Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 5
Oct 2021
Turn off MathJax
Article Contents
Xiaolong Zhang, Xiaobo Peng, Xiaojun Li, Zhenghua Zhou, Chong Xu, Zhan Dou, Bideng Liu. Three-Dimensional Seismic Response in Complex Site Conditions: A New Approach Based on an Auxiliary-Model Method. Journal of Earth Science, 2021, 32(5): 1152-1165. doi: 10.1007/s12583-021-1471-6
Citation: Xiaolong Zhang, Xiaobo Peng, Xiaojun Li, Zhenghua Zhou, Chong Xu, Zhan Dou, Bideng Liu. Three-Dimensional Seismic Response in Complex Site Conditions: A New Approach Based on an Auxiliary-Model Method. Journal of Earth Science, 2021, 32(5): 1152-1165. doi: 10.1007/s12583-021-1471-6

Three-Dimensional Seismic Response in Complex Site Conditions: A New Approach Based on an Auxiliary-Model Method

doi: 10.1007/s12583-021-1471-6
More Information
  • Corresponding author: Chong Xu, xc11111111@126.com
  • Received Date: 10 Nov 2020
  • Accepted Date: 14 Apr 2021
  • Publish Date: 01 Oct 2021
  • In this paper, an auxiliary-model method is proposed for calculating equivalent input seismic loads in research of ground motions. This method can be used to investigate the local effect of 3D complex sites subjected to obliquely incident SV and P waves. Using this method, we build a fictitious auxiliary model along the normal direction of the boundary of the area of interest, with the model's localized geological features remaining the same along a vector normal to this boundary. This model is divided into five independent auxiliary models, which are then dynamically analyzed to obtain the equivalent input seismic loads. Unlike traditional methods, in this new technique, the mechanical behavior of the auxiliary model can be nonlinear, and its geometry can be arbitrary. In addition, a detailed description of the steps to calculate the equivalent input seismic loads is given. Numerical examples of incident plane-wave propagation at uniform sites with local features validate the effectiveness of this method. It is also applicable to elastic and non-elastic problems.

     

  • loading
  • Ashford, S. A., Sitar, N., Lysmer, J., et al., 1997. Topographic Effects on the Seismic Response of Steep Slopes. Bulletin of the Seismological Society of America, 87(3): 701-709 http://www.researchgate.net/profile/Nan_Deng9/publication/265023937_Topographic_Effects_on_the_Seismic_Response_of_Steep_Slopes/links/554a35b10cf29f836c964aac.pdf
    Assimaki, D., 2005. Effects of Local Soil Conditions on the Topographic Aggravation of Seismic Motion: Parametric Investigation and Recorded Field Evidence from the 1999 Athens Earthquake. Bulletin of the Seismological Society of America, 95(3): 1059-1089. https://doi.org/10.1785/0120040055
    Assimaki, D., Jeong, S., 2013. Ground-Motion Observations at Hotel Montana during the Ms7.0 2010 Haiti Earthquake: Topography or Soil Amplification? Bulletin of the Seismological Society of America, 103(5): 2577-2590. https://doi.org/10.1785/0120120242
    Assimaki, D., Kausel, E., 2007. Modified Topographic Amplification Factors for a Single-Faced Slope Due to Kinematic Soil-Structure Interaction. Journal of Geotechnical and Geoenvironmental Engineering, 133(11): 1414-1431. https://doi.org/10.1061/(asce)1090-0241(2007)133:11(1414)
    Bakavoli, M. K., Haghshenas E., Kamalian. M., 2011. Experimental Study of Seismic Behavior of Two Hilly Sites in Tehran and Comparison with 2d and 3d Numerical Modeling. Soil Dynamics and Earthquake Engineering, 31(5-6): 737-756. https://doi.org/10.1016/j.soildyn.2010.12.003
    Bathe, K. J., 1996. Finite Element Procedures. Prentice Hall, Upper Saddle River
    Bielak, J., 2003. Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part I: Theory. Bulletin of the Seismological Society of America, 93(2): 817-824. https://doi.org/10.1785/0120010251
    Bouchon, M., Barker, J. S., 1996. Seismic Response of a Hill: The Example of Tarzana, California. Bulletin of the Seismological Society of America, 86(1A): 66-72. https://doi.org/10.2307/3103582
    Buech, F., Davies, T. R., Pettinga, J. R., 2010. The Little Red Hill Seismic Experimental Study: Topographic Effects on Ground Motion at a Bedrock-Dominated Mountain Edifice. Bulletin of the Seismological Society of America, 100(5A): 2219-2229. https://doi.org/10.1785/0120090345
    Burjánek, J., Edwards, B., Fäh, D., 2014. Empirical Evidence of Local Seismic Effects at Sites with Pronounced Topography: A Systematic Approach. Geophysical Journal International, 197(1): 608-619. https://doi.org/10.1093/gji/ggu014
    Cremonini, M. G., Christiano, P., Bielak, J., 1988. Implementation of Effective Seismic Input for Soil-Structure Interaction Systems. Earthquake Engineering & Structural Dynamics, 16(4): 615-625. https://doi.org/10.1002/eqe.4290160411
    Du, X. L., Zhao, M., 2010. A Local Time-Domain Transmitting Boundary for Simulating Cylindrical Elastic Wave Propagation in Infinite Media. Soil Dynamics and Earthquake Engineering, 30(10): 937-946. https://doi.org/10.1016/j.soildyn.2010.04.004
    Falcone, G., Boldini, D., Amorosi, A., 2018. Site Response Analysis of an Urban Area: A Multi-Dimensional and Non-Linear Approach. Soil Dynamics and Earthquake Engineering, 109: 33-45. https://doi.org/10.1016/j.soildyn.2018.02.026
    Falcone, G., Boldini, D., Martelli, L., et al., 2020. Quantifying Local Seismic Amplification from Regional Charts and Site Specific Numerical Analyses: A Case Study. Bulletin of Earthquake Engineering, 18(1): 77-107. https://doi.org/10.1007/s10518-019-00719-9
    Formisano, L. A., la Rocca, M., del Pezzo, E., et al., 2012. Topography Effects in the Polarization of Earthquake Signals: A Comparison between Surface and Deep Recordings. Bollettino di Geofisica Teorica ed Applicata, 53(4): 471-484
    Gao, Y., Zhang, N., Li, D., et al., 2012. Effects of Topographic Amplification Induced by a U-Shaped Canyon on Seismic Waves. Bulletin of the Seismological Society of America, 102(4): 1748-1763. https://doi.org/10.1785/0120110306
    Gatmiri, B., Arson, C., 2008. Seismic Site Effects by an Optimized 2D BE/FE Method II. Quantification of Site Effects in Two-Dimensional Sedimentary Valleys. Soil Dynamics and Earthquake Engineering, 28(8): 646-661. https://doi.org/10.1016/j.soildyn.2007.09.002
    Geli, L., Bard, P. Y., Jullien, B., 1988. The Effect of Topography on Earthquake Ground Motion: A Review and New Results. Bulletin of the Seismological Society of America, 78(1): 42-63. https://doi.org/10.1785/BSSA0780010042
    Graff, K. F., 1975. Wave Motion in Elastic Solids. Dover Books on Engineering Series. Dover Publications, New York
    Graizer, V., 2009. Low-Velocity Zone and Topography as a Source of Site Amplification Effect on Tarzana Hill, California. Soil Dynamics and Earthquake Engineering, 29(2): 324-332. https://doi.org/10.1016/j.soildyn.2008.03.005
    Hartzell, S., Meremonte, M., Ramirez-Guzman, L., et al., 2014. Ground Motion in the Presence of Complex Topography: Earthquake and Ambient Noise Sources. Bulletin of the Seismological Society of America, 104(1): 451-466. https://doi.org/10.1785/0120130088
    Hough, S. E., Yong, A. L., Altidor, J. R., et al., 2011. Site Characterization and Site Response in Port-Au-Prince, Haiti. Earthquake Spectra, 27(1): 137-155. https://doi.org/10.1193/1.3637947
    Khandan Bakavoli, M., Haghshenas, E., Kamalian, M., 2011. Experimental Study of Seismic Behavior of Two Hilly Sites in Tehran and Comparison with 2D and 3D Numerical Modeling. Soil Dynamics and Earthquake Engineering, 31(5/6): 737-756. https://doi.org/10.1016/j.soildyn.2010.12.003
    Kuhlemeyer, R. L., Lysmer, J., 1973. Finite Element Method Accuracy for Wave Propagation Problems. Journal of the Soil Mechanics and Foundations Division, 99(5): 421-427. https://doi.org/10.1061/jsfeaq.0001885
    Lee, J., 2013. Earthquake Site Effect Modeling in the Granada Basin Using a 3-D Indirect Boundary Element Method. Physics and Chemistry of the Earth, Parts A/B/C, 63: 102-115. https://doi.org/10.1016/j.pce.2013.03.003
    Lee, S. J., Chen, H. W., Liu, Q., et al., 2008. Three-Dimensional Simulations of Seismic-Wave Propagation in the Taipei Basin with Realistic Topography Based Upon the Spectral-Element Method. Bulletin of the Seismological Society of America, 98(1): 253-264. https://doi.org/10.1785/0120070033
    Lee, S. J., Komatitsch, D., Huang, B. S., et al., 2009a. Effects of Topography on Seismic-Wave Propagation: An Example from Northern Taiwan. Bulletin of the Seismological Society of America, 99(1): 314-325. https://doi.org/10.1785/0120080020
    Lee, S. J., Chan, Y. C., Komatitsch, D., et al., 2009b. Effects of Realistic Surface Topography on Seismic Ground Motion in the Yangminshan Region of Taiwan Based Upon the Spectral-Element Method and LiDAR DTM. Bulletin of the Seismological Society of America, 99(2A): 681-693. https://doi.org/10.1785/0120080264
    Liu, J. B., Tan, H., Bao, X., et al., 2019a. Seismic Wave Input Method for Three-Dimensional Soil-Structure Dynamic Interaction Analysis Based on the Substructure of Artificial Boundaries. Earthquake Engineering and Engineering Vibration, 18(4): 747-758. https://doi.org/10.1007/s11803-019-0534-5
    Liu, J. B., Bao, X., Wang, D. Y., et al., 2019b. The Internal Substructure Method for Seismic Wave Input in 3D Dynamic Soil-Structure Interaction Analysis. Soil Dynamics and Earthquake Engineering, 127: 105847. https://doi.org/10.1016/j.soildyn.2019.105847
    Liu, J. B., Lu, Y. D., 1998. A Direct Method for Analysis of Dynamic Soil-Structure Interaction Based on Interface Idea. Developments in Geotechnical Engineering, 83: 261-276. https://doi.org/10.1016/S0165-1250(98)80018-7
    Liu, J. B., Wang, Y., 2007. A 1D Time-Domain Method for In-Plane Wave Motions in a Layered Half-Space. Acta Mechanica Sinica, 23(6): 673-680. https://doi.org/10.1007/s10409-007-0114-1
    Liu, J. B., Du, Y. X., Du, X. L., et al., 2006. 3D Viscous-Spring Artificial Boundary in Time Domain. Earthquake Engineering and Engineering Vibration, 5(1): 93-102. https://doi.org/10.1007/s11803-006-0585-2
    Lovati, S., Bakavoli, M. K. H., Massa, M., et al., 2011. Estimation of Topographical Effects at Narni Ridge (Central Italy): Comparisons between Experimental Results and Numerical Modelling. Bulletin of Earthquake Engineering, 9(6): 1987-2005. https://doi.org/10.1007/s10518-011-9315-x
    Luo, Y. H., Fan, X. M., Huang, R. Q., et al., 2020. Topographic and Near-Surface Stratigraphic Amplification of the Seismic Response of a Mountain Slope Revealed by Field Monitoring and Numerical Simulations. Engineering Geology, 271: 105607. https://doi.org/10.1016/j.enggeo.2020.105607
    Ma, S., Archuleta, R. J., Page, M. T., 2007. Effects of Large-Scale Surface Topography on Ground Motions, as Demonstrated by a Study of the San Gabriel Mountains, Los Angeles, California. Bulletin of the Seismological Society of America, 97(6): 2066-2079. https://doi.org/10.1785/0120070040
    Marzorati, S., Ladina, C., Falcucci, E., et al., 2011. Site Effects "on the Rock": The Case of Castelvecchio Subequo (L'Aquila, Central Italy). Bulletin of Earthquake Engineering, 9(3): 841-868. https://doi.org/10.1007/s10518-011-9263-5
    Massa, M., Barani, S., Lovati, S., 2014. Overview of Topographic Effects Based on Experimental Observations: Meaning, Causes and Possible Interpretations. Geophysical Journal International, 197(3): 1537-1550. https://doi.org/10.1093/gji/ggt341
    Maufroy, E., Cruz-Atienza, V. M., Cotton, F., et al., 2015. Frequency-Scaled Curvature as a Proxy for Topographic Site-Effect Amplification and Ground-Motion Variability. Bulletin of the Seismological Society of America, 105(1): 354-367. https://doi.org/10.1785/0120140089
    Moczo, P., Kristek, J., Bard, P. Y., et al., 2018. Key Structural Parameters Affecting Earthquake Ground Motion in 2D and 3D Sedimentary Structures. Bulletin of Earthquake Engineering, 16(6): 2421-2450. https://doi.org/10.1007/s10518-018-0345-5
    Nguyen, K. V., Gatmiri, B., 2007. Evaluation of Seismic Ground Motion Induced by Topographic Irregularity. Soil Dynamics and Earthquake Engineering, 27(2): 183-188. https://doi.org/10.1016/j.soildyn.2006.06.005
    Paolucci, R., 2002. Amplification of Earthquake Ground Motion by Steep Topographic Irregularities. Earthquake Engineering & Structural Dynamics, 31(10): 1831-1853. https://doi.org/10.1002/eqe.192
    Poursartip, B., Fathi, A., Kallivokas, L. F., 2017. Seismic Wave Amplification by Topographic Features: A Parametric Study. Soil Dynamics and Earthquake Engineering, 92: 503-527. https://doi.org/10.1016/j.soildyn.2016.10.031
    Poursartip, B., Fathi, A., Tassoulas, J. L., 2020. Large-Scale Simulation of Seismic Wave Motion: A Review. Soil Dynamics and Earthquake Engineering, 129: 105909. https://doi.org/10.1016/j.soildyn.2019.105909
    Poursartip, B., Kallivokas, L. F., 2018. Model Dimensionality Effects on the Amplification of Seismic Waves. Soil Dynamics and Earthquake Engineering, 113: 572-592. https://doi.org/10.1016/j.soildyn.2018.06.012
    Rathje, E. M., Bachhuber, J., Dulberg, R., et al., 2011. Damage Patterns in Port-Au-Prince during the 2010 Haiti Earthquake. Earthquake Spectra, 27(Suppl.): 117-136. https://doi.org/10.1193/1.3637056
    Sánchez-Sesma, F. J., Campillo, M., 1991. Diffraction of P, SV and Rayleigh Waves by Topographic Features: A Boundary Integral Formulation. Bulletin——Seismological Society of America, 81(6): 2234-2253 http://isterre.osug.fr/docrestreint.api/4315/a8dbe91967ee20d495849e7c4acd1207484a592a/pdf/FJSS-C-BSSA-1991.pdf
    Veeraraghavan, S., Coleman, J. L., Bielak, J., 2020. Simulation of Site and Topographic Effects on Ground Motion in Los Alamos, NM Mesas. Geophysical Journal International, 220(3): 1504-1520. https://doi.org/10.1093/gji/ggz448
    Wang, X. W., Chen, J. T., Xiao, M., 2019. Seismic Responses of an Underground Powerhouse Structure Subjected to Oblique Incidence SV and P Waves. Soil Dynamics and Earthquake Engineering, 119:130-143. https://doi.org/10.1016/j.soildyn.2019.01.014
    Wei, Z., He, H., Shi, F., et al., 2010. Topographic Characteristics of Rupture Surface Associated with the 12 May 2008 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 100(5B): 2669-2680. https://doi.org/10.1785/0120090260
    Yoshimura, C., 2003. Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part II: Verification and Applications. Bulletin of the Seismological Society of America, 93(2): 825-841. https://doi.org/10.1785/0120010252
    Zhang, X. L., Peng, X. B., Li, X. J., et al., 2020. Seismic Effects of a Small Sedimentary Basin in the Eastern Tibetan Plateau Based on Numerical Simulation and Ground Motion Records from Aftershocks of the 2008 Mw7.9 Wenchuan, China Earthquake. Journal of Asian Earth Sciences, 192:104257. https://doi.org/10.1016/j.jseaes.2020.104257
    Zhao, M., Gao, Z., Wang, L., et al., 2017. Obliquely Incident Earthquake for Soil-Structure Interaction in Layered Half Space. Earthquakes and Structures, 13(6): 573-588. https://doi.org/10.12989/eas.2017.13.6.573
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)

    Article Metrics

    Article views(262) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return