Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 1
Feb 2023
Turn off MathJax
Article Contents
Asad Khan, Shah Faisal, Kyle P. Larson, Delores M. Robinson, Huan Li, Zaheen Ullah, Mark Button, Javed Nawab, Muhammad Farhan, Liaqat Ali, Muhammad Ali. Geochemistry and in-situ U-Th/Pb Geochronology of the Jambil Meta-Carbonatites, Northern Pakistan: Implications on Petrogenesis and Tectonic Evolution. Journal of Earth Science, 2023, 34(1): 70-85. doi: 10.1007/s12583-021-1482-3
Citation: Asad Khan, Shah Faisal, Kyle P. Larson, Delores M. Robinson, Huan Li, Zaheen Ullah, Mark Button, Javed Nawab, Muhammad Farhan, Liaqat Ali, Muhammad Ali. Geochemistry and in-situ U-Th/Pb Geochronology of the Jambil Meta-Carbonatites, Northern Pakistan: Implications on Petrogenesis and Tectonic Evolution. Journal of Earth Science, 2023, 34(1): 70-85. doi: 10.1007/s12583-021-1482-3

Geochemistry and in-situ U-Th/Pb Geochronology of the Jambil Meta-Carbonatites, Northern Pakistan: Implications on Petrogenesis and Tectonic Evolution

doi: 10.1007/s12583-021-1482-3
More Information
  • Corresponding author: Asad Khan, asadgeo89@gmail.com
  • Received Date: 14 Feb 2021
  • Accepted Date: 16 May 2021
  • Available Online: 02 Feb 2023
  • Issue Publish Date: 28 Feb 2023
  • The putative Jambil meta-carbonatites of Swat, northern Pakistan, occur as discrete intrusions into the Proterozoic Manglaur Formation, which are difficult to be distinguished from nearby calc-silicate marble because both rock types experienced regional metamorphism during Himalayan orogenesis that resulted in similar mosaic textures and mineral assemblages. Carbonatites are often significant repositories of economic mineral resources and, therefore, are important to be distinguished from calc-silicate marble. We present new geochemical and geochronology data to distinguish between the two rock types and interpret the petrogenesis and tectonic evolution of the Jambil meta-carbonatites. Whole rock chemical data from the Jambil meta-carbonatites show characteristically high rare earth element (REE), Sr contents and lack of negative Eu anomaly, consistent with average calcio-carbonatite values worldwide and an igneous origin. More than 0.5 wt.% SrO in the meta-carbonatites and SrO > 0.15 wt.% in constituent rock forming calcite are discriminating signatures of the Jambil meta-carbonatites. Chemically, the Jambil meta-carbonatites are relatively depleted in Rb, Nb, Ta, Ti, Zr and Hf, relatively enriched in Ba, Th, Sr, and have a high LREE/HREE ratio when normalized to primitive mantle. Their carbon and oxygen isotope compositions vary from -3.5‰ to -4.3‰ and from 9.7‰ to 12.3‰, respectively. These geochemical characteristics indicate generation of the carbonatites through small degree of partial melting from a carbonated eclogitic source. In-situ, U/Pb analysis of titanite indicates that the Jambil meta-carbonatites were emplacement at 438 ± 3 Ma. When combined with regional geological observations, we interpret the emplacement of the Jambil meta-carbonatites to have taken place during the Silurian back arc extension within greater Gondwana and mark a transition from a compressional tectonic regime, brought about by collision of micro-continental blocks along the northern margin of Gondwana, to post-orogenic extension in the waning stages of the pre-Himalayan Ordovician orogeny. Finally, in-situ 208Pb/232Th monazite dates (40.3–27.6 Ma) extracted from the meta-carbonatites are consistent with the Cenozoic metamorphism of the area.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1482-3.
  • loading
  • Aleinikoff, J. N., Schenck, W. S., Plank, M. O., et al., 2006. Deciphering Igneous and Metamorphic Events in High-Grade Rocks of the Wilmington Complex, Delaware: Morphology, Cathodoluminescence and Backscattered Electron Zoning, and SHRIMP U-Pb Geochronology of Zircon and Monazite. Geological Society of America Bulletin, 118(1/2): 39–64. https://doi.org/10.1130/b25659.1
    Anczkiewicz, R., Oberli, F., Burg, J. P., et al., 2001. Timing of Normal Faulting along the Indus Suture in Pakistan Himalaya and a Case of Major 231Pa/235U Initial Disequilibrium in Zircon. Earth and Planetary Science Letters, 191(1/2): 101–114. https://doi.org/10.1016/S0012-821X(01)00406-X
    Barker, D. S., 1996. Carbonatite Volcanism. Undersaturated Alkaline Rocks: Mineralogy, Petrogenesis, and Economic Potential. Mineralogical Association of Canada, Short Course. 24: 45–61
    Becker, H., Altherr, R., 1992. Evidence from Ultra-High-Pressure Marbles for Recycling of Sediments into the Mantle. Nature, 358(6389): 745–748. https://doi.org/10.1038/358745a0
    Bell, K., Tilton, G. R., 2001. Nd, Pb and Sr Isotopic Compositions of East African Carbonatites: Evidence for Mantle Mixing and Plume Inhomogeneity. Journal of Petrology, 42(10): 1927–1945. https://doi.org/10.1093/petrology/42.10.1927
    Burg, J. P., 2011. The Asia-Kohistan-India Collision: Review and Discussion. In: Brown, D., Ryan, P. D., eds., Frontiers in Earth Sciences. Springer, Berlin Heidelberg. 279–309. https://doi.org/10.1007/978-3-540-88558-0_10
    Butt, K. A., Shah, Z., 1985. Discovery of Blue Beryl from Ilum Granite and Its Implications on the Genesis of Emerald Mineralization in Swat District. Geological Bulletin University of Peshawar, 18: 75-81
    Cawood, P. A., Johnson, M. R. W., Nemchin, A. A., 2007. Early Palaeozoic Orogenesis along the Indian Margin of Gondwana: Tectonic Response to Gondwana Assembly. Earth and Planetary Science Letters, 255(1/2): 70–84. https://doi.org/10.1016/j.epsl.2006.12.006
    Chakhmouradian, A. R., Mumin, A. H., Demény, A., et al., 2008. Postorogenic Carbonatites at Eden Lake, Trans-Hudson Orogen (Northern Manitoba, Canada): Geological Setting, Mineralogy and Geochemistry. Lithos, 103(3/4): 503–526. https://doi.org/10.1016/j.lithos.2007.11.004
    Chang, L. L. Y., 1998. Apatite in Non-Silicates. Rock Forming Minerals, 5B: 297–334
    Cherbal, M., Yonezu, K., Aissa, D., et al., 2019. Metacarbonatite Rocks from Amesmessa Area (in Ouzzal Terrane), Hoggar Shield, Algeria. Journal of African Earth Sciences, 153: 268–277. https://doi.org/10.1016/j.jafrearsci.2018.12.013
    Clague, D. A., Frey, F. A., 1982. Petrology and Trace Element Geochemistry of the Honolulu Volcanics, Oahu: Implications for the Oceanic Mantle below Hawaii. Journal of Petrology, 23(3): 447–504. https://doi.org/10.1093/petrology/23.3.447
    Dalton, J. A., Wood, B. J., 1993. The Compositions of Primary Carbonate Melts and Their Evolution through Wallrock Reaction in the Mantle. Earth and Planetary Science Letters, 119(4): 511–525. https://doi.org/10.1016/0012-821X(93)90059-I
    Dasgupta, R., Hirschmann, M. M., Dellas, N., 2005. The Effect of Bulk Composition on the Solidus of Carbonated Eclogite from Partial Melting Experiments at 3 GPa. Contributions to Mineralogy and Petrology, 149(3): 288–305. https://doi.org/10.1007/s00410-004-0649-0
    Dasgupta, R., Hirschmann, M. M., Withers, A. C., 2004. Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite under Upper Mantle Conditions. Earth and Planetary Science Letters, 227(1/2): 73–85. https://doi.org/10.1016/j.epsl.2004.08.004
    Deer, W., Howie, R. A., Zussman, J., 1997. Single-Chain Silicates. Longman, London. 668
    Deines, P., 1989. Stable Isotope Variations in Carbonatites. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 301–359
    Demény, A., Ahijado, A., Casillas, R., et al., 1998. Crustal Contamination and Fluid/Rock Interaction in the Carbonatites of Fuerteventura (Canary Islands, Spain): A C, O, H Isotope Study. Lithos, 44(3/4): 101–115. https://doi.org/10.1016/S0024-4937(98)00050-4
    DiPietro, J. A., Lawrence, R. D., 1991. Himalayan Structure and Metamorphism South of the Main Mantle Thrust, Lower Swat, Pakistan. Journal of Metamorphic Geology, 9(4): 481–495. https://doi.org/10.1111/j.1525-1314.1991.tb00541.x
    DiPietro, J. A., 1990. Stratigraphy, Structure, and Metamorphism near Saidu Sharif, Lower Swat, Pakistan: [Dissertation]. Oregon State University, Oregon
    DiPietro, J. A., 1991. Metamorphic Pressure-Temperature Conditions of Indian Plate Rocks South of the Main Mantle Thrust, Lower Swat, Pakistan. Tectonics, 10(4): 742–757. https://doi.org/10.1029/90tc02709
    DiPietro, J. A., Isachsen, C. E., 2001. U-Pb Zircon Ages from the Indian Plate in Northwest Pakistan and Their Significance to Himalayan and Pre-Himalayan Geologic History. Tectonics, 20(4): 510–525. https://doi.org/10.1029/2000tc001193
    DiPietro, J. A., Pogue, K. R., Lawrence, R. D., et al., 1993. Stratigraphy South of the Main Mantle Thrust, Lower Swat, Pakistan. Geological Society, London, Special Publications, 74(1): 207–220. https://doi.org/10.1144/gsl.sp.1993.074.01.15
    Dong, M. L., Dong, G., Mo, X., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes of Granites in the Baoshan Block, Western Yunnan: Implications for Early Paleozoic Evolution along the Gondwana Margin. Lithos, 179: 36–47. https://doi.org/10.1016/j.lithos.2013.05.011
    Evans, A. M., 2009. Ore Geology and Industrial Minerals: An Introduction. Blackwell Publishing, New York
    Faisal, S., Larson, K. P., Cottle, J. M., et al., 2014. Building the Hindu Kush: Monazite Records of Terrane Accretion, Plutonism, and the Evolution of the Himalaya-Karakoram-Tibet Orogen. Terra Nova, 26(5): 395–401. https://doi.org/10.1111/ter.12112
    Faisal, S., Larson, K. P., King, J., et al., 2016. Rifting, Subduction and Collisional Records from Pluton Petrogenesis and Geochronology in the Hindu Kush, NW Pakistan. Gondwana Research, 35: 286–304. https://doi.org/10.1016/j.gr.2015.05.014
    Girard, M., Bussy, F., 1999. Late Pan-African Magmatism in the Himalaya: New Geochronological and Geochemical Data from the Ordovician Tso Morari Metagranites (Ladakh, NW India). Schweizerische Mineralogische und Petrographische Mitteilungen, 79: 399–418
    Gonçalves, G. O. Jr., Lana, C., Scholz, R., et al., 2016. An Assessment of Monazite from the Itambé Pegmatite District for Use as U-Pb Isotope Reference Material for Microanalysis and Implications for the Origin of the "Moacyr" Monazite. Chemical Geology, 424: 30–50. https://doi.org/10.1016/j.chemgeo.2015.12.019
    Gürsu, S., 2008. Petrogenetic and Tectonic Significance of Rift-Related Pre-Early Cambrian Mafic Dikes, Central Taurides, Turkey. International Geology Review, 50(10): 895–913. https://doi.org/10.2747/0020-6814.50.10.895
    Hamilton, D. L., Bedson, P., Esson, J., 1989. The Behaviour of Trace Elements in the Evolution of Carbonatites. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 405–487
    Hammouda, T., 2003. High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle. Earth and Planetary Science Letters, 214(1/2): 357–368. https://doi.org/10.1016/S0012-821X(03)00361-3
    Hoernle, K., Tilton, G., Le Bas, M. J., et al., 2002. Geochemistry of Oceanic Carbonatites Compared with Continental Carbonatites: Mantle Recycling of Oceanic Crustal Carbonate. Contributions to Mineralogy and Petrology, 142(5): 520–542. https://doi.org/10.1007/s004100100308
    Hong, J., Ji, W., Yang, X., et al., 2019. Origin of a Miocene Alkaline-Carbonatite Complex in the Dunkeldik Area of Pamir, Tajikistan: Petrology, Geochemistry, LA-ICP-MS Zircon U-Pb Dating, and Hf Isotope Analysis. Ore Geology Reviews, 107: 820–836. https://doi.org/10.1016/j.oregeorev.2019.03.009
    Hogarth, D. D., 1989. Pyrochlore, Apatite and Amphibole: Distinctive Minerals in Carbonatite. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 105–148
    Hou, Z. Q., Tian, S., Yuan, Z., et al., 2006. The Himalayan Collision Zone Carbonatites in Western Sichuan, SW China: Petrogenesis, Mantle Source and Tectonic Implication. Earth and Planetary Science Letters, 244(1/2): 234–250. https://doi.org/10.1016/j.epsl.2006.01.052
    Hu, P. Y., Li, C., Wang, M., et al., 2013. Cambrian Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc along the Gondwana Proto-Tethyan Margin. Journal of Asian Earth Sciences, 77: 91–107. https://doi.org/10.1016/j.jseaes.2013.08.015
    Hu, P. Y., Zhai, Q. G., John, B. M., et al., 2015. Early Ordovician Granites from the South Qiangtang Terrane, Northern Tibet: Implications for the Early Paleozoic Tectonic Evolution along the Gondwanan Proto-Tethyan Margin. Lithos, 220/221/222/223: 318–338. https://doi.org/10.1016/j.lithos.2014.12.020
    Kapustin, Y. L., 1980. Mineralogy of Carbonatites. Amerind Publishing Company, New Dehli. 259
    Khattak, N., Akram, M., Ullah, K., et al., 2004. Recognition of Emplacement Time of Jambil Carbonatities from NW Pakistan-Constraints from Fission-Track Dating of Apatite Using Age Standard Approach (the S Method). Journal Of Himalayan Earth Sciences, 37: 127–138
    Kjarsgaard, B. A., Hamilton, D. L., 1989. The Genesis of Carbonatites by Immiscibility. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 388–404
    Kylander-Clark, A. R. C., Hacker, B. R., Cottle, J. M., 2013. Laser-Ablation Split-Stream ICP Petrochronology. Chemical Geology, 345: 99–112. https://doi.org/10.1016/j.chemgeo.2013.02.019
    Lanphere, M. A., Baadsgaard, H., 2001. Precise K-Ar, 40Ar/39Ar, Rb-Sr and U/Pb Mineral Ages from the 27.5 Ma Fish Canyon Tuff Reference Standard. Chemical Geology, 175(3/4): 653–671. https://doi.org/10.1016/S0009-2541(00)00291-6
    Larson, K. P., 2020. ChrontouR. [2022-12-01]. https://doi.org/10.17605/osf.io/p46mb
    Larson, K. P., Ali, A., Shrestha, S., et al., 2019. Timing of Metamorphism and Deformation in the Swat Valley, Northern Pakistan: Insight into Garnet-Monazite HREE Partitioning. Geoscience Frontiers, 10(3): 849–861. https://doi.org/10.1016/j.gsf.2018.02.008
    Lastochkin, E. I., Ripp, G. S., Doroshkevich, A. G, 2011. Mineralogy of Metamorphosed Carbonatite of the Vesely Occurrence, Northern Transbaikal Region, Russia. Geology of Ore Deposits, 53(3): 236–247. https://doi.org/10.1134/s107570151102005x
    Le Bas, M. J., Subbarao, K. V., Walsh, J. N., 2002. Metacarbonatite or Marble?—The Case of the Carbonate, Pyroxenite, Calcite-Apatite Rock Complex at Borra, Eastern Ghats, India. Journal of Asian Earth Sciences, 20(2): 127–140. https://doi.org/10.1016/S1367-9120(01)00030-X
    Le Maitre, R. W., Streckeisen, A., Zanettin, B., et al., 2005. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge
    Lee, W. J., Wyllie, P. J., 1994. Experimental Data Bearing on Liquid Immiscibility, Crystal Fractionation, and the Origin of Calciocarbonatites and Natrocarbonatites. International Geology Review, 36(9): 797–819. https://doi.org/10.1080/00206819409465489
    Lee, W. J., Wyllie, P. J., 1997a. Liquid Immiscibility between Nephelinite and Carbonatite from 1.0 to 2.5 GPa Compared with Mantle Melt Compositions. Contributions to Mineralogy and Petrology, 127(1): 1–16. https://doi.org/10.1007/s004100050261
    Lee, W. J., Wyllie, P. J., 1997b. Liquid Immiscibility in the Join NaAlSiO4-NaAlSi3O8-CaCO3 at 1 GPa: Implications for Crustal Carbonatites. Journal of Petrology, 38(9): 1113–1135. https://doi.org/10.1093/petroj/38.9.1113
    Lee, W. J., Wyllie, P. J., 1998. Processes of Crustal Carbonatite Formation by Liquid Immiscibility and Differentiation, Elucidated by Model Systems. Journal of Petrology, 39(11/12): 2005–2013. https://doi.org/10.1093/petroj/39.11-12.2005
    Li, X. Y., Li, S. Z., Yu, S. Y., et al., 2018. Early Paleozoic Arc-Back-Arc System in the Southeastern Margin of the North Qilian Orogen, China: Constraints from Geochronology, and Whole-Rock Elemental and Sr-Nd-Pb-Hf Isotopic Geochemistry of Volcanic Suites. Gondwana Research, 59: 9–26. https://doi.org/10.1016/j.gr.2018.03.008
    Liu, H. C., Bi, M. W., Guo, X. F., et al., 2019. Petrogenesis of Late Silurian Volcanism in SW Yunnan (China) and Implications for the Tectonic Reconstruction of Northern Gondwana. International Geology Review, 61(11): 1297–1312. https://doi.org/10.1080/00206814.2018.1506947
    Lloyd, F. E., Woolley, A. R., Stoppa, F., et al., 1999. Rift Valley Magmatism―Is there Evidence for Laterally Variable Alkali Clinopyroxenite Mantle?. Geolines, 9: 76–83
    Manthilake, M. A. G. M., Sawada, Y., Sakai, S., 2008. Genesis and Evolution of Eppawala Carbonatites, Sri Lanka. Journal of Asian Earth Sciences, 32(1): 66–75. https://doi.org/10.1016/j.jseaes.2007.10.015
    McCrea, J. M., 1950. On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. The Journal of Chemical Physics, 18(6): 849–857. https://doi.org/10.1063/1.1747785
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
    Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33. https://doi.org/10.1016/j.jseaes.2012.12.020
    Miller, C., Thöni, M., Frank, W., et al., 2001. The Early Palaeozoic Magmatic Event in the Northwest Himalaya, India: Source, Tectonic Setting and Age of Emplacement. Geological Magazine, 138(3): 237–251. https://doi.org/10.1017/s0016756801005283
    Moecher, D. P., Anderson, E. D., Cook, C. A., et al., 1997. The Petrogenesis of Metamorphosed Carbonatites in the Grenville Province, Ontario. Canadian Journal of Earth Sciences, 34(9): 1185–1201. https://doi.org/10.1139/e17-095
    Moghadam, H. S., Khademi, M., Hu, Z., et al., 2015. Cadomian (Ediacaran-Cambrian) Arc Magmatism in the ChahJam-Biarjmand Metamorphic Complex (Iran): Magmatism along the Northern Active Margin of Gondwana. Gondwana Research, 27(1): 439–452. https://doi.org/10.1016/j.gr.2013.10.014
    Nakano, T., Yoshino, T., Shimazaki, H., et al., 1994. Pyroxene Composition as an Indicator in the Classification of Skarn Deposits. Economic Geology, 89(7): 1567–1580. https://doi.org/10.2113/gsecongeo.89.7.1567
    Natarajana, M., Rao, B. B., Parthasarathy, R., et al., 1994. 2.0 Ga Old Pyroxenite-Carbonatite Complex of Hogenakal, Tamil Nadu, South India. Precambrian Research, 65(1/2/3/4): 167–181. https://doi.org/10.1016/0301-9268(94)90104-X
    Nelson, D. R., Chivas, A., Chappell, B., et al., 1988. Geochemical and Isotopic Systematics in Carbonatites and Implications for the Evolution of Ocean-Island Sources. Geochimica et Cosmochimica Acta, 52(1): 1–17. https://doi.org/10.1016/0016-7037(88)90051-8
    Palin, R. M., Treloar, P. J., Searle, M. P., et al., 2018. U-Pb Monazite Ages from the Pakistan Himalaya Record Pre-Himalayan Ordovician Orogeny and Permian Continental Breakup. GSA Bulletin, 130(11/12): 2047–2061. https://doi.org/10.1130/b31943.1
    Pearson, D. G., Boyd, F. R., Haggerty, S. E., et al., 1994. The Characterisation and Origin of Graphite in Cratonic Lithospheric Mantle: A Petrological Carbon Isotope and Raman Spectroscopic Study. Contributions to Mineralogy and Petrology, 115(4): 449–466. https://doi.org/10.1007/BF00320978
    Platt, R. G., Woolley, A. R., 1990. The Carbonatites and Fenites of Chipman Lake, Ontario. Canadian Mineralogist, 28: 241–250.
    Pogue, K. R., Wardlaw, B. R., Harris, A. G., et al., 1992. Paleozoic and Mesozoic Stratigraphy of the Peshawar Basin, Pakistan: Correlations and Implications. Geological Society of America Bulletin, 104(8): 915–927. https://doi.org/10.1130/0016-7606(1992)1040915:pamsot>2.3.co;2 doi: 10.1130/0016-7606(1992)1040915:pamsot>2.3.co;2
    Qasim, M., Ding, L., Khan, M. A., et al., 2018. Late Neoproterozoic-Early Palaeozoic Stratigraphic Succession, Western Himalaya, North Pakistan: Detrital Zircon Provenance and Tectonic Implications. Geological Journal, 53(5): 2258–2279. https://doi.org/10.1002/gj.3063
    Qasim, M., Khan, M. A., Haneef, M., 2015. Stratigraphic Characterization and Structural Analysis of the Northwestern Hazara Ranges across Panjal Thrust, Northern Pakistan. Arabian Journal of Geosciences, 8(10): 7811–7829. https://doi.org/10.1007/s12517-015-1787-6
    Ray, J. S., Ramesh, R., 2000. Rayleigh Fractionation of Stable Isotopes from a Multicomponent Source. Geochimica et Cosmochimica Acta, 64(2): 299–306. https://doi.org/10.1016/S0016-7037(99)00181-7
    Ray, J. S., Ramesh, R., Pande, K., 1999. Carbon Isotopes in Kerguelen Plume-Derived Carbonatites: Evidence for Recycled Inorganic Carbon. Earth and Planetary Science Letters, 170(3): 205–214. https://doi.org/10.1016/S0012-821X(99)00112-0
    Rehman, H. U., Seno, T., Yamamoto, H., et al., 2011. Timing of Collision of the Kohistan-Ladakh Arc with India and Asia: Debate. Island Arc, 20(3): 308–328 doi: 10.1111/j.1440-1738.2011.00774.x
    Şahin, S. Y., Aysal, N., Güngör, Y., et al., 2014. Geochemistry and U-Pb Zircon Geochronology of Metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey: Implications for the Geodynamic Evolution of Cadomian Orogeny. Gondwana Research, 26(2): 755–771. https://doi.org/10.1016/j.gr.2013.07.011
    Sajid, M., Andersen, J., Rocholl, A., et al., 2018. U-Pb Geochronology and Petrogenesis of Peraluminous Granitoids from Northern Indian Plate in NW Pakistan: Andean Type Orogenic Signatures from the Early Paleozoic along the Northern Gondwana. Lithos, 318/319: 340–356. https://doi.org/10.1016/j.lithos.2018.08.024
    Samoilov, V. S., 1991. The Main Geochemical Features of Carbonatites. Journal of Geochemical Exploration, 40(1/2/3): 251–262. https://doi.org/10.1016/0375-6742(91)90041-R
    Santos, R. V., Clayton, R. N., 1995. Variations of Oxygen and Carbon Isotopes in Carbonatites: A Study of Brazilian Alkaline Complexes. Geochimica et Cosmochimica Acta, 59(7): 1339–1352. https://doi.org/10.1016/0016-7037(95)00048-5
    Schärer, U., 1984. The Effect of Initial 230Th Disequilibrium on Young UPb Ages: The Makalu Case, Himalaya. Earth and Planetary Science Letters, 67(2): 191–204. https://doi.org/10.1016/0012-821X(84)90114-6
    Scoffin, T. P, 1987. An Introduction to Carbonate Sediments and Rocks. Blackie, Glasgow
    Scogings, A., Forster, I., 1989. Gneissose Carbonatites in the Bull's Run Complex, Natal. South African Journal of Geology, 92(1): 1–10
    Searle, M. P., Treloar, P. J., 2010. Was Late Cretaceous–Paleocene Obduction of Ophiolite Complexes the Primary Cause of Crustal Thickening and Regional Metamorphism in the Pakistan Himalaya?. Geological Society, London, Special Publications, 338(1): 345–359. https://doi.org/10.1144/sp338.16
    Sheikh, L., Lutfi, W., Zhao, Z. D., et al., 2020. Geochronology, Trace Elements and Hf Isotopic Geochemistry of Zircons from Swat Orthogneisses, Northern Pakistan. Open Geosciences, 12(1): 148–162. https://doi.org/10.1515/geo-2020-0109
    Smith, D. C., 1988. Eclogites and Eclogite-Facies Rocks. Elsevier, Amsterdam. 519
    Smith, J., Delaney, J., Hervig, R., et al., 1981. Storage of F and Cl in the Upper Mantle: Geochemical Implications. Lithos, 14(2): 133–147. https://doi.org/10.1016/0024-4937(81)90050-5
    Sommerauer, J., Katz-Lehnert, K., 1985. Trapped Phosphate Melt Inclusions in Silicate-Carbonate-Hydroxyapatite from Comb-Layer Alvikites from the Kaiserstuhl Carhonatite Complex (SW-Germany). Contributions to Mineralogy and Petrology, 91(4): 354–359. https://doi.org/10.1007/BF00374691
    Spandler, C., Hammerli, J., Sha, P., et al., 2016. MKED1: A New Titanite Standard for in situ Analysis of Sm-Nd Isotopes and U-Pb Geochronology. Chemical Geology, 425: 110–126. https://doi.org/10.1016/j.chemgeo.2016.01.002
    Staudigel, H., Hart, S. R., Schmincke, H. U., et al., 1989. Cretaceous Ocean Crust at DSDP Sites 417 and 418: Carbon Uptake from Weathering Versus Loss by Magmatic Outgassing. Geochimica et Cosmochimica Acta, 53(11): 3091–3094. https://doi.org/10.1016/0016-7037(89)90189-0
    Taylor, H. P. Jr., Frechen, J., Degens, E. T., 1967. Oxygen and Carbon Isotope Studies of Carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimica et Cosmochimica Acta, 31(3): 407–430. https://doi.org/10.1016/0016-7037(67)90051-8
    Trull, T., Nadeau, S., Pineau, F., et al., 1993. C-He Systematics in Hotspot Xenoliths: Implications for Mantle Carbon Contents and Carbon Recycling. Earth and Planetary Science Letters, 118(1/2/3/4): 43–64. https://doi.org/10.1016/0012-821X(93)90158-6
    Tucker, M. E., Wright, V. P., 1990. Carbonate Sedimentology: Wiley Blackwell, Oxford. 482. https://doi.org/10.1002/9781444314175
    Veizer, J., 1983. Trace Elements and Isotopes in Sedimentary Carbonates. Reviews in mineralogy, 11: 265–300. https://doi.org/10.1515/9781501508134-012
    Veizer, J., Lemieux, J., Jones, B., et al., 1978. Paleosalinity and Dolomitization of a Lower Paleozoic Carbonate Sequence, Somerset and Prince of Wales Islands, Arctic Canada. Canadian Journal of Earth Sciences, 15(9): 1448–1461. https://doi.org/10.1139/e78-151
    Veizer, J., Plumb, K., Clayton, R., et al., 1992. Geochemistry of Precambrian Carbonates: V. Late Paleoproterozoic Seawater. Geochimica et Cosmochimica Acta, 56(6): 2487–2501. https://doi.org/10.1016/0016-7037(92)90204-V
    Veksler, I. V., Petibon, C., Jenner, G. A., et al., 1998. Trace Element Partitioning in Immiscible Silicate-Carbonate Liquid Systems: An Initial Experimental Study Using a Centrifuge Autoclave. Journal of Petrology, 39(11/12): 2095–2104. https://doi.org/10.1093/petroj/39.11-12.2095
    Verhulst, A., Balaganskaya, E., Kirnarsky, Y., et al., 2000. Petrological and Geochemical (Trace Elements and Sr-Nd Isotopes) Characteristics of the Paleozoic Kovdor Ultramafic, Alkaline and Carbonatite Intrusion (Kola Peninsula, NW Russia). Lithos, 51(1/2): 1–25. https://doi.org/10.1016/S0024-4937(99)00072-9
    Viladkar, S. G., Subramanian, V., 1995. Mineralogy and Geochemistry of the Carbonatites of the Sevathur and Samalpatti Complexes, Tamil Nadu. Journal of Geological Society of India, 45(5): 505–517.
    Vrublevskii, V. V., Morova, A. A., Bukharova, O. V., et al., 2018. Mineralogy and Geochemistry of Triassic Carbonatites in the Matcha Alkaline Intrusive Complex (Turkestan-Alai Ridge, Kyrgyz Southern Tien Shan), SW Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 252–281. https://doi.org/10.1016/j.jseaes.2017.11.004
    Wallace, M. E., Green, D. H., 1988. An Experimental Determination of Primary Carbonatite Magma Composition. Nature, 335(6188): 343–346. https://doi.org/10.1038/335343a0
    Wang, W., Cawood, P., Pandit, M., et al., 2020. Fragmentation of South China from Greater India during the Rodinia-Gondwana Transition. Geology, 49(2): 228–232. https://doi.org/10.1130/G48308.1
    Wang, W., Cawood, P. A., Pandit, M. K., et al., 2019. No Collision between Eastern and Western Gondwana at Their Northern Extent. Geology, 47(4): 308–312. https://doi.org/10.1130/G45745.1
    Wang, X. X., Zhang, J., Santosh, M., et al., 2012. Andean-Type Orogeny in the Himalayas of South Tibet: Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana. Lithos, 154: 248–262. https://doi.org/10.1016/j.lithos.2012.07.011
    Wang, Y. J., Xing, X., Cawood, P. A., et al., 2013. Petrogenesis of Early Paleozoic Peraluminous Granite in the Sibumasu Block of SW Yunnan and Diachronous Accretionary Orogenesis along the Northern Margin of Gondwana. Lithos, 182/183: 67–85. https://doi.org/10.1016/j.lithos.2013.09.010
    Woolley, A. R., Kempe, D. R. C., 1989. Carbonatites: Nomenclature, Average Chemical Compositions, and Element Distribution. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 1–14
    Wyllie, P. J., 1989. Origin of Carbonatites: Evidence from Phase Equilibrium Studies. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 500–545
    Wyllie, P. J., Huang, W. L., 1975. Peridotite, Kimberlite, and Carbonatite Explained in the System CaO-MgO-SiO2-CO2. Geology, 3(11): 621–624.https://doi.org/10.1130/0091-7613(1975)3621: pkacei>2.0.co;2 doi: 10.1130/0091-7613(1975)3621:pkacei>2.0.co;2
    Wyllie, P. J., Lee, W. J., 1998. Model System Controls on Conditions for Formation of Magnesiocarbonatite and Calciocarbonatite Magmas from the Mantle. Journal of Petrology, 39(11/12): 1885–1893. https://doi.org/10.1093/petroj/39.11-12.1885
    Xu, C., Campbell, I. H., Allen, C. M., et al., 2007. Flat Rare Earth Element Patterns as an Indicator of Cumulate Processes in the Lesser Qinling Carbonatites, China. Lithos, 95(3/4): 267–278. https://doi.org/10.1016/j.lithos.2006.07.016
    Xu, C., Chakhmouradian, A. R., Taylor, R. N., et al., 2014. Origin of Carbonatites in the South Qinling Orogen: Implications for Crustal Recycling and Timing of Collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 143: 189–206. https://doi.org/10.1016/j.gca.2014.03.041
    Xu, C., Kynicky, J., Chakhmouradian, A. R., et al., 2010. Trace-Element Modeling of the Magmatic Evolution of Rare-Earth-Rich Carbonatite from the Miaoya Deposit, Central China. Lithos, 118(1/2): 145–155. https://doi.org/10.1016/j.lithos.2010.04.003
    Xu, C., Kynicky, J., Chakhmouradian, A. R., et al., 2015. A Case Example of the Importance of Multi-Analytical Approach in Deciphering Carbonatite Petrogenesis in South Qinling Orogen: Miaoya Rare-Metal Deposit, Central China. Lithos, 227: 107–121. https://doi.org/10.1016/j.lithos.2015.03.024
    Yang, X. M., Le Bas, M. J., 2004. Chemical Compositions of Carbonate Minerals from Bayan Obo, Inner Mongolia, China: Implications for Petrogenesis. Lithos, 72(1/2): 97–116. https://doi.org/10.1016/j.lithos.2003.09.002
    Yaxley, G. M., Brey, G. P., 2004. Phase Relations of Carbonate-Bearing Eclogite Assemblages from 2.5 to 5.5 GPa: Implications for Petrogenesis of Carbonatites. Contributions to Mineralogy and Petrology, 146(5): 606–619. https://doi.org/10.1007/s00410-003-0517-3
    Yaxley, G. M., Green, D. H., 1994. Experimental Demonstration of Refractory Carbonate-Bearing Eclogite and Siliceous Melt in the Subduction Regime. Earth and Planetary Science Letters, 128(3/4): 313–325. https://doi.org/10.1016/0012-821X(94)90153-8
    Ying, J., Zhou, X., Zhang, H., 2004. Geochemical and Isotopic Investigation of the Laiwu-Zibo Carbonatites from Western Shandong Province, China, and Implications for Their Petrogenesis and Enriched Mantle Source. Lithos, 75(3/4): 413–426. https://doi.org/10.1016/j.lithos.2004.04.037
    Ying, Y. C., Chen, W., Simonetti, A., et al., 2020. Significance of Hydrothermal Reworking for REE Mineralization Associated with Carbonatite: Constraints from in Situ Trace Element and C-Sr Isotope Study of Calcite and Apatite from the Miaoya Carbonatite Complex (China). Geochimica et Cosmochimica Acta, 280: 340–359. https://doi.org/10.1016/j.gca.2020.04.028
    Ying, Y., Chen, W., Lu, J., et al., 2017. In situ U-Th-Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China. Lithos, 290/291: 159–171. https://doi.org/10.1016/j.lithos.2017.08.003
    Zhang, Q., Jiang, Y. H., Wang, G. C., et al., 2015. Origin of Silurian Gabbros and I-Type Granites in Central Fujian, SE China: Implications for the Evolution of the Early Paleozoic Orogen of South China. Lithos, 216/217: 285–297. https://doi.org/10.1016/j.lithos.2015.01.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(297) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return