Citation: | Asad Khan, Shah Faisal, Kyle P. Larson, Delores M. Robinson, Huan Li, Zaheen Ullah, Mark Button, Javed Nawab, Muhammad Farhan, Liaqat Ali, Muhammad Ali. Geochemistry and in-situ U-Th/Pb Geochronology of the Jambil Meta-Carbonatites, Northern Pakistan: Implications on Petrogenesis and Tectonic Evolution. Journal of Earth Science, 2023, 34(1): 70-85. doi: 10.1007/s12583-021-1482-3 |
The putative Jambil meta-carbonatites of Swat, northern Pakistan, occur as discrete intrusions into the Proterozoic Manglaur Formation, which are difficult to be distinguished from nearby calc-silicate marble because both rock types experienced regional metamorphism during Himalayan orogenesis that resulted in similar mosaic textures and mineral assemblages. Carbonatites are often significant repositories of economic mineral resources and, therefore, are important to be distinguished from calc-silicate marble. We present new geochemical and geochronology data to distinguish between the two rock types and interpret the petrogenesis and tectonic evolution of the Jambil meta-carbonatites. Whole rock chemical data from the Jambil meta-carbonatites show characteristically high rare earth element (REE), Sr contents and lack of negative Eu anomaly, consistent with average calcio-carbonatite values worldwide and an igneous origin. More than 0.5 wt.% SrO in the meta-carbonatites and SrO > 0.15 wt.% in constituent rock forming calcite are discriminating signatures of the Jambil meta-carbonatites. Chemically, the Jambil meta-carbonatites are relatively depleted in Rb, Nb, Ta, Ti, Zr and Hf, relatively enriched in Ba, Th, Sr, and have a high LREE/HREE ratio when normalized to primitive mantle. Their carbon and oxygen isotope compositions vary from -3.5‰ to -4.3‰ and from 9.7‰ to 12.3‰, respectively. These geochemical characteristics indicate generation of the carbonatites through small degree of partial melting from a carbonated eclogitic source.
Aleinikoff, J. N., Schenck, W. S., Plank, M. O., et al., 2006. Deciphering Igneous and Metamorphic Events in High-Grade Rocks of the Wilmington Complex, Delaware: Morphology, Cathodoluminescence and Backscattered Electron Zoning, and SHRIMP U-Pb Geochronology of Zircon and Monazite. Geological Society of America Bulletin, 118(1/2): 39–64. https://doi.org/10.1130/b25659.1 |
Anczkiewicz, R., Oberli, F., Burg, J. P., et al., 2001. Timing of Normal Faulting along the Indus Suture in Pakistan Himalaya and a Case of Major 231Pa/235U Initial Disequilibrium in Zircon. Earth and Planetary Science Letters, 191(1/2): 101–114. https://doi.org/10.1016/S0012-821X(01)00406-X |
Barker, D. S., 1996. Carbonatite Volcanism. Undersaturated Alkaline Rocks: Mineralogy, Petrogenesis, and Economic Potential. Mineralogical Association of Canada, Short Course. 24: 45–61 |
Becker, H., Altherr, R., 1992. Evidence from Ultra-High-Pressure Marbles for Recycling of Sediments into the Mantle. Nature, 358(6389): 745–748. https://doi.org/10.1038/358745a0 |
Bell, K., Tilton, G. R., 2001. Nd, Pb and Sr Isotopic Compositions of East African Carbonatites: Evidence for Mantle Mixing and Plume Inhomogeneity. Journal of Petrology, 42(10): 1927–1945. https://doi.org/10.1093/petrology/42.10.1927 |
Burg, J. P., 2011. The Asia-Kohistan-India Collision: Review and Discussion. In: Brown, D., Ryan, P. D., eds., Frontiers in Earth Sciences. Springer, Berlin Heidelberg. 279–309. https://doi.org/10.1007/978-3-540-88558-0_10 |
Butt, K. A., Shah, Z., 1985. Discovery of Blue Beryl from Ilum Granite and Its Implications on the Genesis of Emerald Mineralization in Swat District. Geological Bulletin University of Peshawar, 18: 75-81 |
Cawood, P. A., Johnson, M. R. W., Nemchin, A. A., 2007. Early Palaeozoic Orogenesis along the Indian Margin of Gondwana: Tectonic Response to Gondwana Assembly. Earth and Planetary Science Letters, 255(1/2): 70–84. https://doi.org/10.1016/j.epsl.2006.12.006 |
Chakhmouradian, A. R., Mumin, A. H., Demény, A., et al., 2008. Postorogenic Carbonatites at Eden Lake, Trans-Hudson Orogen (Northern Manitoba, Canada): Geological Setting, Mineralogy and Geochemistry. Lithos, 103(3/4): 503–526. https://doi.org/10.1016/j.lithos.2007.11.004 |
Chang, L. L. Y., 1998. Apatite in Non-Silicates. Rock Forming Minerals, 5B: 297–334 |
Cherbal, M., Yonezu, K., Aissa, D., et al., 2019. Metacarbonatite Rocks from Amesmessa Area (in Ouzzal Terrane), Hoggar Shield, Algeria. Journal of African Earth Sciences, 153: 268–277. https://doi.org/10.1016/j.jafrearsci.2018.12.013 |
Clague, D. A., Frey, F. A., 1982. Petrology and Trace Element Geochemistry of the Honolulu Volcanics, Oahu: Implications for the Oceanic Mantle below Hawaii. Journal of Petrology, 23(3): 447–504. https://doi.org/10.1093/petrology/23.3.447 |
Dalton, J. A., Wood, B. J., 1993. The Compositions of Primary Carbonate Melts and Their Evolution through Wallrock Reaction in the Mantle. Earth and Planetary Science Letters, 119(4): 511–525. https://doi.org/10.1016/0012-821X(93)90059-I |
Dasgupta, R., Hirschmann, M. M., Dellas, N., 2005. The Effect of Bulk Composition on the Solidus of Carbonated Eclogite from Partial Melting Experiments at 3 GPa. Contributions to Mineralogy and Petrology, 149(3): 288–305. https://doi.org/10.1007/s00410-004-0649-0 |
Dasgupta, R., Hirschmann, M. M., Withers, A. C., 2004. Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite under Upper Mantle Conditions. Earth and Planetary Science Letters, 227(1/2): 73–85. https://doi.org/10.1016/j.epsl.2004.08.004 |
Deer, W., Howie, R. A., Zussman, J., 1997. Single-Chain Silicates. Longman, London. 668 |
Deines, P., 1989. Stable Isotope Variations in Carbonatites. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 301–359 |
Demény, A., Ahijado, A., Casillas, R., et al., 1998. Crustal Contamination and Fluid/Rock Interaction in the Carbonatites of Fuerteventura (Canary Islands, Spain): A C, O, H Isotope Study. Lithos, 44(3/4): 101–115. https://doi.org/10.1016/S0024-4937(98)00050-4 |
DiPietro, J. A., Lawrence, R. D., 1991. Himalayan Structure and Metamorphism South of the Main Mantle Thrust, Lower Swat, Pakistan. Journal of Metamorphic Geology, 9(4): 481–495. https://doi.org/10.1111/j.1525-1314.1991.tb00541.x |
DiPietro, J. A., 1990. Stratigraphy, Structure, and Metamorphism near Saidu Sharif, Lower Swat, Pakistan: [Dissertation]. Oregon State University, Oregon |
DiPietro, J. A., 1991. Metamorphic Pressure-Temperature Conditions of Indian Plate Rocks South of the Main Mantle Thrust, Lower Swat, Pakistan. Tectonics, 10(4): 742–757. https://doi.org/10.1029/90tc02709 |
DiPietro, J. A., Isachsen, C. E., 2001. U-Pb Zircon Ages from the Indian Plate in Northwest Pakistan and Their Significance to Himalayan and Pre-Himalayan Geologic History. Tectonics, 20(4): 510–525. https://doi.org/10.1029/2000tc001193 |
DiPietro, J. A., Pogue, K. R., Lawrence, R. D., et al., 1993. Stratigraphy South of the Main Mantle Thrust, Lower Swat, Pakistan. Geological Society, London, Special Publications, 74(1): 207–220. https://doi.org/10.1144/gsl.sp.1993.074.01.15 |
Dong, M. L., Dong, G., Mo, X., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes of Granites in the Baoshan Block, Western Yunnan: Implications for Early Paleozoic Evolution along the Gondwana Margin. Lithos, 179: 36–47. https://doi.org/10.1016/j.lithos.2013.05.011 |
Evans, A. M., 2009. Ore Geology and Industrial Minerals: An Introduction. Blackwell Publishing, New York |
Faisal, S., Larson, K. P., Cottle, J. M., et al., 2014. Building the Hindu Kush: Monazite Records of Terrane Accretion, Plutonism, and the Evolution of the Himalaya-Karakoram-Tibet Orogen. Terra Nova, 26(5): 395–401. https://doi.org/10.1111/ter.12112 |
Faisal, S., Larson, K. P., King, J., et al., 2016. Rifting, Subduction and Collisional Records from Pluton Petrogenesis and Geochronology in the Hindu Kush, NW Pakistan. Gondwana Research, 35: 286–304. https://doi.org/10.1016/j.gr.2015.05.014 |
Girard, M., Bussy, F., 1999. Late Pan-African Magmatism in the Himalaya: New Geochronological and Geochemical Data from the Ordovician Tso Morari Metagranites (Ladakh, NW India). Schweizerische Mineralogische und Petrographische Mitteilungen, 79: 399–418 |
Gonçalves, G. O. Jr., Lana, C., Scholz, R., et al., 2016. An Assessment of Monazite from the Itambé Pegmatite District for Use as U-Pb Isotope Reference Material for Microanalysis and Implications for the Origin of the "Moacyr" Monazite. Chemical Geology, 424: 30–50. https://doi.org/10.1016/j.chemgeo.2015.12.019 |
Gürsu, S., 2008. Petrogenetic and Tectonic Significance of Rift-Related Pre-Early Cambrian Mafic Dikes, Central Taurides, Turkey. International Geology Review, 50(10): 895–913. https://doi.org/10.2747/0020-6814.50.10.895 |
Hamilton, D. L., Bedson, P., Esson, J., 1989. The Behaviour of Trace Elements in the Evolution of Carbonatites. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 405–487 |
Hammouda, T., 2003. High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle. Earth and Planetary Science Letters, 214(1/2): 357–368. https://doi.org/10.1016/S0012-821X(03)00361-3 |
Hoernle, K., Tilton, G., Le Bas, M. J., et al., 2002. Geochemistry of Oceanic Carbonatites Compared with Continental Carbonatites: Mantle Recycling of Oceanic Crustal Carbonate. Contributions to Mineralogy and Petrology, 142(5): 520–542. https://doi.org/10.1007/s004100100308 |
Hong, J., Ji, W., Yang, X., et al., 2019. Origin of a Miocene Alkaline-Carbonatite Complex in the Dunkeldik Area of Pamir, Tajikistan: Petrology, Geochemistry, LA-ICP-MS Zircon U-Pb Dating, and Hf Isotope Analysis. Ore Geology Reviews, 107: 820–836. https://doi.org/10.1016/j.oregeorev.2019.03.009 |
Hogarth, D. D., 1989. Pyrochlore, Apatite and Amphibole: Distinctive Minerals in Carbonatite. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 105–148 |
Hou, Z. Q., Tian, S., Yuan, Z., et al., 2006. The Himalayan Collision Zone Carbonatites in Western Sichuan, SW China: Petrogenesis, Mantle Source and Tectonic Implication. Earth and Planetary Science Letters, 244(1/2): 234–250. https://doi.org/10.1016/j.epsl.2006.01.052 |
Hu, P. Y., Li, C., Wang, M., et al., 2013. Cambrian Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc along the Gondwana Proto-Tethyan Margin. Journal of Asian Earth Sciences, 77: 91–107. https://doi.org/10.1016/j.jseaes.2013.08.015 |
Hu, P. Y., Zhai, Q. G., John, B. M., et al., 2015. Early Ordovician Granites from the South Qiangtang Terrane, Northern Tibet: Implications for the Early Paleozoic Tectonic Evolution along the Gondwanan Proto-Tethyan Margin. Lithos, 220/221/222/223: 318–338. https://doi.org/10.1016/j.lithos.2014.12.020 |
Kapustin, Y. L., 1980. Mineralogy of Carbonatites. Amerind Publishing Company, New Dehli. 259 |
Khattak, N., Akram, M., Ullah, K., et al., 2004. Recognition of Emplacement Time of Jambil Carbonatities from NW Pakistan-Constraints from Fission-Track Dating of Apatite Using Age Standard Approach (the S Method). Journal Of Himalayan Earth Sciences, 37: 127–138 |
Kjarsgaard, B. A., Hamilton, D. L., 1989. The Genesis of Carbonatites by Immiscibility. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 388–404 |
Kylander-Clark, A. R. C., Hacker, B. R., Cottle, J. M., 2013. Laser-Ablation Split-Stream ICP Petrochronology. Chemical Geology, 345: 99–112. https://doi.org/10.1016/j.chemgeo.2013.02.019 |
Lanphere, M. A., Baadsgaard, H., 2001. Precise K-Ar, 40Ar/39Ar, Rb-Sr and U/Pb Mineral Ages from the 27.5 Ma Fish Canyon Tuff Reference Standard. Chemical Geology, 175(3/4): 653–671. https://doi.org/10.1016/S0009-2541(00)00291-6 |
Larson, K. P., 2020. ChrontouR. [2022-12-01]. https://doi.org/10.17605/osf.io/p46mb |
Larson, K. P., Ali, A., Shrestha, S., et al., 2019. Timing of Metamorphism and Deformation in the Swat Valley, Northern Pakistan: Insight into Garnet-Monazite HREE Partitioning. Geoscience Frontiers, 10(3): 849–861. https://doi.org/10.1016/j.gsf.2018.02.008 |
Lastochkin, E. I., Ripp, G. S., Doroshkevich, A. G, 2011. Mineralogy of Metamorphosed Carbonatite of the Vesely Occurrence, Northern Transbaikal Region, Russia. Geology of Ore Deposits, 53(3): 236–247. https://doi.org/10.1134/s107570151102005x |
Le Bas, M. J., Subbarao, K. V., Walsh, J. N., 2002. Metacarbonatite or Marble?—The Case of the Carbonate, Pyroxenite, Calcite-Apatite Rock Complex at Borra, Eastern Ghats, India. Journal of Asian Earth Sciences, 20(2): 127–140. https://doi.org/10.1016/S1367-9120(01)00030-X |
Le Maitre, R. W., Streckeisen, A., Zanettin, B., et al., 2005. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge |
Lee, W. J., Wyllie, P. J., 1994. Experimental Data Bearing on Liquid Immiscibility, Crystal Fractionation, and the Origin of Calciocarbonatites and Natrocarbonatites. International Geology Review, 36(9): 797–819. https://doi.org/10.1080/00206819409465489 |
Lee, W. J., Wyllie, P. J., 1997a. Liquid Immiscibility between Nephelinite and Carbonatite from 1.0 to 2.5 GPa Compared with Mantle Melt Compositions. Contributions to Mineralogy and Petrology, 127(1): 1–16. https://doi.org/10.1007/s004100050261 |
Lee, W. J., Wyllie, P. J., 1997b. Liquid Immiscibility in the Join NaAlSiO4-NaAlSi3O8-CaCO3 at 1 GPa: Implications for Crustal Carbonatites. Journal of Petrology, 38(9): 1113–1135. https://doi.org/10.1093/petroj/38.9.1113 |
Lee, W. J., Wyllie, P. J., 1998. Processes of Crustal Carbonatite Formation by Liquid Immiscibility and Differentiation, Elucidated by Model Systems. Journal of Petrology, 39(11/12): 2005–2013. https://doi.org/10.1093/petroj/39.11-12.2005 |
Li, X. Y., Li, S. Z., Yu, S. Y., et al., 2018. Early Paleozoic Arc-Back-Arc System in the Southeastern Margin of the North Qilian Orogen, China: Constraints from Geochronology, and Whole-Rock Elemental and Sr-Nd-Pb-Hf Isotopic Geochemistry of Volcanic Suites. Gondwana Research, 59: 9–26. https://doi.org/10.1016/j.gr.2018.03.008 |
Liu, H. C., Bi, M. W., Guo, X. F., et al., 2019. Petrogenesis of Late Silurian Volcanism in SW Yunnan (China) and Implications for the Tectonic Reconstruction of Northern Gondwana. International Geology Review, 61(11): 1297–1312. https://doi.org/10.1080/00206814.2018.1506947 |
Lloyd, F. E., Woolley, A. R., Stoppa, F., et al., 1999. Rift Valley Magmatism―Is there Evidence for Laterally Variable Alkali Clinopyroxenite Mantle?. Geolines, 9: 76–83 |
Manthilake, M. A. G. M., Sawada, Y., Sakai, S., 2008. Genesis and Evolution of Eppawala Carbonatites, Sri Lanka. Journal of Asian Earth Sciences, 32(1): 66–75. https://doi.org/10.1016/j.jseaes.2007.10.015 |
McCrea, J. M., 1950. On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. The Journal of Chemical Physics, 18(6): 849–857. https://doi.org/10.1063/1.1747785 |
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4 |
Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33. https://doi.org/10.1016/j.jseaes.2012.12.020 |
Miller, C., Thöni, M., Frank, W., et al., 2001. The Early Palaeozoic Magmatic Event in the Northwest Himalaya, India: Source, Tectonic Setting and Age of Emplacement. Geological Magazine, 138(3): 237–251. https://doi.org/10.1017/s0016756801005283 |
Moecher, D. P., Anderson, E. D., Cook, C. A., et al., 1997. The Petrogenesis of Metamorphosed Carbonatites in the Grenville Province, Ontario. Canadian Journal of Earth Sciences, 34(9): 1185–1201. https://doi.org/10.1139/e17-095 |
Moghadam, H. S., Khademi, M., Hu, Z., et al., 2015. Cadomian (Ediacaran-Cambrian) Arc Magmatism in the ChahJam-Biarjmand Metamorphic Complex (Iran): Magmatism along the Northern Active Margin of Gondwana. Gondwana Research, 27(1): 439–452. https://doi.org/10.1016/j.gr.2013.10.014 |
Nakano, T., Yoshino, T., Shimazaki, H., et al., 1994. Pyroxene Composition as an Indicator in the Classification of Skarn Deposits. Economic Geology, 89(7): 1567–1580. https://doi.org/10.2113/gsecongeo.89.7.1567 |
Natarajana, M., Rao, B. B., Parthasarathy, R., et al., 1994. 2.0 Ga Old Pyroxenite-Carbonatite Complex of Hogenakal, Tamil Nadu, South India. Precambrian Research, 65(1/2/3/4): 167–181. https://doi.org/10.1016/0301-9268(94)90104-X |
Nelson, D. R., Chivas, A., Chappell, B., et al., 1988. Geochemical and Isotopic Systematics in Carbonatites and Implications for the Evolution of Ocean-Island Sources. Geochimica et Cosmochimica Acta, 52(1): 1–17. https://doi.org/10.1016/0016-7037(88)90051-8 |
Palin, R. M., Treloar, P. J., Searle, M. P., et al., 2018. U-Pb Monazite Ages from the Pakistan Himalaya Record Pre-Himalayan Ordovician Orogeny and Permian Continental Breakup. GSA Bulletin, 130(11/12): 2047–2061. https://doi.org/10.1130/b31943.1 |
Pearson, D. G., Boyd, F. R., Haggerty, S. E., et al., 1994. The Characterisation and Origin of Graphite in Cratonic Lithospheric Mantle: A Petrological Carbon Isotope and Raman Spectroscopic Study. Contributions to Mineralogy and Petrology, 115(4): 449–466. https://doi.org/10.1007/BF00320978 |
Platt, R. G., Woolley, A. R., 1990. The Carbonatites and Fenites of Chipman Lake, Ontario. Canadian Mineralogist, 28: 241–250. |
Pogue, K. R., Wardlaw, B. R., Harris, A. G., et al., 1992. Paleozoic and Mesozoic Stratigraphy of the Peshawar Basin, Pakistan: Correlations and Implications. Geological Society of America Bulletin, 104(8): 915–927. https://doi.org/10.1130/0016-7606(1992)1040915:pamsot>2.3.co;2 doi: 10.1130/0016-7606(1992)1040915:pamsot>2.3.co;2 |
Qasim, M., Ding, L., Khan, M. A., et al., 2018. Late Neoproterozoic-Early Palaeozoic Stratigraphic Succession, Western Himalaya, North Pakistan: Detrital Zircon Provenance and Tectonic Implications. Geological Journal, 53(5): 2258–2279. https://doi.org/10.1002/gj.3063 |
Qasim, M., Khan, M. A., Haneef, M., 2015. Stratigraphic Characterization and Structural Analysis of the Northwestern Hazara Ranges across Panjal Thrust, Northern Pakistan. Arabian Journal of Geosciences, 8(10): 7811–7829. https://doi.org/10.1007/s12517-015-1787-6 |
Ray, J. S., Ramesh, R., 2000. Rayleigh Fractionation of Stable Isotopes from a Multicomponent Source. Geochimica et Cosmochimica Acta, 64(2): 299–306. https://doi.org/10.1016/S0016-7037(99)00181-7 |
Ray, J. S., Ramesh, R., Pande, K., 1999. Carbon Isotopes in Kerguelen Plume-Derived Carbonatites: Evidence for Recycled Inorganic Carbon. Earth and Planetary Science Letters, 170(3): 205–214. https://doi.org/10.1016/S0012-821X(99)00112-0 |
Rehman, H. U., Seno, T., Yamamoto, H., et al., 2011. Timing of Collision of the Kohistan-Ladakh Arc with India and Asia: Debate. Island Arc, 20(3): 308–328 doi: 10.1111/j.1440-1738.2011.00774.x |
Şahin, S. Y., Aysal, N., Güngör, Y., et al., 2014. Geochemistry and U-Pb Zircon Geochronology of Metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey: Implications for the Geodynamic Evolution of Cadomian Orogeny. Gondwana Research, 26(2): 755–771. https://doi.org/10.1016/j.gr.2013.07.011 |
Sajid, M., Andersen, J., Rocholl, A., et al., 2018. U-Pb Geochronology and Petrogenesis of Peraluminous Granitoids from Northern Indian Plate in NW Pakistan: Andean Type Orogenic Signatures from the Early Paleozoic along the Northern Gondwana. Lithos, 318/319: 340–356. https://doi.org/10.1016/j.lithos.2018.08.024 |
Samoilov, V. S., 1991. The Main Geochemical Features of Carbonatites. Journal of Geochemical Exploration, 40(1/2/3): 251–262. https://doi.org/10.1016/0375-6742(91)90041-R |
Santos, R. V., Clayton, R. N., 1995. Variations of Oxygen and Carbon Isotopes in Carbonatites: A Study of Brazilian Alkaline Complexes. Geochimica et Cosmochimica Acta, 59(7): 1339–1352. https://doi.org/10.1016/0016-7037(95)00048-5 |
Schärer, U., 1984. The Effect of Initial 230Th Disequilibrium on Young UPb Ages: The Makalu Case, Himalaya. Earth and Planetary Science Letters, 67(2): 191–204. https://doi.org/10.1016/0012-821X(84)90114-6 |
Scoffin, T. P, 1987. An Introduction to Carbonate Sediments and Rocks. Blackie, Glasgow |
Scogings, A., Forster, I., 1989. Gneissose Carbonatites in the Bull's Run Complex, Natal. South African Journal of Geology, 92(1): 1–10 |
Searle, M. P., Treloar, P. J., 2010. Was Late Cretaceous–Paleocene Obduction of Ophiolite Complexes the Primary Cause of Crustal Thickening and Regional Metamorphism in the Pakistan Himalaya?. Geological Society, London, Special Publications, 338(1): 345–359. https://doi.org/10.1144/sp338.16 |
Sheikh, L., Lutfi, W., Zhao, Z. D., et al., 2020. Geochronology, Trace Elements and Hf Isotopic Geochemistry of Zircons from Swat Orthogneisses, Northern Pakistan. Open Geosciences, 12(1): 148–162. https://doi.org/10.1515/geo-2020-0109 |
Smith, D. C., 1988. Eclogites and Eclogite-Facies Rocks. Elsevier, Amsterdam. 519 |
Smith, J., Delaney, J., Hervig, R., et al., 1981. Storage of F and Cl in the Upper Mantle: Geochemical Implications. Lithos, 14(2): 133–147. https://doi.org/10.1016/0024-4937(81)90050-5 |
Sommerauer, J., Katz-Lehnert, K., 1985. Trapped Phosphate Melt Inclusions in Silicate-Carbonate-Hydroxyapatite from Comb-Layer Alvikites from the Kaiserstuhl Carhonatite Complex (SW-Germany). Contributions to Mineralogy and Petrology, 91(4): 354–359. https://doi.org/10.1007/BF00374691 |
Spandler, C., Hammerli, J., Sha, P., et al., 2016. MKED1: A New Titanite Standard for in situ Analysis of Sm-Nd Isotopes and U-Pb Geochronology. Chemical Geology, 425: 110–126. https://doi.org/10.1016/j.chemgeo.2016.01.002 |
Staudigel, H., Hart, S. R., Schmincke, H. U., et al., 1989. Cretaceous Ocean Crust at DSDP Sites 417 and 418: Carbon Uptake from Weathering Versus Loss by Magmatic Outgassing. Geochimica et Cosmochimica Acta, 53(11): 3091–3094. https://doi.org/10.1016/0016-7037(89)90189-0 |
Taylor, H. P. Jr., Frechen, J., Degens, E. T., 1967. Oxygen and Carbon Isotope Studies of Carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimica et Cosmochimica Acta, 31(3): 407–430. https://doi.org/10.1016/0016-7037(67)90051-8 |
Trull, T., Nadeau, S., Pineau, F., et al., 1993. C-He Systematics in Hotspot Xenoliths: Implications for Mantle Carbon Contents and Carbon Recycling. Earth and Planetary Science Letters, 118(1/2/3/4): 43–64. https://doi.org/10.1016/0012-821X(93)90158-6 |
Tucker, M. E., Wright, V. P., 1990. Carbonate Sedimentology: Wiley Blackwell, Oxford. 482. https://doi.org/10.1002/9781444314175 |
Veizer, J., 1983. Trace Elements and Isotopes in Sedimentary Carbonates. Reviews in mineralogy, 11: 265–300. https://doi.org/10.1515/9781501508134-012 |
Veizer, J., Lemieux, J., Jones, B., et al., 1978. Paleosalinity and Dolomitization of a Lower Paleozoic Carbonate Sequence, Somerset and Prince of Wales Islands, Arctic Canada. Canadian Journal of Earth Sciences, 15(9): 1448–1461. https://doi.org/10.1139/e78-151 |
Veizer, J., Plumb, K., Clayton, R., et al., 1992. Geochemistry of Precambrian Carbonates: V. Late Paleoproterozoic Seawater. Geochimica et Cosmochimica Acta, 56(6): 2487–2501. https://doi.org/10.1016/0016-7037(92)90204-V |
Veksler, I. V., Petibon, C., Jenner, G. A., et al., 1998. Trace Element Partitioning in Immiscible Silicate-Carbonate Liquid Systems: An Initial Experimental Study Using a Centrifuge Autoclave. Journal of Petrology, 39(11/12): 2095–2104. https://doi.org/10.1093/petroj/39.11-12.2095 |
Verhulst, A., Balaganskaya, E., Kirnarsky, Y., et al., 2000. Petrological and Geochemical (Trace Elements and Sr-Nd Isotopes) Characteristics of the Paleozoic Kovdor Ultramafic, Alkaline and Carbonatite Intrusion (Kola Peninsula, NW Russia). Lithos, 51(1/2): 1–25. https://doi.org/10.1016/S0024-4937(99)00072-9 |
Viladkar, S. G., Subramanian, V., 1995. Mineralogy and Geochemistry of the Carbonatites of the Sevathur and Samalpatti Complexes, Tamil Nadu. Journal of Geological Society of India, 45(5): 505–517. |
Vrublevskii, V. V., Morova, A. A., Bukharova, O. V., et al., 2018. Mineralogy and Geochemistry of Triassic Carbonatites in the Matcha Alkaline Intrusive Complex (Turkestan-Alai Ridge, Kyrgyz Southern Tien Shan), SW Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 252–281. https://doi.org/10.1016/j.jseaes.2017.11.004 |
Wallace, M. E., Green, D. H., 1988. An Experimental Determination of Primary Carbonatite Magma Composition. Nature, 335(6188): 343–346. https://doi.org/10.1038/335343a0 |
Wang, W., Cawood, P., Pandit, M., et al., 2020. Fragmentation of South China from Greater India during the Rodinia-Gondwana Transition. Geology, 49(2): 228–232. https://doi.org/10.1130/G48308.1 |
Wang, W., Cawood, P. A., Pandit, M. K., et al., 2019. No Collision between Eastern and Western Gondwana at Their Northern Extent. Geology, 47(4): 308–312. https://doi.org/10.1130/G45745.1 |
Wang, X. X., Zhang, J., Santosh, M., et al., 2012. Andean-Type Orogeny in the Himalayas of South Tibet: Implications for Early Paleozoic Tectonics along the Indian Margin of Gondwana. Lithos, 154: 248–262. https://doi.org/10.1016/j.lithos.2012.07.011 |
Wang, Y. J., Xing, X., Cawood, P. A., et al., 2013. Petrogenesis of Early Paleozoic Peraluminous Granite in the Sibumasu Block of SW Yunnan and Diachronous Accretionary Orogenesis along the Northern Margin of Gondwana. Lithos, 182/183: 67–85. https://doi.org/10.1016/j.lithos.2013.09.010 |
Woolley, A. R., Kempe, D. R. C., 1989. Carbonatites: Nomenclature, Average Chemical Compositions, and Element Distribution. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 1–14 |
Wyllie, P. J., 1989. Origin of Carbonatites: Evidence from Phase Equilibrium Studies. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 500–545 |
Wyllie, P. J., Huang, W. L., 1975. Peridotite, Kimberlite, and Carbonatite Explained in the System CaO-MgO-SiO2-CO2. Geology, 3(11): 621–624.https://doi.org/10.1130/0091-7613(1975)3621: pkacei>2.0.co;2 doi: 10.1130/0091-7613(1975)3621:pkacei>2.0.co;2 |
Wyllie, P. J., Lee, W. J., 1998. Model System Controls on Conditions for Formation of Magnesiocarbonatite and Calciocarbonatite Magmas from the Mantle. Journal of Petrology, 39(11/12): 1885–1893. https://doi.org/10.1093/petroj/39.11-12.1885 |
Xu, C., Campbell, I. H., Allen, C. M., et al., 2007. Flat Rare Earth Element Patterns as an Indicator of Cumulate Processes in the Lesser Qinling Carbonatites, China. Lithos, 95(3/4): 267–278. https://doi.org/10.1016/j.lithos.2006.07.016 |
Xu, C., Chakhmouradian, A. R., Taylor, R. N., et al., 2014. Origin of Carbonatites in the South Qinling Orogen: Implications for Crustal Recycling and Timing of Collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 143: 189–206. https://doi.org/10.1016/j.gca.2014.03.041 |
Xu, C., Kynicky, J., Chakhmouradian, A. R., et al., 2010. Trace-Element Modeling of the Magmatic Evolution of Rare-Earth-Rich Carbonatite from the Miaoya Deposit, Central China. Lithos, 118(1/2): 145–155. https://doi.org/10.1016/j.lithos.2010.04.003 |
Xu, C., Kynicky, J., Chakhmouradian, A. R., et al., 2015. A Case Example of the Importance of Multi-Analytical Approach in Deciphering Carbonatite Petrogenesis in South Qinling Orogen: Miaoya Rare-Metal Deposit, Central China. Lithos, 227: 107–121. https://doi.org/10.1016/j.lithos.2015.03.024 |
Yang, X. M., Le Bas, M. J., 2004. Chemical Compositions of Carbonate Minerals from Bayan Obo, Inner Mongolia, China: Implications for Petrogenesis. Lithos, 72(1/2): 97–116. https://doi.org/10.1016/j.lithos.2003.09.002 |
Yaxley, G. M., Brey, G. P., 2004. Phase Relations of Carbonate-Bearing Eclogite Assemblages from 2.5 to 5.5 GPa: Implications for Petrogenesis of Carbonatites. Contributions to Mineralogy and Petrology, 146(5): 606–619. https://doi.org/10.1007/s00410-003-0517-3 |
Yaxley, G. M., Green, D. H., 1994. Experimental Demonstration of Refractory Carbonate-Bearing Eclogite and Siliceous Melt in the Subduction Regime. Earth and Planetary Science Letters, 128(3/4): 313–325. https://doi.org/10.1016/0012-821X(94)90153-8 |
Ying, J., Zhou, X., Zhang, H., 2004. Geochemical and Isotopic Investigation of the Laiwu-Zibo Carbonatites from Western Shandong Province, China, and Implications for Their Petrogenesis and Enriched Mantle Source. Lithos, 75(3/4): 413–426. https://doi.org/10.1016/j.lithos.2004.04.037 |
Ying, Y. C., Chen, W., Simonetti, A., et al., 2020. Significance of Hydrothermal Reworking for REE Mineralization Associated with Carbonatite: Constraints from in Situ Trace Element and C-Sr Isotope Study of Calcite and Apatite from the Miaoya Carbonatite Complex (China). Geochimica et Cosmochimica Acta, 280: 340–359. https://doi.org/10.1016/j.gca.2020.04.028 |
Ying, Y., Chen, W., Lu, J., et al., 2017. In situ U-Th-Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China. Lithos, 290/291: 159–171. https://doi.org/10.1016/j.lithos.2017.08.003 |
Zhang, Q., Jiang, Y. H., Wang, G. C., et al., 2015. Origin of Silurian Gabbros and I-Type Granites in Central Fujian, SE China: Implications for the Evolution of the Early Paleozoic Orogen of South China. Lithos, 216/217: 285–297. https://doi.org/10.1016/j.lithos.2015.01.002 |