Abdoun, T. H., Ha, D., O'Rourke, M. J., et al., 2009. Factors Influencing the Behavior of Buried Pipelines Subjected to Earthquake Faulting. Soil Dynamics and Earthquake Engineering, 29(3): 415-427. https://doi.org/10.1016/j.soildyn.2008.04.006 |
Anastasopoulos, I., Gerolymos, N., Drosos, V., et al., 2008. Behaviour of Deep Immersed Tunnel under Combined Normal Fault Rupture Deformation and Subsequent Seismic Shaking. Bulletin of Earthquake Engineering, 6(2): 213-239. https://doi.org/10.1007/s10518-007-9055-0 |
Aydan, Ö., Ohta, Y., Geniş, M., et al., 2010. Response and Stability of Underground Structures in Rock Mass during Earthquakes. Rock Mechanics and Rock Engineering, 43(6): 857-875. https://doi.org/10.1007/s00603-010-0105-6 |
Baziar, M. H., Nabizadeh, A., Lee, C. J., et al., 2014. Centrifuge Modeling of Interaction between Reverse Faulting and Tunnel. Soil Dynamics and Earthquake Engineering, 65: 151-164. https://doi.org/10.1016/j.soildyn.2014.04.008 |
Baziar, M. H., Nabizadeh, A., Mehrabi, R., et al., 2016. Evaluation of Underground Tunnel Response to Reverse Fault Rupture Using Numerical Approach. Soil Dynamics and Earthquake Engineering, 83: 1-17. https://doi.org/10.1016/j.soildyn.2015.11.005 |
Birtel, V., Mark, P., 2006. Parameterised Finite Element Modelling of RC Beam Shear Failure. ABAQUS Users' Conference, Oxford |
Cividini, A., Gioda, G., Petrini, V., 2010. Finite Element Evaluation of the Effects of Faulting on a Shallow Tunnel in Alluvial Soil. Acta Geotechnica, 5(2): 113-120. https://doi.org/10.1007/s11440-010-0116-1 |
Du, X. L., Zhao, M., 2010. A Local Time-Domain Transmitting Boundary for Simulating Cylindrical Elastic Wave Propagation in Infinite Media. Soil Dynamics and Earthquake Engineering, 30(10): 937-946. https://doi.org/10.1016/j.soildyn.2010.04.004 |
Du, X. L., Zhao, M., Wang, J. T., 2006. A Stress Artificial Boundary in FEA for near-Field Wave Problem. Chinese Journal of Theoretical and Applied Mechanics, 38(1): 49-56 (in Chinese with English Abstract) |
Gharizade, V. M., Golshani, A., Majidian, S., 2017. Analysis of Cylindrical Tunnels under Combined Primary Near-Fault Seismic Excitations and Subsequent Reverse Fault Rupture. Acta Geodynamica et Geomaterialia, 14(1): 5-26. https://doi.org/10.13168/agg.2016.0024 |
Huang, J. Q., Du, X. L., Jin, L., et al., 2016. Impact of Incident Angles of P Waves on the Dynamic Responses of Long Lined Tunnels. Earthquake Engineering & Structural Dynamics, 45(15): 2435-2454. https://doi.org/10.1002/eqe.2772 |
Huang, J. Q., Zhao, M., Du, X. L., 2017. Non-Linear Seismic Responses of Tunnels within Normal Fault Ground under Obliquely Incident P Waves. Tunnelling and Underground Space Technology, 61: 26-39. https://doi.org/10.1016/j.tust.2016.09.006 |
Huang, J. Q., Zhao, X., Zhao, M., et al., 2020. Effect of Peak Ground Parameters on the Nonlinear Seismic Response of Long Lined Tunnels. Tunnelling and Underground Space Technology, 95: 103175. https://doi.org/10.1016/j.tust.2019.103175 |
Jalali, H. H., Rofooei, F. R., Attari, N. K. A., et al., 2016. Experimental and Finite Element Study of the Reverse Faulting Effects on Buried Continuous Steel Gas Pipelines. Soil Dynamics and Earthquake Engineering, 86: 1-14. https://doi.org/10.1016/j.soildyn.2016.04.006 |
Jaramillo, C. A., 2017. Impact of Seismic Design on Tunnels in Rock——Case Histories. Underground Space, 2(2): 106-114. https://doi.org/10.1016/j.undsp.2017.03.004 |
Johansson, J., Konagai, K., 2006. Fault Induced Permanent Ground Deformations-An Experimental Comparison of Wet and Dry Soil and Implications for Buried Structures. Soil Dynamics and Earthquake Engineering, 26(1): 45-53. https://doi.org/10.1016/j.soildyn.2005.08.003 |
Karamitros, D. K., Bouckovalas, G. D., Kouretzis, G. P., 2007. Stress Analysis of Buried Steel Pipelines at Strike-Slip Fault Crossings. Soil Dynamics and Earthquake Engineering, 27(3): 200-211. https://doi.org/10.1016/j.soildyn.2006.08.001 |
Kontogianni, V. A., Stiros, S. C., 2003. Earthquakes and Seismic Faulting: Effects on Tunnels. Turkish Journal of Earth Sciences, 12(1): 153-156 |
Lee, J., Fenves, G. L., 1998. Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of Engineering Mechanics, 124(8): 892-900. https://doi.org/10.1061/(asce)0733-9399(1998)124:8(892) |
Li, H. F., Zhao, M., Du, X. L., 2020. Accurate H-Shaped Absorbing Boundary Condition in Frequency Domain for Scalar Wave Propagation in Layered Half-Space. International Journal for Numerical Methods in Engineering, 121(19): 4268-4291. https://doi.org/10.1002/nme.6424 |
Li, T. B., 2012. Damage to Mountain Tunnels Related to the Wenchuan Earthquake and some Suggestions for Aseismic Tunnel Construction. Bulletin of Engineering Geology and the Environment, 71(2): 297-308. https://doi.org/10.1007/s10064-011-0367-6 |
Liao, Z. P., Huang, K. L., Yang, B. P., et al., 1984. A Transmitting Boundary for Transient Wave Analyses. Science in China Series A-Mathematics, Physics, Astronomy and Technological Science, 27(10): 1063-1076 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-JAXG198410006.htm |
Lin, M. L., Chung, C. F., Jeng, F. S., et al., 2007. The Deformation of Overburden Soil Induced by Thrust Faulting and Its Impact on Underground Tunnels. Engineering Geology, 92(3/4): 110-132. https://doi.org/10.1016/j.enggeo.2007.03.008 |
Liu, N. N., Huang, Q. B., Ma, Y. J., et al., 2017. Experimental Study of a Segmented Metro Tunnel in a Ground Fissure Area. Soil Dynamics and Earthquake Engineering, 100: 410-416. https://doi.org/10.1016/j.soildyn.2017.06.018 |
Liu, X. Z., Li, X. F., Sang, Y. L., et al., 2015. Experimental Study on Normal Fault Rupture Propagation in Loose Strata and Its Impact on Mountain Tunnels. Tunnelling and Underground Space Technology, 49: 417-425. https://doi.org/10.1016/j.tust.2015.05.010 |
Lubliner, J., Oliver, J., Oller, S., et al., 1989. A Plastic-Damage Model for Concrete. International Journal of Solids and Structures, 25(3): 299-326. https://doi.org/10.1016/0020-7683(89)90050-4 |
Lysmer, J., Kuhlemeyer, R. L., 1969. Finite Dynamic Model for Infinite Media. Journal of the Engineering Mechanics Division, 95(4): 859-877. https://doi.org/10.1061/jmcea3.0001144 |
Moradi, M., Rojhani, M., Galandarzadeh, A., et al., 2013. Centrifuge Modeling of Buried Continuous Pipelines Subjected to Normal Faulting. Earthquake Engineering and Engineering Vibration, 12(1): 155-164. https://doi.org/10.1007/s11803-013-0159-z |
Newmark, N. M., Hall, W. J., 1975. Pipeline Design to Resist Large Fault Displacement. Proceedings of U. S. NCEE. Ann Arbor: University of Michigan, 416-425 |
Shahidi, A. R., Vafaeian, M., 2005. Analysis of Longitudinal Profile of the Tunnels in the Active Faulted Zone and Designing the Flexible Lining (for Koohrang-III Tunnel). Tunnelling and Underground Space Technology, 20(3): 213-221. https://doi.org/10.1016/j.tust.2004.08.003 |
Sim, W. W., Towhata, I., Yamada, S., et al., 2012. Shaking Table Tests Modelling Small Diameter Pipes Crossing a Vertical Fault. Soil Dynamics and Earthquake Engineering, 35: 59-71. https://doi.org/10.1016/j.soildyn.2011.11.005 |
Tian, Z. M., Zhao, M., Du, X. L., et al., 2014. Earthquake Damage Mechanism and Earthquake-Resistant Characteristics of Special Underground Structures in Mountainous Region Rock. Earthquake Engineering and Engineering Dynamics, 34(S1): 926-935 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGGC2014S1147.htm |
Trifonov, O. V., Cherniy, V. P., 2010. A Semi-Analytical Approach to a Nonlinear Stress-Strain Analysis of Buried Steel Pipelines Crossing Active Faults. Soil Dynamics and Earthquake Engineering, 30(11): 1298-1308. https://doi.org/10.1016/j.soildyn.2010.06.002 |
Trifonov, O. V., Cherniy, V. P., 2012. Elastoplastic Stress-Strain Analysis of Buried Steel Pipelines Subjected to Fault Displacements with Account for Service Loads. Soil Dynamics and Earthquake Engineering, 33(1): 54-62. https://doi.org/10.1016/j.soildyn.2011.10.001 |
Vazouras, P., Dakoulas, P., Karamanos, S. A., 2015. Pipe-Soil Interaction and Pipeline Performance under Strike-Slip Fault Movements. Soil Dynamics and Earthquake Engineering, 72:48-65. https://doi.org/10.1016/j.soildyn.2015.01.014 |
Vazouras, P., Karamanos, S. A., Dakoulas, P., 2012. Mechanical Behavior of Buried Steel Pipes Crossing Active Strike-Slip Faults. Soil Dynamics and Earthquake Engineering, 41:164-180. https://doi.org/10.1016/j.soildyn.2012.05.012 |
Wang, L. R. L., Yeh, Y. H., 1985. A Refined Seismic Analysis and Design of Buried Pipeline for Fault Movement. Earthquake Engineering & Structural Dynamics, 13(1): 75-96. https://doi.org/10.1002/eqe.4290130109 |
Wang, Z. Z., Zhang, Z., Gao, B., 2012. The Seismic Behavior of the Tunnel across Active Fault. Proceedings 15th World Conference on Earthquake Engineering, Lisbon |
Wolf, J. P., Song, C., 1996. Finite Element Modelling of Unbounded Media. John Wiley and Sons, West Sussex |
Xu, L. G., Lin, M., 2017. Analysis of Buried Pipelines Subjected to Reverse Fault Motion Using the Vector Form Intrinsic Finite Element Method. Soil Dynamics and Earthquake Engineering, 93:61-83. https://doi.org/10.1016/j.soildyn.2016.12.004 |
Yang, S., Mavroeidis, G. P., 2018. Bridges Crossing Fault Rupture Zones: A Review. Soil Dynamics and Earthquake Engineering, 113:545-571. https://doi.org/10.1016/j.soildyn.2018.03.027 |
Yang, Y. S., Yu, H. T., Yuan, Y., et al., 2020. Analytical Solution for Longitudinal Seismic Response of Long Tunnels Subjected to Rayleigh Waves. International Journal for Numerical and Analytical Methods in Geomechanics, 44(10): 1371-1385. https://doi.org/10.1002/nag.3066 |
Yang, Z. H., Lan, H. X., Zhang, Y. S., et al., 2013. Nonlinear Dynamic Failure Process of Tunnel-Fault System in Response to Strong Seismic Event. Journal of Asian Earth Sciences, 64:125-135. https://doi.org/10.1016/j.jseaes.2012.12.006 |
Yu, H. T., Chen, J. T., Bobet, A., et al., 2016a. Damage Observation and Assessment of the Longxi Tunnel during the Wenchuan Earthquake. Tunnelling and Underground Space Technology, 54:102-116. https://doi.org/10.1016/j.tust.2016.02.008 |
Yu, H. T., Chen, J. T., Yuan, Y., et al., 2016b. Seismic Damage of Mountain Tunnels during the 5.12 Wenchuan Earthquake. Journal of Mountain Science, 13(11): 1958-1972. https://doi.org/10.1007/s11629-016-3878-6 |
Yu, H. T., Sun, Y. Q., Li, P., et al., 2020. Analytical Solution for Dynamic Response of Underground Rectangular Fluid Tank Subjected to Arbitrary Dynamic Loads. Journal of Engineering Mechanics, 146(8): 04020077. https://doi.org/10.1061/(asce)em.1943-7889.0001817 |
Yu, H. T., Yuan, Y., Bobet, A., 2017. Seismic Analysis of Long Tunnels: A Review of Simplified and Unified Methods. Underground Space, 2(2): 73-87. https://doi.org/10.1016/j.undsp.2017.05.003 |
Zhang, C. H., Pan, J. W., Wang, J. T., 2009. Influence of Seismic Input Mechanisms and Radiation Damping on Arch Dam Response. Soil Dynamics and Earthquake Engineering, 29(9): 1282-1293. https://doi.org/10.1016/j.soildyn.2009.03.003 |
Zhang, L. S., Zhao, X. B., Yan, X. Z., et al., 2016. A New Finite Element Model of Buried Steel Pipelines Crossing Strike-Slip Faults Considering Equivalent Boundary Springs. Engineering Structures, 123:30-44. https://doi.org/10.1016/j.engstruct.2016.05.042 |
Zhao, M., Du, X. L., Liu, J. B., et al., 2011. Explicit Finite Element Artificial Boundary Scheme for Transient Scalar Waves in Two-Dimensional Unbounded Waveguide. International Journal for Numerical Methods in Engineering, 87(11): 1074-1104. https://doi.org/10.1002/nme.3147 |
Zhao, M., Gao, Z. D., Du, X. L., et al., 2019a. Response Spectrum Method for Seismic Soil-Structure Interaction Analysis of Underground Structure. Bulletin of Earthquake Engineering, 17(9): 5339-5363. https://doi.org/10.1007/s10518-019-00673-6 |
Zhao, M., Li, H. F., Du, X. L., et al., 2019b. Time-Domain Stability of Artificial Boundary Condition Coupled with Finite Element for Dynamic and Wave Problems in Unbounded Media. International Journal of Computational Methods, 16(4): 1850099. https://doi.org/10.1142/s0219876218500998 |
Zhao, M., Wu, L. H., Du, X. L., et al., 2018. Stable High-Order Absorbing Boundary Condition Based on New Continued Fraction for Scalar Wave Propagation in Unbounded Multilayer Media. Computer Methods in Applied Mechanics and Engineering, 334:111-137. https://doi.org/10.1016/j.cma.2018.01.018 |