattori, K., Agard, P., et al., 2009. Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review. In: Lallemand, S., Funiciello, F., eds., Subduction Zone Geodynamics. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. 175–205. |
Guo, M. J., Qian, J. H., Yin, C. Q., et al., 2021. Metamorphic Evolution and Tectonic Implications of Garnet Amphibo-lite from Yunzhongshan Terrane in Central North China Craton. Earth Science, 46(11): 3892–3909. https://doi.org/10.3799/dqkx.2021.016 (in Chinese with English Abstract) |
Hanchar, J. M., Miller, C. F., 1993. Zircon Zonation Patterns as Revealed by Cathodoluminescence and Backscattered Electron Images: Implications for Interpretation of Complex Crustal Histories. Chemical Geology, 110(1/2/3): 1–13. https://doi.org/10.1016/0009-2541(93)90244-d |
Hacker, B. R., Gerya, T. V., 2013. Paradigms, New and Old, for Ultrahigh-Pressure Tectonism. Tectonophysics, 603(5): 79–88. https://doi.org/10.1016/j.tecto.2013.05.026 |
Holland, T., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formula-tion. Contributions to Mineralogy and Petrology, 145: 492–501. https://doi.org/10.1007/s00410-003-0464-z |
Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333–383. https://doi.org/10.1111/j.1525-1314.2010. 00923.x doi: 10.1111/j.1525-1314.2010.00923.x |
Janák, M., Krogh Ravna, E. J., Kullerud, K., et al., 2013. Discovery of Diamond in the Tromsø Nappe, Scandinavian Caledonides (N. Norway). Journal of Metamorphic Geology, 31(6): 691–703. https://doi.org/10.1111/jmg.12040 |
Johansson, L., Möller, C., 1986. Formation of Sapphirine during Retrogression of a Basic High-Pressure Granulite, Roan, Western Gneiss Region, Norway. Contributions to Mineralogy and Petrology, 94(1): 29–41. https://doi.org/10.1007/bf00371223 |
Kohn, M. J., Spear, F., 1990. Two New Barometers for Garnet Amphibolites with Applications to Eastern Vermont. American Mineralogist, 75: 89–96 http://ees2.geo.rpi.edu/MetaPetaRen/Publications/PDFpapers/Kohn%26Spear%20Hb-Pl%202.pdf |
Katayama, I., Maruyama, S., 2009. Inclusion Study in Zircon from Ultrahigh-Pressure Metamorphic Rocks in the Kokchetav Massif: An Excellent Tracer of Metamorphic History. Journal of the Geological Society, 166(4): 783–796. https://doi.org/10.1144/0016-76492008-019 |
Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35(1): 219–246. https://doi.org/10.1127/ejm/9/3/0623 |
Li, Y. S., Zhang, J. X., Yu, S. Y., et al., 2015. Origin of Early Paleozoic Garnet Peridotite and Associated Garnet Pyroxenite in the South Altyn Tagh, NW China: Constraints from Geochemistry, SHRIMP U-Pb Zircon Dating and Hf Isotopes. Journal of Asian Earth Sciences, 100: 60–77. https://doi.org/10.1016/j.jseaes.2015.01.004 |
Liao, X. Y., Liu, L., Wang, Y. W., et al., 2016. Multi-Stage Metamorphic Evolution of Retrograde Eclogite with a Granulite-Facies Overprint in the Zhaigen Area of the North Qinling Belt, China. Gondwana Research, 30: 79–96. https://doi.org/10.1016/j.gr.2015.09.012 |
Liati, A., Seidel, E., 1994. Sapphirine and Högbomite in Overprinted Kyanite-Eclogites of Central Rhodope, N. Greece: First Evidence of Granulite-Facies Metamorphism. European Journal of Mineralogy, 6(5): 733–738. https://doi.org/10.1127/ejm/6/5/0733 |
Liati, A., Seidel, E., 1996. Metamorphic Evolution and Geochemistry of Kyanite Eclogites in Central Rhodope, Northern Greece. Contributions to Mineralogy and Petrology, 123: 293–307. https://doi.org/10.1007/s004100050157 |
Liou, J. G., Zhang, R. Y., Ernst, W. G., et al., 1998. Chapter 2. High-Pressure Minerals from Deeply Subducted Metamorphic Rocks. Reviews in Mineralogy and Geochemistry, 37(1): 33–96. https://doi.org/10.1515/9781501509179-004 |
Liou, J. G., Tsujimori, T., Zhang, R. Y., et al., 2004. Global UHP Metamorphism and Continental Subduction/Collision: The Himalayan Model. International Geology Review, 46(1): 1–27. https://doi.org/10.2747/0020-6814.46.1.1 |
Liu, F. L., Xue, H. M., Xu, Z. Q., et al., 2006. SHRIMP U-Pb Zircon Dating from Eclogite Lens in Marble, Shuanghe Area, Dabie UHP Terrane: Restriction on the Prograde, UHP and Retrograde Metamorphic Ages. Acta Petrologica Sinica, 22(7): 1761–1778 (in Chinese with English Abstract) http://adsabs.harvard.edu/abs/2006AGUFM.V31A0564L |
Liu, J., Bohlen, S. R., Ernst, W. G., 1996. Stability of Hydrous Phases in Subducting Oceanic Crust. Earth and Planetary Science Letters, 143(1/2/3/4): 161–171. https://doi.org/10.1016/0012-821x(96)00130-6 |
Liu, J. B., Ye, K., 2004. Transformation of Garnet Epidote Amphibolite to Eclo-gite, Western Dabie Mountains, China. Journal of Metamorphic Geology, 22(5): 383–394. https://doi.org/10.1111/j.1525-1314.2004.00520.x |
Liu, L., Che, Z. C., Wang, Y., et al., 1998. Sm-Nd Isochron Age Evidence of Early Paleozoic Ophiolite in Jinmangya Area. Chinese Science Bulletin, 43(8): 880–883 (in Chinese) doi: 10.1360/csb1998-43-8-880 |
Liu, L., Che, Z. C., Wang, Y., et al., 1999. The Petrological Characters and Geotectonic Setting of High-Pressure Metamorphic Rock Belts in Altun Mountains. Acta Petrologica Sinica, 15(1): 57–64 (in Chinese with English Abstract) |
Liu, L., Sun, Y., Xiao, P. X., et al., 2002. Discovery of Ultrahighpressure Magnesite-Bearing Garnet Lherzolite (> 3.8 GPa) in the Altyn Tagh, Northwest China. Chinese Science Bulletin, 47(11): 881–886. |
Liu, L., Sun, Y., Luo, J. H., et al., 2004. Ultra-High Pressure Metamorphism of Granitic Gneiss in the Yinggelisayi Area, Altun Mountains, NW China. Science in China Series D: Earth Sciences, 47(4): 338–346. https://doi.org/10.1360/02yd0466 |
Liu, L., Chen, D. L., Zhang, A. D., et al., 2005. Ultrahigh Pressure (> 7 GPa) Gneissic K-Feldspar (-Bearing) Garnet Clinopyroxenite in the Altyn Tagh, NW China: Evidence from Clinopyroxene Exsolution in Garnet. Science in China Series D: Earth Sciences, 48(7): 1000–1010. https://doi.org/10.1360/04yd0166 |
Liu, L., Zhang, J. F., Green, H. W. Ⅱ, et al., 2007. Evidence of Former Stishovite in Metamorphosed Sediments, Implying Subduction to > 350 km. Earth and Planetary Science Letters, 263(3/4): 180–191. https://doi.org/10.1016/j.epsl.2007.08.010 |
Liu, L., Wang, C., Chen, D. L., et al., 2009. Petrology and Geochronology of HP-UHP Rocks from the South Altyn Tagh, Northwestern China. Journal of Asian Earth Sciences, 35(3/4): 232–244. https://doi.org/10.1016/j.jseaes.2008.10.007 |
Liu, L., Yang, J. X., Chen, D. L., et al., 2010. Progress and Controversy in the Study of HP-UHP Metamorphic Terranes in the West and Middle Central China Orogen. Journal of Earth Science, 21(5): 581–597. https://doi.org/10.1007/s12583-010-0128-7 |
Liu, L., Wang, C., Cao, Y. T., et al., 2012. Geochronology of Multi-Stage Metamorphic Events: Constraints on Episodic Zircon Growth from the UHP Eclogite in the South Altyn, NW China. Lithos, 136–139: 10–26. |
Liu, L., Kang, L., Cao, Y. T., et al., 2015. Early Paleozoic Granitic Magmatism Related to the Processes from Subduction to Collision in South Altyn, NW China. Science China Earth Sciences, 58(9): 1513–1522. https://doi.org/10.1007/s11430-015-5151-1 |
Liu, L., Liao, X. Y., Wang, Y. W., et al., 2016. Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt in Central China: Insights on Continental Deep Subduction and Multiphase Exhumation. Earth-Science Reviews, 159: 58–81. https://doi.org/10.1016/j.earscirev. 2016.05.005 doi: 10.1016/j.earscirev.2016.05.005 |
Liu, L., Zhang, J. F., Cao, Y. T., et al., 2018. Evidence of Former Stishovite in UHP Eclogite from the South Altyn Tagh, Western China. Earth and Planetary Science Letters, 484: 353–362. https://doi.org/10.1016/j.epsl.2017.12.023 |
Liu, P. L., Jin, Z. M., 2022. Metamorphic Evolution of a Tremolite Marble from the Dabie UHP Terrane, China: A Focus on Zircon. Journal of Earth Science, 33(2): 493–506. https://doi.org/10.1007/s12583-020-1363-1 |
Liu, X. C., Wei, C. J., Li, S. Z., et al., 2004. Thermobaric Structure of a Traverse across Western Dabieshan: Implications for Collision Tectonics between the Sino-Korean and Yangtze Cratons. Journal of Metamorphic Geology, 22(4): 361–379. https://doi.org/10.1111/j.1525-1314.2004.00519.x |
Liu, Y. S., 2011. Guide Book for ICPMSDataCal. China University of Geosciences, Wuhan. 1–32 (in Chinese) |
López, S. V., Gómez, P. M. Y., Azor, A., et al., 2003. Phase Diagram Sections Applied to Amphibolites: A Case Study from the Ossa-Morena/Central Iberian Variscan Suture (Southwestern Iberian Massif). Lithos, 68(1/2): 1–21. https://doi.org/10.1016/s0024-4937(03)00017-3 |
Lou, Y. X., Wei, C. J., Liu, X. C., et al., 2013. Metamorphic Evolution of Garnet Amphibolite in the Western Dabieshan Eclogite Belt, Central China: Evidence from Petrography and Phase Equilibria Modeling. Journal of Asian Earth Sciences, 63: 130–138. https://doi.org/10.1016/j.jseaes.2012.11.031 |
Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1/2): 94–107. https://doi.org/10.1016/j.precamres.2007.04.025 |
Lü, Z., Wang, K., 2018. Metamorphic Evolution of Two Types of Garnet Amphibolites from UHP Terrane of Southwestern Tianshan, NW China. Earth Science, 43(1): 150–163 (in Chinese with English Abstract) |
Ma, T., Liu, L., Gai, Y. S., et al., 2018. Discovery of the High Pressure Granitic Granulite in South Altyn and It's Geological Significance. Acta Petrologica Sinica, 34(12): 3643–3657 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201812013.htm |
Miyashiro, A., 1994. Metamorphic Petrology. UCL Press Limited, London |
Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55–76. https://doi.org/10.1007/bf01226262 |
Moulas, E., Kostopoulos, D., Connolly, J. A. D., et al., 2013. P-T Estimates and Timing of the Sapphirine-Bearing Metamorphic Overprint in Kyanite Eclogites from Central Rhodope, Northern Greece. Petrology, 21(5): 507–521. https://doi.org/10.1134/s0869591113050032 |
Möller, C., 1998. Decompressed Eclogites in the Sveconorwegian (-Grenvillian) Orogen of SW Sweden: Petrology and Tectonic Implications. Journal of Metamorphic Geology, 16: 641–656. https://doi.org/10.1111/j.1525-1314.1998.00160.x |
Mustafa, H. A., Liao, F. X., Chen, N. S., et al., 2022. Early Paleoproterozoic Post-Collisional Basaltic Magmatism in Quanji Massif: Implications for Precambrian Plate Tectonic Regime in NW China. Journal of Earth Science, 33(3): 706–718. https://doi.org/10.1007/s12583-020-1062-y |
O'Brien, P. J., 1997. Garnet Zoning and Reaction Textures in Overprinted Eclogites, Bohemian Massif, European Variscides: A Record of Their Thermal History during Exhumation. Lithos, 41(1/2/3): 119–133. https://doi.org/10.1016/s0024-4937(97)82008-7 |
O'Brien, P. J., Rötzler, J., 2003. High-Pressure Granulites: Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 21(1): 3–20. https://doi.org/10.1046/j.1525-1314.2003.00420.x |
Powell, R., Holland, T. J. B., 1988. An Internally Consistent Dataset with Uncertainties and Correlations: 3. Application to Geobarometry, Worked Examples and a Computer Program. Journal of Metamorphic Geology, 6(2): 173–204. |
Powell, R., Holland, T. J. B., 2008. On Thermobarometry. Journal of Metamorphic Geology, 26(2): 155–179. https://doi.org/10.1111/j.1525-1314.2007.00756.x |
Qian, J. H., Wei, C. J., 2016. P-T-t Evolution of Garnet Amphibolites in the Wutai-Hengshan Area, North China Craton: Insights from Phase Equilibria and Geochronology. Journal of Metamorphic Geology, 34(5): 423–446. https://doi.org/10.1111/jmg.12186 |
Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2 |
Rubatto, D., Hermann, J., 2003. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps): Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 67(12): 2173–2187. https://doi.org/10.1016/s0016-7037(02)01321-2 |
Rubatto, D., Regis, D., Hermann, J., et al., 2011. Yo-yo Subduction Recorded by Accessory Minerals in the Italian Western Alps. Nature Geoscience, 4(5): 338–342. https://doi.org/10.1038/ngeo1124 |
Surour, A. A., 1995. Medium- to High-Pressure Garnet-Amphibolites from Gebel Zabara and Wadi Sikait, South Eastern Desert, Egypt. Journal of African Earth Sciences, 21(3): 443–457. https://doi.org/10.1016/0899-5362(95)00100-8 |
Song, S. G., Yang, J. S., Xu, Z. Q., et al., 2003. Metamorphic Evolution of the Coesite-Bearing Ultrahigh-Pressure Terrane in the North Qaidam, Northern Tibet, NW China. Journal of Metamorphic Geology, 21(6): 631–644. https://doi.org/10.1046/j.1525-1314.2003.00469.x |
Sun, W. D., Williams, I. S., Li, S. G., 2002. Carboniferous and Triassic Eclogites in the Western Dabie Mountains, East-Central China: Evidence for Protracted Convergence of the North and South China Blocks. Journal of Metamorphic Geology, 20(9): 873–886. https://doi.org/10.1046/j.1525-1314.2002.00418.x |
Tual, L., Pitra, P., Möller, C., 2017. P-T Evolution of Precambrian Eclogite in the Sveconorwegian Orogen, SW Sweden. Journal of Metamorphic Geology, 35(5): 493–515. https://doi.org/10.1111/jmg.12242 |
Wang, C., Liu, L., Chen, D. L., et al., 2011. Petrology, Geochemistry, Geochronology, and Metamorphic Evolution of Garnet Peridotites from South Altyn Tagh UHP Terrane, Northwestern China. Ultrahigh-Pressure Metamorphism. Elsevier, Amsterdam. 541–577. https://doi.org/10.1016/b978-0-12-385144-4.00016-3 |
Wang, C., Liu, L., Yang, W. Q., et al., 2013. Provenance and Ages of the Altyn Complex in Altyn Tagh: Implications for the Early Neoproterozoic Evolution of Northwestern China. Precambrian Research, 230: 193–208. https://doi.org/10.1016/j.precamres.2013.02.003 |
Wang, Y. W., Liu, L., Liao, X. Y., et al., 2016. Multi-Metamorphism of Amphibolite in the Qinling Complex, Qingyouhe Area: Revelation from Trace Elements and Mineral Inclusions in Zircons. Acta Petrologica Sinica, 32(5): 1467–1492 (in Chinese with English Abstract) http://search.cnki.net/down/default.aspx?filename=YSXB201605015&dbcode=CJFD&year=2016&dflag=pdfdown |
Warren, C. J., 2013. Exhumation of (Ultra-)High-Pressure Terranes: Concepts and Mechanisms. Solid Earth, 4(1): 75–92. https://doi.org/10.5194/se-4-75-2013 |
Wei, C. J., Qian, J. H., Tian, Z. L., 2013. Metamorphic Evolution of Medium-Temperature Ultra-High Pressure (MT-UHP) Eclogites from the South Dabie Orogen, Central China: An Insight from Phase Equilibria Modelling. Journal of Metamorphic Geology, 31(7): 755–774. https://doi.org/10.1111/jmg.12043 |
Wei, C. J., Powell, R., Clarke, G. L., 2004. Calculated Phase Equilibria for Low- and Medium-Pressure Metapelites in the KFMASH and KMnFMASH Systems. Journal of Metamorphic Geology, 22(5): 495–508. https://doi.org/10.1111/j.1525-1314.2004.00530.x |
White, R. W., Powell, R., Holland, T. J. B., et al., 2000. The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions: Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497–511. https://doi.org/10.1046/j.1525-1314.2000.00269.x |
White, R. W., Powell, R., Johnson, T. E., 2014a. The Effect of Mn on Mineral Stability in Metapelites Revisited: New a-x Relations for Manganese-Bearing Minerals. Journal of Metamorphic Geology, 32(8): 809–828. https://doi.org/10.1111/jmg.12095 |
White, R. W., Powell, R., Holland, T. J. B., et al., 2014b. New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3): 261–286. https://doi.org/10.1111/jmg.12071 |
Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371 |
Wiedenbeck, M., Hanchar, J. M., Peck, W. H., et al., 2004. Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, 28(1): 9–39. https://doi.org/10.1111/j.1751-908x.2004.tb01041.x |
Wu, K. K., Zhao, G. C., Sun, M., et al., 2013. Metamorphism of the Northern Liaoning Complex: Implications for the Tectonic Evolution of Neoarchean Basement of the Eastern Block, North China Craton. Geoscience Frontiers, 4(3): 305–320. https://doi.org/10.1016/j.gsf.2012.11.005 |
XACGS (Xi'an Center of Geological Survey), 2003. Geological Map of the Suwushijie, Xinjiang China, Scale 1 : 250 000. Xi'an Center of Geological Survey, China Geological Survey, Xi'an (in Chinese with English Abstract) |
Xu, Y., Yang, Z. N., Deng, X., et al., 2021. Identification of Indosinian Tectonic Mélange Belt in West Dabie Orogenic Belt and Its Geological Significance. Earth Science, 46(4): 1173–1198. https://doi.org/10.3799/dqkx.2020.311 (in Chinese with English Abstract) |
Yang, J. S., Shi, R. D., Wu, C. L., et al., 2008. Petrology and SHRIMP Age of the Hongliugou Ophiolite at Milan, North AItun, at the Northern Margin of the Tibetan Plateau. Acta Petrologica Sinica, 24(7): 1567–1584 (in Chinese with English Abstract) http://www.researchgate.net/publication/282283369_Petrology_and_SHRIMP_age_of_the_Hongliugou_ophiolite_at_Milan_North_Altun_at_the_Northern_margin_of_the_Tibetan_plateau |
Zhang, A. D., Liu, L., Sun, Y., et al., 2004. SHRIMP U-Pb Zircon Ages for the UHP Metamorphosed Granitoid Gneiss in Altyn Tagh and Their Geological Significance. Chinese Science Bulletin, 49(23): 2527–2532. https://doi.org/10.1007/bf03183726 |
Zhang, C. L., Zou, H. B., Li, H. K., et al., 2013. Tectonic Framework and Evolution of the Tarim Block in NW China. Gondwana Research, 23(4): 1306–1315. https://doi.org/10.1016/j.gr.2012.05.009 |
Zhang, R. Y., Liou, J. G., 1994. Coesite-Bearing Eclogite in Henan Province, Central China: Detailed Petrography, Glaucophane Stability and P-T Path. European Journal of Mineralogy, 6(2): 217–234. https://doi.org/10.1127/ejm/6/2/0217 |
Zhang, R. Y., Liou, J. G., Zheng, Y. F., et al., 2003. Transition of UHP Eclogites to Gneissic Rocks of Low-Amphibolite Facies during Exhumation: Evidence from the Dabie Terrane, Central China. Lithos, 70(3/4): 269–291. https://doi.org/10.1016/s0024-4937(03)00102-6 |
Zhang, J. X., Zhang, Z. M., Xu, Z. Q., et al., 2001. Petrology and Geochronology of Eclogites from the Western Segment of the Altyn Tagh, Northwestern China. Lithos, 56(2/3): 187–206. https://doi.org/10.1016/s0024-4937(00)00052-9 |
Zhang, J. X., Mattinson, C., Meng, F. C., et al., 2005. An Early Palaeozoic HP/HT Granulite-Garnet Peridotite Association in the South Altyn Tagh, NW China: P-T History and U-Pb Geochronology. Journal of Metamorphic Geology, 23(7): 491–510. https://doi.org/10.1111/j.1525-1314.2005.00585.x |
Zhang, J. X., Meng, F. C., Yu, S. Y., et al., 2007. Metamorphic History Recorded in High Pressure Mafic Granulites in the Luliangshan Mountains to the North of Qaidam Basin, Northwest China: Evidence from Petrology and Zircon SHRIMP Geochronology. Earth Science Frontiers, 14(1): 85–97 (in Chinese with English Abstract) |
Zhang, J. X., Mattinson, C. G., Yu, S. Y., et al., 2014. Combined Rutile-Zircon Thermometry and U-Pb Geochronology: New Constraints on Early Paleozoic HP/UHT Granulite in the South Altyn Tagh, North Tibet, China. Lithos, 200/201: 241–257. https://doi.org/10.1016/j.lithos.2014.05.006 |
Zhao, G. C., Cawood, P., Lu, L. Z., 1999. Petrology and P-T History of the Wutai Amphibolites: Implications for Tectonic Evolution of the Wutai Complex, China. Precambrian Research, 93(2/3): 181–199. https://doi.org/10.1016/s0301-9268(98)00090-4 |
Zheng, Y. F., Zhang, L. F., Liu, L., et al., 2013. Progress in the Study of Continental Deep Subduction and Ultrahigh Pressure Metamorphism. Bulletin of Mineralogy, Petrology and Geochemistry, 32(2): 135–158 (in Chinese with English Abstract) |