Ardizzone, F., Cardinali, M., Galli, M., et al., 2007. Identification and Mapping of Recent Rainfall-Induced Landslides Using Elevation Data Collected by Airborne Lidar. Natural Hazards and Earth System Sciences, 7(6): 637-650. https://doi.org/10.5194/nhess-7-637-2007 |
Bai, Y. J., Wang, Y. S., Ge, H., et al., 2020. Slope Structures and Formation of Rock-Soil Aggregate Landslides in Deeply Incised Valleys. Journal of Mountain Science, 17(2): 316-328. https://doi.org/10.1007/s11629-019-5623-4 |
Bell, R., Petschko, H., Röhrs, M., et al., 2012. Assessment of Landslide Age, Landslide Persistence and Human Impact Using Airborne Laser Scanning Digital Terrain Models. Geografiska Annaler: Series A, Physical Geography, 94(1): 135-156. https://doi.org/10.1111/j.1468-0459.2012.00454.x |
Chen, N. S., Li, T. C., Gao, Y. C., 2005. A Great Disastrous Debris Flow on 11 July 2003 in Shuikazi Valley, Danba County, Western Sichuan, China. Landslides, 2(1): 71-74. https://doi.org/10.1007/s10346-004-0041-1 |
Chen, R. F., Chang, K. J., Angelier, J., et al., 2006. Topographical Changes Revealed by High-Resolution Airborne LiDAR Data: The 1999 Tsaoling Landslide Induced by the Chi-Chi Earthquake. Engineering Geology, 88(3/4): 160-172. https://doi.org/10.1016/j.enggeo.2006.09.008 |
Chen, R. F., Lin, C. W., Chen, Y. H., et al., 2015. Detecting and Characterizing Active Thrust Fault and Deep-Seated Landslides in Dense Forest Areas of Southern Taiwan Using Airborne LiDAR DEM. Remote Sensing, 7(11): 15443-15466. https://doi.org/10.3390/rs71115443 |
Chen, W. T., Li, X. J., Wang, Y. X., et al., 2014. Forested Landslide Detection Using LiDAR Data and the Random Forest Algorithm: A Case Study of the Three Gorges, China. Remote Sensing of Environment, 152: 291-301. https://doi.org/10.1016/j.rse.2014.07.004 |
Chiba, T., Kaneta, S., Suzuki, Y., 2008. Red Relief Image Map: New Visualization Method for Three Dimensional Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B2), 1071-1076. http://www.isprs.org/proceedings/xxxvii/congress/2_pdf/11_ths-6/08.pdf. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0D311937E390C0CE6901A3533AD5F823?doi=10.1.1.184.1205&rep=rep1&type=pdf |
Chigira, M., Duan, F. J., Yagi, H., et al., 2004. Using an Airborne Laser Scanner for the Identification of Shallow Landslides and Susceptibility Assessment in an Area of Ignimbrite Overlain by Permeable Pyroclastics. Landslides, 1(3): 203-209. https://doi.org/10.1007/s10346-004-0029-x |
Comert, R., Avdan, U., Gorum, T., et al., 2019. Mapping of Shallow Landslides with Object-Based Image Analysis from Unmanned Aerial Vehicle Data. Engineering Geology, 260(1): 105264. https://doi.org/10.1016/j.enggeo.2019.105264 |
Conrad, O., Bechtel, B., Bock, M., et al., 2015. System for Automated Geoscientific Analyses (SAGA) V. 2.1.4. Geoscientific Model Development, 8(7): 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015 |
Dong, J., Zhang, L., Tang, M. G., et al., 2018. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distributed Scatterers: A Case Study of Jiaju Landslide in Danba, China. Remote Sensing of Environment, 205: 180-198. https://doi.org/10.1016/j.rse.2017.11.022 |
Eeckhaut, M. V. D., Poesen, J., Verstraeten, G., et al., 2007. Use of LIDAR-Derived Images for Mapping Old Landslides under Forest. Earth Surface Processes and Landforms, 32(5): 754-769. https://doi.org/10.1002/esp.1417 |
Fan, X. M., Scaringi, G., Xu, Q., et al., 2018. Coseismic Landslides Triggered by the 8th August 2017 Ms7.0 Jiuzhaigou Earthquake (Sichuan, China): Factors Controlling Their Spatial Distribution and Implications for the Seismogenic Blind Fault Identification. Landslides, 15(5): 967-983. https://doi.org/10.1007/s10346-018-0960-x |
Fan, X. M., Xu, Q., Alonso-Rodriguez, A., et al., 2019. Successive Landsliding and Damming of the Jinsha River in Eastern Tibet, China: Prime Investigation, Early Warning, and Emergency Response. Landslides, 16(5): 1003-1020. https://doi.org/10.1007/s10346-019-01159-x |
Fan, X. M., Xu, Q., Scaringi, G., et al., 2017. Failure Mechanism and Kinematics of the Deadly June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China. Landslides, 14(6): 2129-2146. https://doi.org/10.1007/s10346-017-0907-7 |
Fan, X., Xu, Q., Huang, R., et al., 2007. Dynamical Optimal Anchoring Design and Information Construction of Danba Landslide. Chinese Journal of Rock Mechanics and Engineering, 26 (S2): 4139-4146 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-YSLX2007S2080.htm |
Fiorucci, F., Cardinali, M., Carlà, R., et al., 2011. Seasonal Landslide Mapping and Estimation of Landslide Mobilization Rates Using Aerial and Satellite Images. Geomorphology, 129(1/2): 59-70. https://doi.org/10.1016/j.geomorph.2011.01.013 |
Gao, J., Maro, J., 2010. Topographic Controls on Evolution of Shallow Landslides in Pastoral Wairarapa, New Zealand, 1979-2003. Geomorphology, 114(3): 373-381. https://doi.org/10.1016/j.geomorph.2009.08.002 |
Görüm, T., 2019. Landslide Recognition and Mapping in a Mixed Forest Environment from Airborne LiDAR Data. Engineering Geology, 258: 105155. https://doi.org/10.1016/j.enggeo.2019.105155 |
Guzzetti, F., Ardizzone, F., Cardinali, M., et al., 2009. Landslide Volumes and Landslide Mobilization Rates in Umbria, Central Italy. Earth and Planetary Science Letters, 279(3/4): 222-229. https://doi.org/10.1016/j.epsl.2009.01.005 |
Guzzetti, F., Mondini, A. C., Cardinali, M., et al., 2012. Landslide Inventory Maps: New Tools for an Old Problem. Earth-Science Reviews, 112(1/2): 42-66. https://doi.org/10.1016/j.earscirev.2012.02.001 |
Huang, R. Q., 2009. Some Catastrophic Landslides since the Twentieth Century in the Southwest of China. Landslides, 6(1): 69-81. https://doi.org/10.1007/s10346-009-0142-y |
Jaboyedoff, M., Metzger, R., Oppikofer, T., et al., 2007. New Insight Techniques to Analyze Rock-Slope Relief Using DEM and 3D-Imaging Cloud Points. Rock Mechanics: Meeting Society's Challenges and Demands. In: Eberhardt, E., Stead, D., Morrison, T., eds., Rock mechanics: Meeting Society's challenges and demands. Proceedings of the 1st Canada——U.S. Rock Mechanics Symposium, Vancouver, Canada, 27-31 May 2007. Taylor & Francis, 61-68. https://doi.org/10.1201/noe0415444019-c8 |
Jaboyedoff, M., Oppikofer, T., Abellán, A., et al., 2012. Use of LIDAR in Landslide Investigations: A Review. Natural Hazards, 61(1): 5-28. https://doi.org/10.1007/s11069-010-9634-2 |
Li, M. H., Zheng, W. M., Shi, S. W., et al., 2008. The Revival Mechanism and Stability Analysis to Jiaju Landslide of Danba County in Sichuan Province. Journal of Mountain Science, 26(5): 577-582 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-SDYA200805013.htm |
Li, W., Xu, Q., Lu, H., et al., 2019. Tracking the Deformation History of Large-Scale Rocky Landslides and Its Enlightenment. Geomatics and Information Science of Wuhan University, 44 (7): 1043-1053 (in Chinese with English Abstract) http://www.researchgate.net/publication/339091214_Tracking_the_Deformation_History_of_Large-Scale_Rocky_Landslides_and_Its_Enlightenment |
Li, X. J., Cheng, X. W., Chen, W. T., et al., 2015. Identification of Forested Landslides Using LiDar Data, Object-Based Image Analysis, and Machine Learning Algorithms. Remote Sensing, 7(8): 9705-9726. https://doi.org/10.3390/rs70809705 |
Lin, M. L., Chen, T. W., Lin, C. W., et al., 2013. Detecting Large-Scale Landslides Using Lidar Data and Aerial Photos in the Namasha-Liuoguey Area, Taiwan. Remote Sensing, 6(1): 42-63. https://doi.org/10.3390/rs6010042 |
Malamud, B. D., Turcotte, D. L., Guzzetti, F., et al., 2004. Landslides, Earthquakes, and Erosion. Earth and Planetary Science Letters, 229(1/2): 45-59. https://doi.org/10.1016/j.epsl.2004.10.018 |
McKean, J., Roering, J., 2004. Objective Landslide Detection and Surface Morphology Mapping Using High-Resolution Airborne Laser Altimetry. Geomorphology, 57(3/4): 331-351. https://doi.org/10.1016/s0169-555x(03)00164-8 |
Nichol, J., Wong, M. S., 2005. Detection and Interpretation of Landslides Using Satellite Images. Land Degradation & Development, 16(3): 243-255. https://doi.org/10.1002/ldr.648 |
Parker, R. N., Densmore, A. L., Rosser, N. J., et al., 2011. Mass Wasting Triggered by the 2008 Wenchuan Earthquake is Greater than Orogenic Growth. Nature Geoscience, 4(7): 449-452. https://doi.org/10.1038/ngeo1154 |
Pedrazzini, A., Humair, F., Jaboyedoff, M., et al., 2016. Characterisation and Spatial Distribution of Gravitational Slope Deformation in the Upper Rhone Catchment (Western Swiss Alps). Landslides, 13(2): 259-277. https://doi.org/10.1007/s10346-015-0562-9 |
Peng, D. L., Xu, Q., Liu, F. Z., et al., 2018. Distribution and Failure Modes of the Landslides in Heitai Terrace, China. Engineering Geology, 236: 97-110. https://doi.org/10.1016/j.enggeo.2017.09.016 |
Petschko, H., Bell, R., Glade, T., 2016. Effectiveness of Visually Analyzing LiDAR DTM Derivatives for Earth and Debris Slide Inventory Mapping for Statistical Susceptibility Modeling. Landslides, 13(5): 857-872. https://doi.org/10.1007/s10346-015-0622-1 |
Roering, J. J., MacKey, B. H., Marshall, J. A., et al., 2013. 'You are HERE': Connecting the Dots with Airborne Lidar for Geomorphic Fieldwork. Geomorphology, 200: 172-183. https://doi.org/10.1016/j.geomorph.2013.04.009 |
Santangelo, M., Cardinali, M., Rossi, M., et al., 2010. Remote Landslide Mapping Using a Laser Rangefinder Binocular and GPS. Natural Hazards and Earth System Sciences, 10(12): 2539-2546. https://doi.org/10.5194/nhess-10-2539-2010 |
Tang, C. X., Tanyas, H., van Westen, C. J., et al., 2019. Analysing Post-Earthquake Mass Movement Volume Dynamics with Multi-Source DEMs. Engineering Geology, 248: 89-101. https://doi.org/10.1016/j.enggeo.2018.11.010 |
Tomás, R., Li, Z. H., 2017. Earth Observations for Geohazards: Present and Future Challenges. Remote Sensing, 9(3): 194. https://doi.org/10.3390/rs9030194 |
Trigila, A., Iadanza, C., Spizzichino, D., 2010. Quality Assessment of the Italian Landslide Inventory Using GIS Processing. Landslides, 7(4): 455-470. https://doi.org/10.1007/s10346-010-0213-0 |
Yamazaki, F., Kubo, K., Tanabe, R., et al., 2017. Damage Assessment and 3d Modeling by UAV Flights after the 2016 Kumamoto, Japan Earthquake. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). July 23-28, 2017, Fort Worth, TX, USA. IEEE, 3182-3185. https://doi.org/10.1109/igarss.2017.8127673 |
Yin, Y. P., Wang, F. W., Sun, P., 2009. Landslide Hazards Triggered by the 2008 Wenchuan Earthquake, Sichuan, China. Landslides, 6(2): 139-152. https://doi.org/10.1007/s10346-009-0148-5 |
Zakšek, K., Oštir, K., Kokalj, Ž., 2011. Sky-View Factor as a Relief Visualization Technique. Remote Sensing, 3(2): 398-415. https://doi.org/10.3390/rs3020398 |
Zhang, S. L., Yin, Y. P., Hu, X. W., et al., 2020. Initiation Mechanism of the Baige Landslide on the Upper Reaches of the Jinsha River, China. Landslides, 17(12): 2865-2877. https://doi.org/10.1007/s10346-020-01495-3 |
Zheng, G., Xu, Q., Ju, Y. Z., et al., 2018. The Pusacun Rockavalanche on August 28, 2017 in Zhangjiawan Nayongxian, Guizhou: Characteristics and Failure Mechanism. Journal of Engineering Geology, 26(1): 223-240 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201801023.htm |
Zhu, Y. Q., Xu, S. M., Zhuang, Y., et al., 2019. Characteristics and Runout Behaviour of the Disastrous 28 August 2017 Rock Avalanche in Nayong, Guizhou, China. Engineering Geology, 259:105154. https://doi.org/10.1016/j.enggeo.2019.105154 |