Citation: | Shahpara Sheikh Dola, Junmeng Zhao, Heng Zhang, Shunping Pei. Upper-Mantle Velocity Heterogeneity of Eastern Tibetan Plateau from Teleseismic P-Wave Tomography and Its Tectonic Implications. Journal of Earth Science, 2023, 34(1): 280-290. doi: 10.1007/s12583-021-1478-z |
An attempt has been made to reveal the upper mantle velocity structure of the eastern Tibetan Plateau using 628 teleseismic events recorded from 2003 to 2009 at 95 stations. A total of 8 532 P-wave arrival time residuals were inverted by using the FMTOMO (fast marching tomography) software package. Tomographic results show upper mantle velocity heterogeneity in many aspects. In the southern part visible high velocity anomaly is denoted as the Indian lithosphere. This part seems to be affected by slab tearing at 94°E longitude as it is located on the eastern Himalayan syntaxis (EHS). The high velocity zone down to 500 km depth in the northern part could be the Asian lithosphere. At the central part some high velocity anomalies can be identified as detached patches of the lithosphere, surrounded by low velocity anomalies. These anomalies are the potential to create thermal convection and trigger plateau uplift or plateau growth. Sudden velocity change occurs on both sides of patches where low velocity anomaly is visible in between patches and Bangong-Nujiang suture even in between Songpan-Ganzi terrain and Asian Plate. In both cases intense low velocity zone spread down to 500 km. The depth range of low velocity anomalies in between two plates observed from 200 to ~500 km. Hence the low velocity anomalies detected in our results may reflect either the hot asthenosphere upwelling or the mantle wedge due to the presence of the cold lithosphere.
Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5): 358–362. https://doi.org/10.1038/ngeo830 |
Bao, X. W., Song, X. D., Eaton, D. W., et al., 2020. Episodic Lithospheric Deformation in Eastern Tibet Inferred from Seismic Anisotropy. Geophysical Research Letters, 47(3): e2019GL085721. . https://doi.org/10.1029/2019GL085721 |
Bao, X. W., Song, X. D., Li, J. T., 2015. High-Resolution Lithospheric Structure beneath Mainland China from Ambient Noise and Earthquake Surface-Wave Tomography. Earth and Planetary Science Letters, 417: 132–141. https://doi.org/10.1016/j.epsl.2015.02.024 |
Burchfiel, B. C., 2004. New Technology; New Geological Challenges. GSA Today, 14(2): 4–9. https://doi.org/10.1130/1052-5173(2004)0144:panngc>2.0.co;2 doi: 10.1130/1052-5173(2004)0144:panngc>2.0.co;2 |
Clark, M. K., House, M. A., Royden, L. H., et al., 2005. Late Cenozoic Uplift of Southeastern Tibet. Geology, 33(6): 525–528. https://doi.org/10.1130/G21265.1 |
Fu, Y. V., Li, A. B., Chen, Y. J., 2010. Crustal and Upper Mantle Structure of Southeast Tibet from Rayleigh Wave Tomography. Journal of Geophysical Research: Solid Earth, 115(B12): B12323. https://doi.org/10.1029/2009JB007160 |
Gan, W., Zhang, P. Z., Shen, Z. K., et al., 2007. Present‐Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. Journal of Geophysical Research: Solid Earth, 112(B8): B08416. https://doi.org/10.1029/2005JB004120 |
Guo, Z., Chen, Y. J., 2017. Mountain Building at Northeastern Boundary of Tibetan Plateau and Craton Reworking at Ordos Block from Joint Inversion of Ambient Noise Tomography and Receiver Functions. Earth and Planetary Science Letters, 463: 232–242. https://doi.org/10.1016/j.epsl.2017.01.026 |
Hu, J. F., Xu, X. Q., Yang, H. Y., et al., 2011. S Receiver Function Analysis of the Crustal and Lithospheric Structures beneath Eastern Tibet. Earth and Planetary Science Letters, 306(1/2): 77–85. https://doi.org/10.1016/j.epsl.2011.03.034 |
Hu, J. F., Yang, H. Y., Li, G. Q., et al., 2013. Seismic Signature of the Mantle Transition Zone beneath Eastern Tibet and Sichuan Basin. Journal of Asian Earth Sciences, 62: 606–615. https://doi.org/10.1016/j.jseaes.2012.11.009 |
Huang, Z. C., Wang, L. S., Zhao, D. P., et al., 2011. Seismic Anisotropy and Mantle Dynamics beneath China. Earth and Planetary Science Letters, 306(1/2): 105–117. https://doi.org/10.1016/j.epsl.2011.03.038 |
Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1/2): 181–193. https://doi.org/10.1017/s0263593300007367 |
Kennett, B. L. N., Engdahl, E. R., Buland, R., 1995. Constraints on Seismic Velocities in the Earth from Traveltimes. Geophysical Journal International, 122(1): 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x |
Kennett, B. L. N., Sambridge, M. S., Williamson, P. R., 1988. Subspace Methods for Large Inverse Problems with Multiple Parameter Classes. Geophysical Journal International, 94(2): 237–247. https://doi.org/10.1111/j.1365-246X.1988.tb05898.x |
Kind, R., Yuan, X., Saul, J., et al., 2002. Seismic Images of Crust and Upper Mantle beneath Tibet: Evidence for Eurasian Plate Subduction. Science, 298(5596): 1219–1221. https://doi.org/10.1126/science.1078115 |
de Kool, M., Rawlinson, N., Sambridge, M., 2006. A Practical Grid-Based Method for Tracking Multiple Refraction and Reflection Phases in Three-Dimensional Heterogeneous Media. Geophysical Journal International, 167(1): 253–270. https://doi.org/10.1111/j.1365-246X.2006.03078.x |
Lei, J. S., Li, Y., Xie, F. R., et al., 2014. Pn Anisotropic Tomography and Dynamics under Eastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 119(3): 2174–2198. https://doi.org/10.1002/2013jb010847 doi: 10.1002/2013JB010847 |
Lei, J. S., Zhao, D. P., 2009. Structural Heterogeneity of the Longmenshan Fault Zone and the Mechanism of the 2008 Wenchuan Earthquake (ms 8.0). Geochemistry, Geophysics, Geosystems, 10(10): Q10010. https://doi.org/10.1029/2009GC002590 |
Lei, J. S., Zhao, D. P., 2016a. Large Earthquakes and Structural Heterogeneity in Eastern Tibetan Plateau. In: Duarte, J. C., Schellart, W. P., eds., Plate Boundaries and Natural Hazards. Wiley. 167–191. https://doi.org/10.1002/9781119054146.ch8 |
Lei, J. S., Zhao, D. P., 2016b. Teleseismic P-Wave Tomography and Mantle Dynamics beneath Eastern Tibet. Geochemistry, Geophysics, Geosystems, 17(5): 1861–1884. https://doi.org/10.1002/2016GC006262 |
Lei, J. S., Zhao, D. P., Xu, X. W., et al., 2019. Is There a Big Mantle Wedge under Eastern Tibet?. Physics of the Earth and Planetary Interiors, 292: 100–113. https://doi.org/10.1016/j.pepi.2019.04.005 |
Lev, E., Long, M. D., van der Hilst, R. D., 2006. Seismic Anisotropy in Eastern Tibet from Shear Wave Splitting Reveals Changes in Lithospheric Deformation. Earth and Planetary Science Letters, 251(3/4): 293–304. https://doi.org/10.1016/j.epsl.2006.09.018 |
Li, C., van der Hilst, R. D., Meltzer, A. S., et al., 2008. Subduction of the Indian Lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1/2): 157–168. |
Li, M. K., Zhang, S. X., Wang, F., et al., 2016. Crustal and Upper-Mantle Structure of the Southeastern Tibetan Plateau from Joint Analysis of Surface Wave Dispersion and Receiver Functions. Journal of Asian Earth Sciences, 117: 52–63. https://doi.org/10.1016/j.jseaes.2015.12.002 |
Li, Y. H., Wu, Q. J., Pan, J. T., et al., 2013. An Upper-Mantle S-Wave Velocity Model for East Asia from Rayleigh Wave Tomography. Earth and Planetary Science Letters, 377/378: 367–377. https://doi.org/10.1016/j.epsl.2013.06.033 |
Li, Y. H., Wu, Q. J., Zhang, F. X., et al., 2011. Seismic Anisotropy of the Northeastern Tibetan Plateau from Shear Wave Splitting Analysis. Earth and Planetary Science Letters, 304(1/2): 147–157. https://doi.org/10.1016/j.epsl.2011.01.026 |
Li, Z. H., Xu, Z., Gerya, T., et al., 2013. Collision of Continental Corner from 3-D Numerical Modeling. Earth and Planetary Science Letters, 380: 98–111. https://doi.org/10.1016/j.epsl.2013.08.034 |
Liu, Z., Tian, X., Gao, R., et al., 2017. New Images of the Crustal Structure beneath Eastern Tibet from a High-Density Seismic Array. Earth and Planetary Science Letters, 480: 33–41. https://doi.org/10.1016/j.epsl.2017.09.048 |
Meltzer, A., 2003. Geodynamics of Indentor Corners. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/XE_2003 |
Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201): 419–426. https://doi.org/10.1126/science.189.4201.419 |
Nábělek, J., Hetényi, G., Vergne, J., et al., 2009. Underplating in the Himalaya-Tibet Collision Zone Revealed by the Hi-CLIMB Experiment. Science, 325(5946): 1371–1374. https://doi.org/10.1126/science.1167719 |
Pei, S. P., Niu, F. L., Ben-Zion, Y., et al., 2019. Seismic Velocity Reduction and Accelerated Recovery Due to Earthquakes on the Longmenshan Fault. Nature Geoscience, 12(5): 387–392. https://doi.org/10.1038/s41561-019-0347-1 |
Pei, S. P., Zhao, J. M., Sun, Y. S., et al., 2007. Upper Mantle Seismic Velocities and Anisotropy in China Determined through Pn and Sn Tomography. Journal of Geophysical Research Atmospheres, 112(B5): B05312. https://doi.org/10.1029/2006JB004409 |
Peng, M., Jiang, M., Li, Z. H., et al., 2016. Complex Indian Subduction Style with Slab Fragmentation beneath the Eastern Himalayan Syntaxis Revealed by Teleseismic P-Wave Tomography. Tectonophysics, 667: 77–86. https://doi.org/10.1016/j.tecto.2015.11.012 |
Rawlinson, N., Kennett, B. L. N., 2008. Teleseismic Tomography of the Upper Mantle beneath the Southern Lachlan Orogen, Australia. Physics of the Earth and Planetary Interiors, 167(1/2): 84–97. https://doi.org/10.1016/j.pepi.2008.02.007 |
Rawlinson, N., Sambridge, M., 2003. Seismic Traveltime Tomography of the Crust and Lithosphere. Advances in Geophysics. Amsterdam: Elsevier, 81–198. https://doi.org/10.1016/s0065-2687(03)46002-0 |
Rawlinson, N., Sambridge, M., 2004a. Multiple Reflection and Transmission Phases in Complex Layered Media Using a Multistage Fast Marching Method. Geophysics, 69(5): 1338–1350. https://doi.org/10.1190/1.1801950 |
Rawlinson, N., Sambridge, M., 2004b. Wave Front Evolution in Strongly Heterogeneous Layered Media Using the Fast Marching Method. Geophysical Journal International, 156(3): 631–647. https://doi.org/10.1111/j.1365-246X.2004.02153.x |
Rawlinson, N., Kool, M. D., Sambridge, M., 2006. Seismic Wavefront Tracking in 3D Heterogeneous Media: Applications with Multiple Data Classes. Exploration Geophysics, 37(4): 322–330. https://doi.org/10.1071/EG06322 |
Rawlinson, N., Urvoy, M., 2006. Simultaneous Inversion of Active and Passive Source Datasets for 3-D Seismic Structure with Application to Tasmania. Geophysical Research Letters, 33(24): L24313. https://doi.org/10.1029/2006gl028105 doi: 10.1029/2006GL028105 |
Replumaz, A., Guillot, S., Villaseñor, A., et al., 2013. Amount of Asian Lithospheric Mantle Subducted during the India/Asia Collision. Gondwana Research, 24(3/4): 936–945. https://doi.org/10.1016/j.gr.2012.07.019 |
Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054–1058. https://doi.org/10.1126/science.1155371 |
Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788–790. https://doi.org/10.1126/science.276.5313.788 |
Şengör, A. M. C., Natal'In, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299–307. https://doi.org/10.1038/364299a0 |
Sethian, J. A., 1996. A Fast Marching Level Set Method for Monotonically Advancing Fronts. Proceedings of the National Academy of Sciences of the United States of America, 93(4): 1591–1595. https://doi.org/10.1073/pnas.93.4.1591 |
Sethian, J. A., Popovici, A. M., 2012. 3-D Traveltime Computation Using the Fast Marching Method. Geophysics, 64(2): 516–523. https://doi.org/10.1190/1.1444558 |
Singh, A., Kumar, M. R., 2009. Seismic Signatures of Detached Lithospheric Fragments in the Mantle beneath Eastern Himalaya and Southern Tibet. Earth and Planetary Science Letters, 288(1/2): 279–290. https://doi.org/10.1016/j.epsl.2009.09.031 |
Sol, S., Meltzer, A., Bürgmann, R., et al., 2007. Geodynamics of the Southeastern Tibetan Plateau from Seismic Anisotropy and Geodesy. Geology, 35(6): 563. https://doi.org/10.1130/g23408a.1 doi: 10.1130/G23408A.1 |
Styron, R., Taylor, M., Okoronkwo, K., 2010. Database of Active Structures from the Indo-Asian Collision. Eos, Transactions American Geophysical Union, 91(20): 181. https://doi.org/10.1029/2010eo200001 |
Sun, C. Q., Chen, Y., Gao, E. G, 2011. The Crustal Anisotropy and Its Geodynamical Significance of the Strong Basin-Range Interaction Zone beneath the East Margin of Qinghai-Tibet Plateau. Chinese Journal of Geophysics, 54(5): 1205–1214. https://doi.org/10.3969/j.issn.0001-5733.2011.05.009 (in Chinese with English Abstract) |
Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671–1677. https://doi.org/10.1126/science.105978 |
Taylor, M., Yin, A., 2009. Active Structures of the Himalayan-Tibetan Orogen and Their Relationships to Earthquake Distribution, Contemporary Strain Field, and Cenozoic Volcanism. Geosphere, 5(3): 199–214. https://doi.org/10.1130/ges00217.1 doi: 10.1130/GES00217.1 |
Tilmann, F., Ni, J., Hearn, T., et al., 2003. Seismic Imaging of the Downwelling Indian Lithosphere beneath Central Tibet. Science, 300: 1424–1427. https://doi.org/10.1126/science.1082777 |
Tunini, L., Jiménez-Munt, I., Fernandez, M., et al., 2016. Geophysical-Petrological Model of the Crust and Upper Mantle in the India-Eurasia Collision Zone. Tectonics, 35(7): 1642–1669. https://doi.org/10.1002/2016tc004161 doi: 10.1002/2016TC004161 |
Wei, W. B., Unsworth, M., Jones, A., et al., 2001. Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies. Science, 292(5517): 716–719. https://doi.org/10.1126/science.1010580 |
Wei, W., Zhao, D. P., Xu, J. D., 2013. P-Wave Anisotropic Tomography in Southeast Tibet: New Insight into the Lower Crustal Flow and Seismotectonics. Physics of the Earth and Planetary Interiors, 222: 47–57. https://doi.org/10.1016/j.pepi.2013.07.002 |
Wessel, P., Smith, W. H. F., Scharroo, R., et al., 2013. Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45): 409–410. https://doi.org/10.1002/2013eo450001 |
Willett, S. D., Beaumont, C., 1994. Subduction of Asian Lithospheric Mantle beneath Tibet Inferred from Models of Continental Collision. Nature, 369(6482): 642–645. https://doi.org/10.1038/369642A0 doi: 10.1038/369642a0 |
Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-76492006-022 |
Xiao, W. J., Huang, B. C., Han, C. M., et al., 2010. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2/3): 253–273. https://doi.org/10.1016/j.gr.2010.01.007 |
Xiao, Z., Fuji, N., Iidaka, T., et al., 2020. Seismic Structure beneath the Tibetan Plateau from Iterative Finite-Frequency Tomography Based on ChinArray: New Insights into the Indo-Asian Collision. Journal of Geophysical Research: Solid Earth, 125(2): e2019jb018344. https://doi.org/10.1029/2019jb018344 |
Xu, Q., Liu, X. H., Ding, L., 2016. Miocene High-Elevation Landscape of the Eastern Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 17(10): 4254–4267. https://doi.org/10.1002/2016gc006437 doi: 10.1002/2016GC006437 |
Xu, Q., Pei, S., Yuan, X., et al., 2019. Seismic Evidence for Lateral Asthenospheric Flow beneath the Northeastern Tibetan Plateau Derived from S Receiver Functions. Geochemistry, 20(2): 883–894. https://doi.org/10.1029/2018GC007986 |
Yang, Y. J., Ritzwoller, M. H., Zheng, Y., et al., 2012. A Synoptic View of the Distribution and Connectivity of the Mid-Crustal Low Velocity Zone beneath Tibet. Journal of Geophysical Research: Solid Earth, 117(B4): B04303. https://doi.org/10.1029/2011JB008810 |
Ye, Z., Li, J. T., Gao, R., et al., 2017. Crustal and Uppermost Mantle Structure across the Tibet-Qinling Transition Zone in NE Tibet: Implications for Material Extrusion beneath the Tibetan Plateau. Geophysical Research Letters, 44(20): 10316–10323. https://doi.org/10.1002/2017gl075141 doi: 10.1002/2017GL075141 |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211–80. https://doi.org/10.1146/annurev.earth.28.1.211. |
Yu, C. Q., Zheng, Y. C., Shang, X. F., 2017. Crazyseismic: A MATLAB GUI-Based Software Package for Passive Seismic Data Preprocessing. Seismological Research Letters, 88(2A): 410–415. https://doi.org/10.1785/0220160207 |
Yue, H., Chen, Y. J., Sandvol, E., et al., 2012. Lithospheric and Upper Mantle Structure of the Northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 117(B5): B05307. https://doi.org/10.1029/2011jb008545 |
Zhang, F. X., Wu, Q. J., Li, Y. H., et al., 2018. Seismic Tomography of Eastern Tibet: Implications for the Tibetan Plateau Growth. Tectonics, 37(9): 2833–2847. https://doi.org/10.1029/2018TC004977 |
Zhang, H., Li, Y., Zhao, D. P., et al., 2018. Formation of Rifts in Central Tibet: Insight from P Wave Radial Anisotropy. Journal of Geophysical Research: Solid Earth, 123: 8827–8841. https://doi.org/10.1029/2018JB015801 |
Zhang, H., Zhao, D. P., Zhao, J. M., et al., 2017. Internal Deformation of Lithosphere beneath Central Tibet. Journal of Geophysical Research: Solid Earth, 122(9): 7329–7342. https://doi.org/10.1002/2017jb014184 |
Zhang, H., Zhao, D. P., Zhao, J. M., et al., 2021. Upper Mantle Heterogeneity and Radial Anisotropy beneath the Western Tibetan Plateau. Tectonics, 40(2): e2020TC006403. https://doi.org/10.1029/2020TC006403 |
Zhang, H., Zhao, D. P., Zhao, J. M., et al., 2012. Convergence of the Indian and Eurasian Plates under Eastern Tibet Revealed by Seismic Tomography. Geochemistry, Geophysics, Geosystems, 13(6): Q06W14. https://doi.org/10.1029/2012gc004031 |
Zhang, H., Zhao, J., Xu, Q., 2011. Seismic P-Wave Tomography in Eastern Tibet: Formation of the Rifts. Chinese Science Bulletin, 56(23): 2450–2455. https://doi.org/10.1007/s11434-011-4577-x |
Zhang, P. Z., Shen, Z. K., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9): 809–812. https://doi.org/10.1130/g20554.1 |
Zhang, X. Y., Wang, Y. H., Gao, R., et al., 2017. Vertical Crustal Motions across Eastern Tibet Revealed by Topography-Dependent Seismic Tomography. Scientific Reports, 7: 3243. https://doi.org/10.1038/s41598-017-03578-z |
Zhang, Z. J., Yuan, X., Chen, Y., et al., 2010. Seismic Signature of the Collision between the East Tibetan Escape Flow and the Sichuan Basin. Earth and Planetary Science Letters, 292(3/4): 254–264. https://doi.org/10.1016/J.EPSL.2010.01.046 |
Zhao, J. M., Murodov, D., Huang, Y., et al., 2014. Upper Mantle Deformation beneath Central-Southern Tibet Revealed by Shear Wave Splitting Measurements. Tectonophysics, 627: 135–140. https://doi.org/10.1016/j.tecto.2013.11.003 |
Zhao, W. J., Kumar, P., Mechie, J., et al., 2011. Tibetan Plate Overriding the Asian Plate in Central and Northern Tibet. Nature Geoscience, 4(12): 870–873. https://doi.org/10.1038/ngeo1309 |
Zheng, C., Zhang, R. Q., Wu, Q. J., et al., 2019. Variations in Crustal and Uppermost Mantle Structures across Eastern Tibet and Adjacent Regions: Implications of Crustal Flow and Asthenospheric Upwelling Combined for Expansions of the Tibetan Plateau. Tectonics, 38(8): 3167–3181. https://doi.org/10.1029/2018tc005276 |
Zheng, Y. F., Xiao, W. J., Zhao, G., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189–1206. https://doi.org/10.1016/j.gr.2012.10.001 |
Zou, Y., Tian, X. B., Yu, Y. Q., et al., 2019. Seismic Evidence for the Existence of an Entrained Mantle Flow Coupling the Northward Advancing Indian Plate under Tibet. Earth and Planetary Physics, 3(1): 62–68. https://doi.org/10.26464/epp2019007 |