Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 2
Apr 2021
Turn off MathJax
Article Contents
Xianchuan Yu, Shicheng Wang, Hao Wang, Yuchen Liang, Siying Chen, Kang Wu, Zhaoying Yang, Chongyang Li, Yunzhen Chang, Ying Zhan, Wang Yao, Dan Hu. Detection of Geochemical Element Assemblage Anomalies Using a Local Correlation Approach. Journal of Earth Science, 2021, 32(2): 408-414. doi: 10.1007/s12583-021-1444-9
Citation: Xianchuan Yu, Shicheng Wang, Hao Wang, Yuchen Liang, Siying Chen, Kang Wu, Zhaoying Yang, Chongyang Li, Yunzhen Chang, Ying Zhan, Wang Yao, Dan Hu. Detection of Geochemical Element Assemblage Anomalies Using a Local Correlation Approach. Journal of Earth Science, 2021, 32(2): 408-414. doi: 10.1007/s12583-021-1444-9

Detection of Geochemical Element Assemblage Anomalies Using a Local Correlation Approach

doi: 10.1007/s12583-021-1444-9
More Information
  • Corresponding author: Yu Xianchuan, yuxianchuan@163.com
  • Received Date: 12 Aug 2020
  • Accepted Date: 27 Feb 2021
  • Publish Date: 01 Apr 2021
  • As direct prospecting data, geochemical data play an important role in modelling prospect potential. Geochemical element assemblage anomalies are usually reflected by the correlation between elements. Correlation coefficients are computed from the values of two elements, which reflect only the correlation at a global level. Thus, the spatial details of the correlation structure are ignored. In fact, an element combination anomaly often exists in geological backgrounds, such as on a fault zone or within a lithological unit. This anomaly may cause some combination of anomalies that are submerged inside the overall area and thus cannot be effectively extracted. To address this problem, we propose a local correlation coefficient based on spatial neighbourhoods to reflect the global distribution of elements. In this method, the sampling area is first divided into a set of uniform grid cells. A moving window with a size of 3×3 is defined with an integer of 3 to represent the sampling unit. The local correlation in each unit is expressed by the Pearson correlation coefficient. The whole area is scanned by the moving window, which produces a correlation coefficient matrix, and the result is portrayed with a thermal diagram. The local correlation approach was tested on two selected geochemical soil survey sites in Xiao Mountain, Henan Province. The results show that the areas of high correlation are mainly distributed in the fault zone or the known mineral spots. Therefore, the local correlation method is effective in extracting geochemical element combination anomalies.

     

  • loading
  • Attias, H., 1999a. Independent Factor Analysis. Neural Computation, 11(4): 803-851. https://doi.org/10.1162/089976699300016458
    Attias, H., 1999b. Learning a Hierarchical Belief Network of Independent Factor Analyzers. Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems Ⅱ. July 1999, 361-367
    Attias, H., 2000. Independent Factor Analysis with Temporally Structured Sources. Advances in Neural Information Processing Systems, 12: 386-392
    Bendich, P., Gasparovic, E., Harer, J., et al., 2018. Scaffoldings and Spines: Organizing High-Dimensional Data Using Cover Trees, Local Principal Component Analysis, and Persistent Homology. In: Erin, C., Brittany, F., Lori, Z., eds., Research in Computational Topology. Springer, Cham. 93-114
    Chen, G. X., Cheng, Q. M., 2016. Singularity Analysis Based on Wavelet Transform of Fractal Measures for Identifying Geochemical Anomaly in Mineral Exploration. Computers & Geosciences, 87: 56-66. https://doi.org/10.1016/j.cageo.2015.11.007
    Cheng, Q. M., Bonham-Carter, G., Wang, W. L., et al., 2011. A Spatially Weighted Principal Component Analysis for Multi-Element Geochemical Data for Mapping Locations of Felsic Intrusions in the Gejiu Mineral District of Yunnan, China. Computers & Geosciences, 37(5): 662-669. https://doi.org/10.1016/j.cageo.2010.11.001
    Cheng, Q. M., Agterberg, F. P., 2009. Singularity Analysis of Ore-Mineral and Toxic Trace Elements in Stream Sediments. Computers & Geosciences, 35(2): 234-244. https://doi.org/10.1016/j.cageo.2008.02.034
    Coston, N., O'Rourke, S., 2020. Gaussian Fluctuations for Linear Eigenvalue Statistics of Products of Independent Iid Random Matrices. Journal of Theoretical Probability, 33(1): 1541-1612. https://doi.org/10.1007/s10959-019-00905-0
    Gielen, E., Riutort-Mayol, G., Palencia-Jiménez, J. S., et al., 2018. An Urban Sprawl Index Based on Multivariate and Bayesian Factor Analysis with Application at the Municipality Level in Valencia. Environment and Planning B: Urban Analytics and City Science, 45(5): 888-914. https://doi.org/10.1177/2399808317690148
    Hartono, Sitompul, O. S., Tulus, et al., 2018. Optimization Model of K-Means Clustering Using Artificial Neural Networks to Handle Class Imbalance Problem. IOP Conference Series: Materials Science and Engineering, 288(1): 012075. https://doi.org/10.1088/1757-899x/288/1/012075
    Hu, S., Luo, T., Jing, C. Y., 2013. Principal Component Analysis of Fluoride Geochemistry of Groundwater in Shanxi and Inner Mongolia, China. Journal of Geochemical Exploration, 135: 124-129. https://doi.org/10.1016/j.gexplo.2012.08.013
    Isomura, T., Toyoizumi, T., 2018. Error-Gated Hebbian Rule: A Local Learning Rule for Principal and Independent Component Analysis. Scientific Reports, 8(1): 1-11. https://doi.org/10.1038/s41598-018-20082-0
    Jiang, W. C., Li, H., Wu, J. H., et al., 2018. A Newly Found Biotite Syenogranite in the Huangshaping Polymetallic Deposit, South China: Insights into Cu Mineralization. Journal of Earth Science, 29(3): 537-555. https://doi.org/10.1007/s12583-017-0974-7
    Li, J., Zhuang, X. G., Querol, X., et al., 2014. New Data on Mineralogy and Geochemistry of High-Ge Coals in the Yimin Coalfield, Inner Mongolia, China. International Journal of Coal Geology, 125(5): 10-21. https://doi.org/10.1016/j.coal.2014.01.006
    Markhvida, M., Ceferino, L., Baker, J. W., 2018. Modeling Spatially Correlated Spectral Accelerations at Multiple Periods Using Principal Component Analysis and Geostatistics. Earthquake Engineering & Structural Dynamics, 47(5): 1107-1123. https://doi.org/10.1002/eqe.3007
    Niven, E. B., Deutsch, C. V., 2012. Calculating a Robust Correlation Coefficient and Quantifying Its Uncertainty. Computers & Geosciences, 40(3): 1-9. https://doi.org/10.1016/j.cageo.2011.06.021
    Painsky, A., Rosset, S., Feder, M., 2018. Linear Independent Component Analysis over Finite Fields: Algorithms and Bounds. IEEE Transactions on Signal Processing, 66(22): 5875-5886. https://doi.org/10.1109/tsp.2018.2872006
    Park, S., Kwak, N., 2018. Independent Component Analysis by Lp-Norm Optimization. Pattern Recognition, 76(3): 752-760. https://doi.org/10.1016/j.patcog.2017.10.006
    Rahimi, E., Maghsoudi, A., Hezarkhani, A., 2016. Geochemical Investigation and Statistical Analysis on Rare Earth Elements in Lakehsiyah Deposit, Bafq District. Journal of African Earth Sciences, 124: 139-150. https://doi.org/10.1016/j.jafrearsci.2016.09.001
    Scitovski, S., 2018. A Density-Based Clustering Algorithm for Earthquake Zoning. Computers & Geosciences, 110: 90-95. https://doi.org/10.1016/j.cageo.2017.08.014
    Simon, N., Tibshirani, R., 2013. Comment on "Detecting Novel Associations in Large Data Sets" by Reshef et al., Science Dec 16, 2011. Unpublished (available at wwwstat. stanford. edu/tibs/reshef/comment. pdf)
    Smillie, C., 2015. Salicornia Spp. as a Biomonitor of Cu and Zn in Salt Marsh Sediments. Ecological Indicators, 56(3b): 70-78. https://doi.org/10.1016/j.ecolind.2015.03.010
    Song, L., Jian, J., Tan, D. J., et al., 2015. Estimate of Heavy Metals in Soil and Streams Using Combined Geochemistry and Field Spectroscopy in Wan-Sheng Mining Area, Chongqing, China. International Journal of Applied Earth Observation and Geoinformation, 34: 1-9. https://doi.org/10.1016/j.jag.2014.06.013
    Wang, J. P., Liu, Z. J., Liu, J. J., et al., 2018. Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China: Implications for Deep Ore Prediction. Journal of Earth Science, 29(3): 564-572. https://doi.org/10.1007/s12583-017-0751-7
    Wang, H. C., Cheng, Q. M., Zuo, R. G., 2015. Spatial Characteristics of Geochemical Patterns Related to Fe Mineralization in the Southwestern Fujian Province (China). Journal of Geochemical Exploration, 148(7): 259-269. https://doi.org/10.1016/j.gexplo.2014.10.010
    Xu, W., Chang, C., Hung, Y. S., et al., 2007. Order Statistics Correlation Coefficient as a Novel Association Measurement with Applications to Biosignal Analysis. IEEE Transactions on Signal Processing, 55(12): 5552-5563. https://doi.org/10.1109/tsp.2007.899374
    Xue, J. H., Lee, C., Wakeham, S. G., et al., 2011. Using Principal Components Analysis (PCA) with Cluster Analysis to Study the Organic Geochemistry of Sinking Particles in the Ocean. Organic Geochemistry, 42(4): 356-367. https://doi.org/10.1016/j.orggeochem.2011.01.012
    Yu, X. C., Liu, L. W., Hu, D., et al., 2012. Robust Ordinal Independent Component Analysis (ROICA) Applied to Mineral Resources Prediction. Journal of Jilin University (Earth Science Edition), 42(3): 872-880 http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201203036.htm
    Yu, X. C., Hu, D., Xu, J., 2014. Blind Source Separation: Theory and Applications. John Wiley & Sons, New York
    Zhang, Z. W., Shu, Q., Yang, X. Y., et al., 2019. Review on the Tectonic Terranes Associated with Metallogenic Zones in Southeast Asia. Journal of Earth Science, 30(1): 1-19. https://doi.org/10.1007/s12583-019-0858-0
    Zuo, R. G., Wang, J., Chen, G. X., et al., 2015. Identification of Weak Anomalies: A Multifractal Perspective. Journal of Geochemical Exploration, 148:12-24. https://doi.org/10.1016/j.gexplo.2014.05.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(224) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return