Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 5
Oct 2021
Turn off MathJax
Article Contents
Chen Guo, Qiang Xu, Xiujun Dong, Weile Li, Kuanyao Zhao, Huiyan Lu, Yuanzhen Ju. Geohazard Recognition and Inventory Mapping Using Airborne LiDAR Data in Complex Mountainous Areas. Journal of Earth Science, 2021, 32(5): 1079-1091. doi: 10.1007/s12583-021-1467-2
Citation: Chen Guo, Qiang Xu, Xiujun Dong, Weile Li, Kuanyao Zhao, Huiyan Lu, Yuanzhen Ju. Geohazard Recognition and Inventory Mapping Using Airborne LiDAR Data in Complex Mountainous Areas. Journal of Earth Science, 2021, 32(5): 1079-1091. doi: 10.1007/s12583-021-1467-2

Geohazard Recognition and Inventory Mapping Using Airborne LiDAR Data in Complex Mountainous Areas

doi: 10.1007/s12583-021-1467-2
More Information
  • Corresponding author: Qiang Xu: xq@cdut.edu.cn
  • Received Date: 29 Jan 2021
  • Accepted Date: 06 Apr 2021
  • Publish Date: 01 Oct 2021
  • Geohazard recognition and inventory mapping are absolutely the keys to the establishment of reliable susceptibility and hazard maps. However, it has been challenging to implement geohazards recognition and inventory mapping in mountainous areas with complex topography and vegetation cover. Progress in the light detection and ranging (LiDAR) technology provides a new possibility for geohazard recognition in such areas. Specifically, this study aims to evaluate the performances of the LiDAR technology in recognizing geohazard in the mountainous areas of Southwest China through visually analyzing airborne LiDAR DEM derivatives. Quasi-3D relief image maps are generated based on the sky-view factor (SVF), which makes it feasible to interpret precisely the features of geohazard. A total of 146 geohazards are remotely mapped in the entire 135 km2 study area in Danba County, Southwest China, and classified as landslide, rock fall, debris flow based on morphologic characteristics interpreted from SVF visualization maps. Field validation indicate the success rate of LiDAR-derived DEM in recognition and mapping geohazard with higher precision and accuracy. These mapped geohazards lie along both sides of the river, and their spatial distributions are related highly to human engineering activities, such as road excavation and slope cutting. The minimum geohazard that can be recognized in the 0.5 m resolution DEM is about 900 m2. Meanwhile, the SVF visualization method is demonstrated to be a great alternative to the classical hillshaded DEM method when it comes to the determination of geomorphological properties of geohazard. Results of this study highlight the importance of LiDAR data for creating complete and accurate geohazard inventories, which can then be used for the production of reliable susceptibility and hazard maps and thus contribute to a better understanding of the movement processes and reducing related losses.

     

  • loading
  • Ardizzone, F., Cardinali, M., Galli, M., et al., 2007. Identification and Mapping of Recent Rainfall-Induced Landslides Using Elevation Data Collected by Airborne Lidar. Natural Hazards and Earth System Sciences, 7(6): 637-650. https://doi.org/10.5194/nhess-7-637-2007
    Bai, Y. J., Wang, Y. S., Ge, H., et al., 2020. Slope Structures and Formation of Rock-Soil Aggregate Landslides in Deeply Incised Valleys. Journal of Mountain Science, 17(2): 316-328. https://doi.org/10.1007/s11629-019-5623-4
    Bell, R., Petschko, H., Röhrs, M., et al., 2012. Assessment of Landslide Age, Landslide Persistence and Human Impact Using Airborne Laser Scanning Digital Terrain Models. Geografiska Annaler: Series A, Physical Geography, 94(1): 135-156. https://doi.org/10.1111/j.1468-0459.2012.00454.x
    Chen, N. S., Li, T. C., Gao, Y. C., 2005. A Great Disastrous Debris Flow on 11 July 2003 in Shuikazi Valley, Danba County, Western Sichuan, China. Landslides, 2(1): 71-74. https://doi.org/10.1007/s10346-004-0041-1
    Chen, R. F., Chang, K. J., Angelier, J., et al., 2006. Topographical Changes Revealed by High-Resolution Airborne LiDAR Data: The 1999 Tsaoling Landslide Induced by the Chi-Chi Earthquake. Engineering Geology, 88(3/4): 160-172. https://doi.org/10.1016/j.enggeo.2006.09.008
    Chen, R. F., Lin, C. W., Chen, Y. H., et al., 2015. Detecting and Characterizing Active Thrust Fault and Deep-Seated Landslides in Dense Forest Areas of Southern Taiwan Using Airborne LiDAR DEM. Remote Sensing, 7(11): 15443-15466. https://doi.org/10.3390/rs71115443
    Chen, W. T., Li, X. J., Wang, Y. X., et al., 2014. Forested Landslide Detection Using LiDAR Data and the Random Forest Algorithm: A Case Study of the Three Gorges, China. Remote Sensing of Environment, 152: 291-301. https://doi.org/10.1016/j.rse.2014.07.004
    Chiba, T., Kaneta, S., Suzuki, Y., 2008. Red Relief Image Map: New Visualization Method for Three Dimensional Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B2), 1071-1076. http://www.isprs.org/proceedings/xxxvii/congress/2_pdf/11_ths-6/08.pdf. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0D311937E390C0CE6901A3533AD5F823?doi=10.1.1.184.1205&rep=rep1&type=pdf
    Chigira, M., Duan, F. J., Yagi, H., et al., 2004. Using an Airborne Laser Scanner for the Identification of Shallow Landslides and Susceptibility Assessment in an Area of Ignimbrite Overlain by Permeable Pyroclastics. Landslides, 1(3): 203-209. https://doi.org/10.1007/s10346-004-0029-x
    Comert, R., Avdan, U., Gorum, T., et al., 2019. Mapping of Shallow Landslides with Object-Based Image Analysis from Unmanned Aerial Vehicle Data. Engineering Geology, 260(1): 105264. https://doi.org/10.1016/j.enggeo.2019.105264
    Conrad, O., Bechtel, B., Bock, M., et al., 2015. System for Automated Geoscientific Analyses (SAGA) V. 2.1.4. Geoscientific Model Development, 8(7): 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015
    Dong, J., Zhang, L., Tang, M. G., et al., 2018. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distributed Scatterers: A Case Study of Jiaju Landslide in Danba, China. Remote Sensing of Environment, 205: 180-198. https://doi.org/10.1016/j.rse.2017.11.022
    Eeckhaut, M. V. D., Poesen, J., Verstraeten, G., et al., 2007. Use of LIDAR-Derived Images for Mapping Old Landslides under Forest. Earth Surface Processes and Landforms, 32(5): 754-769. https://doi.org/10.1002/esp.1417
    Fan, X. M., Scaringi, G., Xu, Q., et al., 2018. Coseismic Landslides Triggered by the 8th August 2017 Ms7.0 Jiuzhaigou Earthquake (Sichuan, China): Factors Controlling Their Spatial Distribution and Implications for the Seismogenic Blind Fault Identification. Landslides, 15(5): 967-983. https://doi.org/10.1007/s10346-018-0960-x
    Fan, X. M., Xu, Q., Alonso-Rodriguez, A., et al., 2019. Successive Landsliding and Damming of the Jinsha River in Eastern Tibet, China: Prime Investigation, Early Warning, and Emergency Response. Landslides, 16(5): 1003-1020. https://doi.org/10.1007/s10346-019-01159-x
    Fan, X. M., Xu, Q., Scaringi, G., et al., 2017. Failure Mechanism and Kinematics of the Deadly June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China. Landslides, 14(6): 2129-2146. https://doi.org/10.1007/s10346-017-0907-7
    Fan, X., Xu, Q., Huang, R., et al., 2007. Dynamical Optimal Anchoring Design and Information Construction of Danba Landslide. Chinese Journal of Rock Mechanics and Engineering, 26 (S2): 4139-4146 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-YSLX2007S2080.htm
    Fiorucci, F., Cardinali, M., Carlà, R., et al., 2011. Seasonal Landslide Mapping and Estimation of Landslide Mobilization Rates Using Aerial and Satellite Images. Geomorphology, 129(1/2): 59-70. https://doi.org/10.1016/j.geomorph.2011.01.013
    Gao, J., Maro, J., 2010. Topographic Controls on Evolution of Shallow Landslides in Pastoral Wairarapa, New Zealand, 1979-2003. Geomorphology, 114(3): 373-381. https://doi.org/10.1016/j.geomorph.2009.08.002
    Görüm, T., 2019. Landslide Recognition and Mapping in a Mixed Forest Environment from Airborne LiDAR Data. Engineering Geology, 258: 105155. https://doi.org/10.1016/j.enggeo.2019.105155
    Guzzetti, F., Ardizzone, F., Cardinali, M., et al., 2009. Landslide Volumes and Landslide Mobilization Rates in Umbria, Central Italy. Earth and Planetary Science Letters, 279(3/4): 222-229. https://doi.org/10.1016/j.epsl.2009.01.005
    Guzzetti, F., Mondini, A. C., Cardinali, M., et al., 2012. Landslide Inventory Maps: New Tools for an Old Problem. Earth-Science Reviews, 112(1/2): 42-66. https://doi.org/10.1016/j.earscirev.2012.02.001
    Huang, R. Q., 2009. Some Catastrophic Landslides since the Twentieth Century in the Southwest of China. Landslides, 6(1): 69-81. https://doi.org/10.1007/s10346-009-0142-y
    Jaboyedoff, M., Metzger, R., Oppikofer, T., et al., 2007. New Insight Techniques to Analyze Rock-Slope Relief Using DEM and 3D-Imaging Cloud Points. Rock Mechanics: Meeting Society's Challenges and Demands. In: Eberhardt, E., Stead, D., Morrison, T., eds., Rock mechanics: Meeting Society's challenges and demands. Proceedings of the 1st Canada——U.S. Rock Mechanics Symposium, Vancouver, Canada, 27-31 May 2007. Taylor & Francis, 61-68. https://doi.org/10.1201/noe0415444019-c8
    Jaboyedoff, M., Oppikofer, T., Abellán, A., et al., 2012. Use of LIDAR in Landslide Investigations: A Review. Natural Hazards, 61(1): 5-28. https://doi.org/10.1007/s11069-010-9634-2
    Li, M. H., Zheng, W. M., Shi, S. W., et al., 2008. The Revival Mechanism and Stability Analysis to Jiaju Landslide of Danba County in Sichuan Province. Journal of Mountain Science, 26(5): 577-582 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-SDYA200805013.htm
    Li, W., Xu, Q., Lu, H., et al., 2019. Tracking the Deformation History of Large-Scale Rocky Landslides and Its Enlightenment. Geomatics and Information Science of Wuhan University, 44 (7): 1043-1053 (in Chinese with English Abstract) http://www.researchgate.net/publication/339091214_Tracking_the_Deformation_History_of_Large-Scale_Rocky_Landslides_and_Its_Enlightenment
    Li, X. J., Cheng, X. W., Chen, W. T., et al., 2015. Identification of Forested Landslides Using LiDar Data, Object-Based Image Analysis, and Machine Learning Algorithms. Remote Sensing, 7(8): 9705-9726. https://doi.org/10.3390/rs70809705
    Lin, M. L., Chen, T. W., Lin, C. W., et al., 2013. Detecting Large-Scale Landslides Using Lidar Data and Aerial Photos in the Namasha-Liuoguey Area, Taiwan. Remote Sensing, 6(1): 42-63. https://doi.org/10.3390/rs6010042
    Malamud, B. D., Turcotte, D. L., Guzzetti, F., et al., 2004. Landslides, Earthquakes, and Erosion. Earth and Planetary Science Letters, 229(1/2): 45-59. https://doi.org/10.1016/j.epsl.2004.10.018
    McKean, J., Roering, J., 2004. Objective Landslide Detection and Surface Morphology Mapping Using High-Resolution Airborne Laser Altimetry. Geomorphology, 57(3/4): 331-351. https://doi.org/10.1016/s0169-555x(03)00164-8
    Nichol, J., Wong, M. S., 2005. Detection and Interpretation of Landslides Using Satellite Images. Land Degradation & Development, 16(3): 243-255. https://doi.org/10.1002/ldr.648
    Parker, R. N., Densmore, A. L., Rosser, N. J., et al., 2011. Mass Wasting Triggered by the 2008 Wenchuan Earthquake is Greater than Orogenic Growth. Nature Geoscience, 4(7): 449-452. https://doi.org/10.1038/ngeo1154
    Pedrazzini, A., Humair, F., Jaboyedoff, M., et al., 2016. Characterisation and Spatial Distribution of Gravitational Slope Deformation in the Upper Rhone Catchment (Western Swiss Alps). Landslides, 13(2): 259-277. https://doi.org/10.1007/s10346-015-0562-9
    Peng, D. L., Xu, Q., Liu, F. Z., et al., 2018. Distribution and Failure Modes of the Landslides in Heitai Terrace, China. Engineering Geology, 236: 97-110. https://doi.org/10.1016/j.enggeo.2017.09.016
    Petschko, H., Bell, R., Glade, T., 2016. Effectiveness of Visually Analyzing LiDAR DTM Derivatives for Earth and Debris Slide Inventory Mapping for Statistical Susceptibility Modeling. Landslides, 13(5): 857-872. https://doi.org/10.1007/s10346-015-0622-1
    Roering, J. J., MacKey, B. H., Marshall, J. A., et al., 2013. 'You are HERE': Connecting the Dots with Airborne Lidar for Geomorphic Fieldwork. Geomorphology, 200: 172-183. https://doi.org/10.1016/j.geomorph.2013.04.009
    Santangelo, M., Cardinali, M., Rossi, M., et al., 2010. Remote Landslide Mapping Using a Laser Rangefinder Binocular and GPS. Natural Hazards and Earth System Sciences, 10(12): 2539-2546. https://doi.org/10.5194/nhess-10-2539-2010
    Tang, C. X., Tanyas, H., van Westen, C. J., et al., 2019. Analysing Post-Earthquake Mass Movement Volume Dynamics with Multi-Source DEMs. Engineering Geology, 248: 89-101. https://doi.org/10.1016/j.enggeo.2018.11.010
    Tomás, R., Li, Z. H., 2017. Earth Observations for Geohazards: Present and Future Challenges. Remote Sensing, 9(3): 194. https://doi.org/10.3390/rs9030194
    Trigila, A., Iadanza, C., Spizzichino, D., 2010. Quality Assessment of the Italian Landslide Inventory Using GIS Processing. Landslides, 7(4): 455-470. https://doi.org/10.1007/s10346-010-0213-0
    Yamazaki, F., Kubo, K., Tanabe, R., et al., 2017. Damage Assessment and 3d Modeling by UAV Flights after the 2016 Kumamoto, Japan Earthquake. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). July 23-28, 2017, Fort Worth, TX, USA. IEEE, 3182-3185. https://doi.org/10.1109/igarss.2017.8127673
    Yin, Y. P., Wang, F. W., Sun, P., 2009. Landslide Hazards Triggered by the 2008 Wenchuan Earthquake, Sichuan, China. Landslides, 6(2): 139-152. https://doi.org/10.1007/s10346-009-0148-5
    Zakšek, K., Oštir, K., Kokalj, Ž., 2011. Sky-View Factor as a Relief Visualization Technique. Remote Sensing, 3(2): 398-415. https://doi.org/10.3390/rs3020398
    Zhang, S. L., Yin, Y. P., Hu, X. W., et al., 2020. Initiation Mechanism of the Baige Landslide on the Upper Reaches of the Jinsha River, China. Landslides, 17(12): 2865-2877. https://doi.org/10.1007/s10346-020-01495-3
    Zheng, G., Xu, Q., Ju, Y. Z., et al., 2018. The Pusacun Rockavalanche on August 28, 2017 in Zhangjiawan Nayongxian, Guizhou: Characteristics and Failure Mechanism. Journal of Engineering Geology, 26(1): 223-240 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201801023.htm
    Zhu, Y. Q., Xu, S. M., Zhuang, Y., et al., 2019. Characteristics and Runout Behaviour of the Disastrous 28 August 2017 Rock Avalanche in Nayong, Guizhou, China. Engineering Geology, 259:105154. https://doi.org/10.1016/j.enggeo.2019.105154
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views(505) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return