Afzal, P., Alghalandis, Y. F., Khakzad, A., et al., 2011. Delineation of Mineralization Zones in Porphyry Cu Deposits by Fractal Concentration-Volume Modeling. Journal of Geochemical Exploration, 108(3): 220-232. https://doi.org/10.1016/j.gexplo.2011.03.005 |
Ballard, J. R., Palin, M. J., Campbell, I. H., 2002. Relative Oxidation States of Magmas Inferred from CeCe(Ⅳ)/Ce(Ⅲ) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. https://doi.org/10.1007/s00410-002-0402-5 |
Blenkinsop, T. G., 1995. Fractal Measures for Size and Spatial Distributions of Gold Mines: Economic Applications. In: Blenkinsop, T. G., Tromp, P. L., eds., Special Publication Geological Society of Zimbabwe, Rotterdam |
Blevin, P. L., Chappell, B. W., 1995. Chemistry, Origin, and Evolution of Mineralized Granites in the Lachlan Fold Belt, Australia; the Metallogeny of I-and S-Type Granites. Economic Geology, 90(6): 1604-1619. https://doi.org/10.2113/gsecongeo.90.6.1604 |
Bodnar, R. J., 1983. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids. Economic Geology, 78(3): 535-542. https://doi.org/10.2113/gsecongeo.78.3.535 |
Bodnar, R. J., Burnham, C. W., Sterner, S. M., 1985. Synthetic Fluid Inclusions in Natural Quartz. Ⅲ. Determination of Phase Equilibrium Properties in the System H2O-NaCl to 1000℃ and 1500 Bars. Geochimica et Cosmochimica Acta, 49(9): 1861-1873. https://doi.org/10.1016/0016-7037(85)90081-X |
Bölviken, B., Stokke, P. R., Feder, J., et al., 1992. The Fractal Nature of Geochemical Landscapes. Journal of Geochemical Exploration, 43(2): 91-109. https://doi.org/10.1016/0375-6742(92)90001-O |
Bouzari, F., Clark, A. H., 2006. Prograde Evolution and Geothermal Affinities of a Major Porphyry Copper Deposit: The Cerro Colorado Hypogene Protore, I Region, Northern Chile. Economic Geology, 101(1): 95-134. https://doi.org/10.2113/gsecongeo.101.1.95 |
Burnham, C. W., Ohmoto, H., 1980. Late-Stage Processes in Felsic Magmatism. Society of Mining Geologists of Japan, 8: 1-11 http://ci.nii.ac.jp/naid/80000690793 |
Cao, K., Xu, J. F., Chen, J. L., et al., 2014. Origin of Porphyry Intrusions Hosting Superlarge Pulang Porphyry Copper Deposit in Yunnan Province: Implications for Metallogenesis. Mineral Deposits, 33(2): 307-322(in Chinese with English Abstract) |
Carlson, C. A., 1991. Spatial Distribution of Ore Deposits. Geology, 19(2): 111-114. https://doi.org/10.1130/0091-7613(1991)0190111:sdood>2.3.co;2 doi: 10.1130/0091-7613(1991)0190111:sdood>2.3.co;2 |
Carranza, E. J. M., 2009a. Controls on Mineral Deposit Occurrence Inferred from Analysis of Their Spatial Pattern and Spatial Association with Geological Features. Ore Geology Reviews, 35(3/4): 383-400. https://doi.org/10.1016/j.oregeorev.2009.01.001 |
Carranza, E. J. M., 2009b. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. In: Hale, M., ed., Handbook of Exploration and Environmental Geochemistry. Elsevier B.V. |
Carranza, E. J. M., Sadeghi, M., 2010. Predictive Mapping of Prospectivity and Quantitative Estimation of Undiscovered VMS Deposits in Skellefte District (Sweden). Ore Geology Reviews, 38(3): 219-241. https://doi.org/10.1016/j.oregeorev.2010.02.003 |
Chen, L., 2016. The Characteristics of Ore-Forming Magma and Tectonic Setting of the Pulang Gaint Porphyry Copper Deposit in the Yunnan Province: [Dissertation]. Guangzhou Institute of Geochemistry, Chiese Academy of Sciences, Guangzhou (in Chinese with English Abstract) |
Chen, L. L., Ni, P., Li, W. S., et al., 2018. The Link between Fluid Evolution and Vertical Zonation at the Maoping Tungsten Deposit, Southern Jiangxi, China: Fluid Inclusion and Stable Isotope Evidence. Journal of Geochemical Exploration, 192: 18-32. https://doi.org/10.1016/j.gexplo.2018.01.001 |
Chen, M. G., Yu, C., 2016. Study of the "Large Vein-Type" Copper Deposit of Eastern Ore-Section in Pulang Mining Area. Modern Mining, 32(3): 114-117(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KYKB201603043.htm |
Cheng, Q. M., 1995. The Perimeter-Area Fractal Model and Its Application to Geology. Mathematical Geology, 27(1): 69-82. https://doi.org/10.1007/bf02083568 |
Cheng, Q. M., 2008. Singularity of Mineralization and Multifractal Distribution of Mineral Deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 298-305(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200803014.htm |
Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. The Separation of Geochemical Anomalies from Background by Fractal Methods. Journal of Geochemical Exploration, 51(2): 109-130. https://doi.org/10.1016/0375-6742(94)90013-2 |
Cheng, Q. M., Xu, Y. G., Grunsky, E., 2000. Integrated Spatial and Spectrum Method for Geochemical Anomaly Separation. Natural Resources Research, 9(1): 43-52. https://doi.org/10.1023/a:1010109829861 |
Chi, G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24(9): 1945-1953(in Chinese with English Abstract) |
Chi, G. X., Zhou, Y. M., Lu, H. Z., 2003. An Overview on Current Fluid-Inclusion Research and Applications. Acta Petrologica Sinica, 19(2): 201-212(in Chinese with English Abstract) http://www.oalib.com/paper/1473432 |
Chi, Z., Ni, P., Pan, J. Y., et al., 2018. Geology, Mineral Paragenesis and Fluid Inclusion Studies of the Yueyang Ag-Au-Cu Deposit, South China: Implications for Ore Genesis and Exploration. Geochemistry: Exploration, Environment, Analysis, 18(4): 303-318. https://doi.org/10.1144/geochem2017-059 |
Fan, Y. H., Li, W. C., 2006. Geological Characteristics of the Pulang Porphyry Copper Deposit, Yunnan. Geology in China, 33(2): 352-362(in Chinese with English Abstract) |
Farahmandfar, Z., Jafari, M. R., Afzal, P., et al., 2020. Description of Gold and Copper Anomalies Using Fractal and Stepwise Factor Analysis According to Stream Sediments in NW Iran. Geopersia, 10(1): 135-148. https://doi.org/10.22059/geope.2019.265535.648413 |
Frezzotti, M. L., Tecce, F., Casagli, A., 2012. Raman Spectroscopy for Fluid Inclusion Analysis. Journal of Geochemical Exploration, 112: 1-20. https://doi.org/10.1016/j.gexplo.2011.09.009 |
Goldstein, R. H., 2001. Fluid Inclusions in Sedimentary and Diagenetic Systems. Lithos, 55(1/2/3/4): 159-193. https://doi.org/10.1016/s0024-4937(00)00044-X |
Guo, X., Du, Y. S., Pang, Z. S., et al., 2009. Characteristics of the Ore-Forming Fluids in Alteration Zones of the Pulang Porphyry Copper Deposit in Yunnan Province and Its Metallogenic Significance. Geoscience, 23(3): 465-471(in Chinese with English Abstract) |
Gustafson, L. B., Hunt, J. P., 1975. The Porphyry Copper Deposit at El Salvador, Chile. Economic Geology, 70(5): 857-912. https://doi.org/10.2113/gsecongeo.70.5.857 |
Hall, D. L., Sterner, S. M., Bodnar, R. J., 1988. Freezing Point Depression of NaCl-KCl-H2O Solutions. Economic Geology, 83(1): 197-202. https://doi.org/10.2113/gsecongeo.83.1.197 |
Hassanpour, S., Afzal, P., 2013. Application of Concentration-Number (C-N) Multifractal Modeling for Geochemical Anomaly Separation in Haftcheshmeh Porphyry System, NW Iran. Arabian Journal of Geosciences, 6(3): 957-970. https://doi.org/10.1007/s12517-011-0396-2 |
Klyukin, Y. I., Steele-Macinnis, M., Lecumberri-Sanchez, P., et al., 2019. Fluid Inclusion Phase Ratios, Compositions and Densities from Ambient Temperature to Homogenization, Based on PVTX Properties of H2O-NaCl. Earth-Science Reviews, 198: 102924. https://doi.org/10.1016/j.earscirev.2019.102924 |
Kouhestani, H., Ghaderi, M., Afzal, P., et al., 2020. Classification of Pyrite Types Using Fractal and Stepwise Factor Analyses in the Chah Zard Gold-Silver Epithermal Deposit, Central Iran. Geochemistry Exploration Environment Analysis, 20(4): 496-508. https://doi.org/10.1144/geochem2020-031 |
Leng, C. B., Zhang, X. C., Chen, Y. J., et al., 2007. Discussion on the Relationship between Chinese Porphyry Copper Deposits and Adakitic Rocks. Earth Science Frontiers, 14(5): 199-210(in Chinese with English Abstract) |
Li, C. J., Jiang, X. L., Xu, Y. L., et al., 1996. Fractal Analysis of Mesozoic Hydrothermal Ore Deposits in Zhejiang. Scientia Geologica Sinica, 31(3): 266-273(in Chinese with English Abstract) |
Li, T. F., Xia, Q. L., Chang, L. H., et al., 2018. Deposit Density of Tungsten Polymetallic Deposits in the Eastern Nanling Metallogenic Belt, China. Ore Geology Reviews, 94: 73-92. https://doi.org/10.1016/j.oregeorev.2018.01.010 |
Li, T. F., Xia, Q. L., Zhao, M. Y., et al., 2020. Prospectivity Mapping for Tungsten Polymetallic Mineral Resources, Nanling Metallogenic Belt, South China: Use of Random Forest Algorithm from a Perspective of Data Imbalance. Natural Resources Research, 29(1): 203-227. https://doi.org/10.1007/s11053-019-09564-8 |
Li, W. C., 2007. The Tectonic Evolution of the Yidun Island Arc and the Metallogenic Model of the Pulang Porphyry Copper Deposit, Yunnan, SW China: [Dissertation]. China University of Geosciences, Beijing (in Chinese) |
Li, W. C., Liu, X. L., 2015. The Metallogenic Regularity Related to the Tectonic and Petrographic Features of Pulang Porphyry Copper Orefield, Yunnan, and Its Ore-Controlling Characteristics. Earth Science Frontiers, 22(4): 53-66(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201504008.htm |
Li, W. C., Yin, G. H., Yu, H. J., et al., 2013. Characteristics of the Ore-Forming Fluid and Genesis of the Pulang Copper Deposit in Yunnan Province. Journal of Jilin University (Earth Science Edition), 43(5): 1436-1447(in Chinese with English Abstract) http://www.researchgate.net/publication/282707407_Characteristics_of_the_ore-forming_fluid_and_genesis_of_the_Pulang_copper_deposit_in_Yunnan_Province |
Li, W. C., Zeng, P. S., Hou, Z. Q., 2011. The Pulang Porphyry Copper Deposit and Associated Felsic Intrusions in Yunnan Province, Southwest China. Economic Geology, 106(1): 79-92. https://doi.org/10.2113/econgeo.106.1.79 |
Li, X. F., Sasaki, M., 2007. Hydrothermal Alteration and Mineralization of Middle Jurassic Dexing Porphyry Cu-Mo Deposit, Southeast China. Resource Geology, 57(4): 409-426. https://doi.org/10.1111/j.1751-3928.2007.00032.x |
Liu, B., 2001. Density and Isochoric Formulae for NaCl-H2O Inclusions with Medium and High Salinity and Their Applications. Geological Review, 47(6): 617-622(in Chinese with English Abstract) |
Liu, B., 2018a. Calculation and Analysis of Fluid Inclusions. Science Press, Beijing (in Chinese) |
Liu, B., Duan, G. X., 1987. The Density and Isochoric Formulae for NaCl-H2O Fluid Inclusions (Salinity ≤ 25 wt. %) and Their Applications. Acta Mineralogica Sinica, 7(4): 345-352(Chinese with English abstract) http://www.researchgate.net/publication/305395723_The_density_and_isochoric_formulae_for_NaCl-H2O_fluid_inclusions_salinity25wt_and_their_applications |
Liu, J. T., Yang, L. Q., Lü, L., 2013. Pulang Reduced Porphyry Copper Deposit in the Zhongdian Area, Southwest China: Constrains by the Mineral Assemblages and the Ore-Forming Fluid Compositions. Acta Petrologica Sinica, 29(11): 3914-3924(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201311022.htm |
Liu, X. D., 2018b. The Evolution of Ore-Forming Fluid of the Pulang Porphyry Copper Polymetallic Deposit in the Northwest Yunnan Province, China: [Dissertation]. China University of Geosciences, Beijing (in Chinese) |
Liu, X. D., Li, W., Yin, G., 2011. Study on the Source of Metallogenic Material and Metallogenesis of Porphyry Copper Deposit in Yunnan Province. Acta Mineralogica Sinica, Suppl. : 369-370. https://doi.org/10.16461/j.cnki.1000-4734.2011.s1.148 |
Liu, X. L., Li, W. C., Yin, G. H., 2013. The Indosinian Crust Uplift-Denudation in Geza Arc of Yunnan Province and Its Geological Significance: Evidence from Biotite Geobarometer. Geoscience, 27(3): 537-540, 543-546, 628(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201303004.htm |
Lu, H. Z., Fan, H. R., Ni, P., et al., 2004. Fluid Inclusions. Science Press, Beijing (in Chinese) |
Lü, L., 2014. The Fissure-Vien Systerm of Pulang Copper Deposit: [Dissertation]. China University of Geosciences, Beijing (in Chinese) |
Mandelbrot, B. B., 1983. The Fractal Geometry of Nature: Updated and Augmented. W. H. Freeman and Company, New York |
Mao, Y., 2012. Study on Stable Isotope, Fluid Inclusions and Mineralization of Saishitang Cu-Polymetallic Deposit, Qinghai Province: [Dissertation]. Central South University, Changsha (in Chinese) |
Mungall, J. E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915-918. https://doi.org/10.1130/0091-7613(2002)0300915:rtmsma>2.0.co;2 doi: 10.1130/0091-7613(2002)0300915:rtmsma>2.0.co;2 |
Ni, P., Jiang, S. Y., Ling, H. F., et al., 2001. The Background, Application and Development of Fluid Inclusion Planes Research. Geological Review, 47(4): 398-404(in Chinese with English Abstract) |
Ni, P., Pan, J. Y., Huang, B., et al., 2018. Geology, Ore-Forming Fluid and Genesis of the Qiucun Gold Deposit: Implication for Mineral Exploration at Dehua Prospecting Region, SE China. Journal of Geochemical Exploration, 195: 3-15. https://doi.org/10.1016/j.gexplo.2018.03.018 |
Pan, X. F., Hou, Z. Q., Zhao, M., et al., 2020. Fluid Inclusion and Stable Isotope Constraints on the Genesis of the World-Class Zhuxi W(Cu) Skarn Deposit in South China. Journal of Asian Earth Sciences, 190: 104192. https://doi.org/10.1016/j.jseaes.2019.104192. |
Pan, X. F., Song, Y. C., Wang, S. X., et al., 2009. Evolution of Hydrothermal Fluid of Dexing Tongchang Copper-Gold Porphyry Deposit. Acta Geologica Sinica, 83(12): 1929-1950(in Chinese with English Abstract) http://www.researchgate.net/publication/288740579_Evolution_of_hydrothermal_fluid_of_dexing_tongchang_copper-gold_porphyry_deposit |
Parry, W. T., 1986. Estimation of XCO2, P, and Fluid Inclusion Volume from Fluid Inclusion Temperature Measurements in the System NaCl-CO2-H2O. Economic Geology, 81(4): 1009-1013. https://doi.org/10.2113/gsecongeo.81.4.1009 |
Potter, R. W. I., 1977. Pressure Corrections for Fluid Inclusion Homogenization Temperatures Based on the Volumetric Properties of the System NaCl-H2O. Journal of Research of the U.S. Geological Survey, 5: 603-607 |
Qiu, Y., Zhang, R. Q., Chou, I. M., et al., 2021. Boron-Rich Ore-Forming Fluids in Hydrothermal W-Sn Deposits from South China: Insights from in situ Raman Spectroscopic Characterization of Fluid Inclusions. Ore Geology Reviews, 132: 104048. https://doi.org/10.1016/j.oregeorev.2021.104048 |
Roedder, E., 1984. Fluid Inclusions. In: Ribbe, P. H., ed., Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington D.C. |
Roedder, E., Skinner, B. J., 1968. Experimental Evidence that Fluid Inclusions do not Leak. Economic Geology, 63(7): 715-730. https://doi.org/10.2113/gsecongeo.63.7.715 |
Saadati, H., Afzal, P., Torshizian, H., et al., 2020. Geochemical Exploration for Lithium in NE Iran Using the Geochemical Mapping Prospectivity Index, Staged Factor Analysis, and a Fractal Model. Geochemistry: Exploration, Environment, Analysis, 20(4): 461-472. https://doi.org/10.1144/geochem2020-020 |
Sanderson, D. J., Roberts, S., Gumiel, P., 1994. A Fractal Relationship between Vein Thickness and Gold Grade in Drill Core from La Codosera, Spain. Economic Geology, 89(1): 168-173. https://doi.org/10.2113/gsecongeo.89.1.168 |
Schertzer, D., Lovejoy, S., 1987. Physical Modeling and Analysis of Rain and Clouds by Anisotropic Scaling Multiplicative Processes. Journal of Geophysical Research Atmospheres, 92(D8): 9693-9714. https://doi.org/10.1029/jd092id08p09693 |
Sillitoe, R. H., 2002. Some Metallogenic Features of Gold and Copper Deposits Related to Alkaline Rocks and Consequences for Exploration. Mineralium Deposita, 37(1): 4-13. https://doi.org/10.1007/s00126-001-0227-6 |
Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3 |
Sterner, S. M., Bodnar, R. J., 1991. Synthetic Fluid Inclusions; X, Experimental Determination of P-V-T-X Properties in the CO2-H2O System to 6 kb and 700℃. American Journal of Science, 291(1): 1-54. https://doi.org/10.2475/ajs.291.1.1 |
Sterner, S. M., Hall, D. L., Bodnar, R. J., 1988. Synthetic Fluid Inclusions. V. Solubility Relations in the System NaCl-KCl-H2O under Vapor-Saturated Conditions. Geochimica et Cosmochimica Acta, 52(5): 989-1005. https://doi.org/10.1016/0016-7037(88)90254-2 |
Touret, J. L. R., 2001. Fluids in Metamorphic Rocks. Lithos, 55(1/2/3/4): 1-25. https://doi.org/10.1016/S0024-4937(00)00036-0 |
Turcotte, D. L., 1992. Fractals and Chaos in Geology and Geophysics. Journal of Fluid Mechanics, 250: 690-691. https://doi.org/10.1017/s002211209325162x |
Veneziano, D., Furcolo, P., 2002. Multifractality of Rainfall and Scaling of Intensity-Duration-Frequency Curves. Water Resources Research, 38(12): 1-12. https://doi.org/10.1029/2001wr000372 |
Wang, C. Y., Li, X. F., Xiao, R., et al., 2012. Types and Distribution of Veins in Tongchang Porphyry Copper Deposit, Dexing, Jiangxi Province. Mineral Deposits, 31(1): 94-110(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201201009.htm |
Wang, K., 2017. Study on the Alteration, Vein System and Their Prospecting Significance of the Pulang Porphyry Copper Deposit, Yunnan: [Dissertation]. Kunming University of Science and Technology, Kunming (in Chinese) |
Wang, K., Jian, R. T., Li, F., et al., 2016a. Geological Characteristics and Prospecting of the Periphery Porphyry Copper Deposit in Pulang Area. Nonferrous Metals (Mining Section), 68(2): 40-44(in Chinese with English Abstract) |
Wang, K., Yang, F., Li, F., et al., 2016b. Study on the Hydrothermal Alteration and Vein Systems of the Pulang Porphyry Copper Deposit in Yunnan Province. Geology and Exploration, 52(3): 417-428(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201603003.htm |
Wang, S. X., Zhang, X. C., Qin, C. J., et al., 2007. Fluid Inclusions in Quartz Veins of Pulang Porphyry Copper Deposit, Zhongdian, Northwestern Yunnan, China. Geochimica, 36(5): 467-478(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200705006.htm |
Wang, Z. J., Cheng, Q. M., 2006. Characterization of Micro-Texture of Quartz Mylonite Deformation Process Using Fractal P-A Model. Earth Science, 31(3): 361-365(in Chinese with English Abstract) |
Wang, Z. J., Cheng, Q. M., Cao, L., et al., 2007. Fractal Modelling of the Microstructure Property of Quartz Mylonite during Deformation Process. Mathematical Geology, 39(1): 53-68. https://doi.org/10.1007/s11004-006-9065-5 |
Wilkinson, J. J., 2001. Fluid Inclusions in Hydrothermal Ore Deposits. Lithos, 55(1/2/3/4): 229-272. https://doi.org/10.1016/s0024-4937(00)00047-5 |
Wu, W., 2011. Prospecting Direction of the Periphery of Pulang Copper Deposit. Yunnan Geology, 30(4): 404-406. https://doi.org/10.3969/j.issn.1004-1885.2011.04.005 |
Xu, G. F., 1987. Prospecting Mineralogy of Gold Ore. Geology and Exploration, 2: 30-34(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT198702007.htm |
Xu, W. G., Zhang, D. H., Xi, B. B., et al., 2008. Discussions on Reliability of the Decrepitation Technique Applied in Fluid Inclusion Studies: Taking the Jiangxi Dajishan Tungsten Deposit as an Example. Geoscience, 22(5): 757-765(in Chinese with English Abstract) |
Yang, T., 2017. Analysis on the Rocks and Ore Controlling Structures in Pulang Porphyry Copper Deposit of Shangri-La, Yunnan Province: [Dissertation]. Kunming University of Science and Technology, Kunming. 1-78(in Chinese) |
Zeng, P. S., Hou, Z. Q., Wang, H. P., et al., 2004. Re-Os Dating of the Pulang Porphyry Copper Deposit in Zhongdian, NW Yunnan, and Its Geological Significance. Acta Geologica Sinica——English Edition, 78(2): 604-609. https://doi.org/10.1111/j.1755-6724.2004.tb00172.x |
Zeng, P. S., Mo, X. X., Yu, X. H., et al., 2003. Porphyries and Porphyry Copper Deposits in Zhongdian Area, Northwestern Yunnan. Mineral Deposits, 22(4): 393-400(in Chinese with English Abstract) |
Zhang, W. H., Chen, Z. Y., 1993. Fluid Inclusion Geology. China University of Geosciences Press, Wuhan (in Chinese) |
Zhao, P. D., Hu, W. L., Li, Z. J., 1994. Statistical Prediction of Mineral Deposit. Geological Publishing House, Beijing (in Chinese) |
Zhou, X. D., 2018. Study on Petrological Geochemistry Characteristics of Porphyry Body in the Periphery of Pulang Porphyry Copper Deposit: [Dissertation]. Kunming University of Science and Technology, Kunming (in Chinese with English Abstract) |
Zhou, X. D., Yang, F., Wu, J., et al., 2018. Petrogenesis of Porphyry Body in the Periphery of Pulang Porphyry Copper Deposit, Yunnan. Geological Science and Technology Information, 37(4): 39-50(in Chinese with English Abstract) |
Zhu, P. P., Cheng, Q. M., Chen, G. X., 2019. New Fractal Evidence of Pacific Plate Subduction in the Late Mesozoic, Great Xing'an Range, Northeast China. Journal of Earth Science, 30(5): 1031-1040. https://doi.org/10.1007/s12583-019-1216-y |
Zuo, R. G., Carranza, E. J. M., 2017. A Fractal Measure of Spatial Association between Landslides and Conditioning Factors. Journal of Earth Science, 28(4): 588-594. https://doi.org/10.1007/s12583-017-0772-2 |
Zuo, R. G., Carranza, E. J. M., Cheng, Q. M., 2012. Fractal/Multifractal Modelling of Geochemical Exploration Data. Journal of Geochemical Exploration, 122:1-3. https://doi.org/10.1016/j.gexplo.2012.09.009 |
Zuo, R. G., Cheng, Q. M., Agterberg, F. P., et al., 2009a. Evaluation of the Uncertainty in Estimation of Metal Resources of Skarn Tin in Southern China. Ore Geology Reviews, 35(3/4): 415-422. https://doi.org/10.1016/j.oregeorev.2008.12.001 |
Zuo, R. G., Cheng, Q. M., Xia, Q. L., et al., 2009b. Application of Fractal Models to Distinguish between Different Mineral Phases. Mathematical Geosciences, 41(1): 71-80. https://doi.org/10.1007/s11004-008-9191-3 |