Citation: | Zhicai Xiao, Shuai Wang, Shihua Qi, Jian Kuang, Min Zhang, Hailong Li. Crustal Thermo-Structure and Geothermal Implication of the Huangshadong Geothermal Field in Guangdong Province. Journal of Earth Science, 2023, 34(1): 194-204. doi: 10.1007/s12583-021-1486-z |
Dense distribution of granites and surrounding hot springs, the high anomalous heating rates of geothermal fluids and the high geothermal gradients in shallow crust in Southeast China are revealed by previous geothermal explorations. However, there have always been debates on the genesis of geothermal anomalies of Southeast China. It is imperative to look into the genesis mechanism of geothermal anomalies through selecting a typical geothermal field, and constructing fine crustal thermo-structure. In this study, in-depth excavation is implemented for the previous data of geophysical exploration and deep drilling exploration in the Huangshadong area. We synthetically analyze the results of radioactive heat productions (RHPs), thermophysical properties of rocks and audio-frequency magnetotellurics (AMT) sounding. This study concludes that the coefficient of radioactive heat generation (RHG) of crustal rocks and conduction heat of concealed granites is the main formation mechanism of geothermal anomalies of South China, where occurs a Great Granite Province. There is a regional indicating implication for the genesis of geothermal anomalies, taking the Huangshadong geothermal field as a typical example. It is also an important reference to guide the exploration, evaluation, development and utilization of geothermal resources in this region.
Chen, M. X., Xia, S. G., Yang, S. Z., 1991. Local Geothermal Anomalies and Their Formation Mechanisms on Leizhou Peninsula, South China. Chinese Journal of Geology, 26(4): 369–383 (in Chinese with English Abstract) |
Deng, Y. F., Li, S. L., Fan, W. M., et al., 2011. Crustal Structure beneath South China Revealed by Deep Seismic Soundings and Its Dynamics Implications. Chinese Journal of Geophysics, 54(10): 2560–2574 (in Chinese with English Abstract) doi: 10.3969/j.issn.0001-5733.2011.10.013 |
Hasterok, D., Gard, M., Webb, J., 2018. On the Radiogenic Heat Production of Metamorphic, Igneous, and Sedimentary Rocks. Geoscience Frontiers, 9(6): 1777–1794. https://doi.org/10.1016/j.gsf.2017.10.012 |
He, L. J., Hu, S. B., Huang, S. P., et al., 2008. Heat Flow Study at the Chinese Continental Scientific Drilling Site: Borehole Temperature, Thermal Conductivity, and Radiogenic Heat Production. Journal of Geophysical Research, 113(B2): B02404. https://doi.org/10.1029/2007jb004958 |
He, L. J., Hu, S. B., Yang, W. C., et al., 2006. Heating Generation Model for the Continental Crust Based on the Main Hole of the Chinese Continental Scientific Drilling Project. Acta Petrologica Sinica, 22(11): 2808–2814 (in Chinese with English Abstract) |
He, L. J., Hu, S. B., Yang, W. C., et al., 2009. Radiogenic Heat Production in the Lithosphere of Sulu Ultrahigh-Pressure Metamorphic Belt. Earth and Planetary Science Letters, 277(3/4): 525–538. https://doi.org/10.1016/j.epsl.2008.11.022 |
Hou, J. C., Cao, M. C., Liu, P. K., 2018. Development and Utilization of Geothermal Energy in China: Current Practices and Future Strategies. Renewable Energy, 125: 401–412. https://doi.org/10.1016/j.renene.2018.02.115 |
Hu, S. B., He, L. J., Wang, J. Y., 2001. Compilation of Heat Flow Data in the China Continental Area (3rd Edition). Chinese Journal of Geophysics, 44(5): 611–626 (in Chinese with English Abstract) doi: 10.3321/j.issn:0001-5733.2001.05.005 |
Jaupart, C., Mareschal, J. C., Iarotsky, L., 2016. Radiogenic Heat Production in the Continental Crust. Lithos, 262: 398–427. https://doi.org/10.1016/j.lithos.2016.07.017 |
Jiang, G. Z., Hu, S. B., Shi, Y. Z., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36–48. https://doi.org/10.1016/j.tecto.2019.01.006 |
Kuang, J., Qi, S. H., Wang, S., et al., 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466–1480 (in Chinese with English Abstract) |
Li, J. H., Cawood, P. A., Ratschbacher, L., et al., 2020. Building Southeast China in the Late Mesozoic: Insights from Alternating Episodes of Shortening and Extension along the Lianhuashan Fault Zone. Earth-Science Reviews, 201: 103056. https://doi.org/10.1016/j.earscirev.2019.103056 |
Li, T. X., Lin, W. J., Gan, H. N., et al., 2020. Research on the Genetic Model and Exploration Progress of Hot Dry Rock Resources on the Southeast Coast of China. Journal of Geomechanics, 26(2): 187–200 (in Chinese with English Abstract) |
Lin, W. J., Gan, H. N., Wang, G. L., et al., 2016. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern Coast of China. Acta Geologica Sinica, 90(8): 2043–2058 (in Chinese with English Abstract) doi: 10.3969/j.issn.0001-5717.2016.08.031 |
Lin, W. J., Liu, Z. M., Wang, W. L., et al., 2013. The Assessment of Geothermal Resources Potential of China. Geology in China, 40(1): 312–321 (in Chinese with English Abstract). doi: 10.3969/j.issn.1000-3657.2013.01.021 |
Lu, S. M., 2018. A Global Review of Enhanced Geothermal System (EGS). Renewable and Sustainable Energy Reviews, 81: 2902–2921. https://doi.org/10.1016/j.rser.2017.06.097 |
Lund, J. W., Bjelm, L., Bloomquist, G., et al., 2008. Characteristics, Development and Utilization of Geothermal Resources―A Nordic Perspective. Episodes, 31(1): 140–147. https://doi.org/10.18814/epiiugs/2008/v31i1/019 |
Lund, J. W., Boyd, T. L., 2015. Direct Utilization of Geothermal Energy 2015 Worldwide Review. In Proceedings of World Geothermal Congress 2015, Melbourne, Australia |
Mao, X. M., Zhu, D. B., Ndikubwimana, I., et al., 2021. The Mechanism of High-Salinity Thermal Groundwater in Xinzhou Geothermal Field, South China: Insight from Water Chemistry and Stable Isotopes. Journal of Hydrology, 593: 125889. https://doi.org/10.1016/j.jhydrol.2020.125889 |
Mao, X. P., Wang, X. W., Li, K. W., et al., 2018. Sources of Heat and Control Factors in Geothermal Field. Earth Science, 43(11): 4256–4266 (in Chinese with English Abstract) |
Mareschal, J. C., Jaupart, C., 2013. Radiogenic Heat Production, Thermal Regime and Evolution of Continental Crust. Tectonophysics, 609: 524–534. https://doi.org/10.1016/j.tecto.2012.12.001 |
Morgan, P., 1984. The Thermal Structure and Thermal Evolution of the Continental Lithosphere. Physics and Chemistry of the Earth, 15: 107–193. https://doi.org/10.1016/0079-1946(84)90006-5 |
Moya, D., Aldás, C., Kaparaju, P., 2018. Geothermal Energy: Power Plant Technology and Direct Heat Applications. Renewable and Sustainable Energy Reviews, 94: 889–901. https://doi.org/10.1016/j.rser.2018.06.047 |
Rybach, L., 1988. Determination of Heat Production Rate. In: Haenel, R., Rybach, L., Stegena, L., eds., Handbook of Terrestrial Heat Flow Density. Kluwer Academic Publishers, Holland. 125–142 |
Tannock, L., Herwegh, M., Berger, A., et al., 2020a. The Effects of a Tectonic Stress Regime Change on Crustal-Scale Fluid Flow at the Heyuan Geothermal Fault System, South China. Tectonophysics, 781: 228399. https://doi.org/10.1016/j.tecto.2020.228399 |
Tannock, L., Herwegh, M., Berger, A., et al., 2020b. Microstructural Analyses of a Giant Quartz Reef in South China Reveal Episodic Brittle-Ductile Fluid Transfer. Journal of Structural Geology, 130: 103911. https://doi.org/10.1016/j.jsg.2019.103911 |
Tannock, L., Wang, Y., Li, J. F., et al., 2019. A Preliminary Study on the Mechanics and Tectonic Relationship to the Geothermal Field of the Heyuan Fault Zone in Guangdong Province. Journal of Geomechanics, 25(3): 400–411 (in Chinese with English Abstract) |
Tian, F., Qi, S. H., Wang, S., et al., 2020. Characteristics of Radioactive Heat Production Rate of Rocks in Shiba-Huangshadong Area, Huizhou, Guangdong Province. Chinese Journal of Geology (Scientia Geologica Sinica), 55(4): 1277–1289 (in Chinese with English Abstract) |
Wan, T. F., Zhu, H., 2002. Tectonics and Environment Change of Meso-Cenozoic China Continent and Its Adjacent Areas. Geoscience, 16(2): 107–120 (in Chinese with English Abstract) |
Wang, A. D., Sun, Z. X., Liu, J. H., et al., 2015. Radiogenic Heat Production of Rocks from Zhangzhou, Southeast China and Its Implications for Thermal Regime of Lithosphere. Science & Technology Review, 33(24): 41–45 (in Chinese with English Abstract) |
Wang, A. D., Sun, Z. X., Liu, J. H., et al., 2016. Thermal Conductivity and Radioactive Heat-Producing Element Content Determinations for Rocks from Zhangzhou Region, SE China, and Their Constraints on Lithospheric Thermal Regime. Environmental Earth Sciences, 75(17): 1213. https://doi.org/10.1007/s12665-016-6020-8 |
Wang, G. L., Zhang, W., Liang, J. Y., et al., 2017. Evaluation of Geothermal Resources Potential in China. Acta Geoscientica Sinica, 38(4): 448–459 (in Chinese with English Abstract) |
Wu, C. F., Hu, X. Y., Wang, G. L., et al., 2018. Magnetotelluric Imaging of the Zhangzhou Basin Geothermal Zone, Southeastern China. Energies, 11(8): 1–15. https://doi.org/10.3390/en11082170 |
Wu, C. F., Hu, X. Y., Wang, G. L., 2019. Magnetotelluric Studies in the Zhangzhou Basin Geothermal Zone, Southeastern China. Acta Geologica Sinica, 93: 277–277 (in Chinese with English Abstract) doi: 10.1111/1755-6724.14088 |
Wu, Y., Jin, Z. M., Ou, X. G., et al., 2005. Lithospheric Thermal Structure Beneath of the Area of the Chinese Continental Scientific Drilling Site (CCSD). Acta Petrologica Sinica, 21(2): 439–450 (in Chinese with English Abstract) |
Xi, Y. F., Zhao, Y. B., David, A. Y., et al., 2018. Geothermal Structure Revealed by Curie Isothermal Surface under Guangdong Province, China. Journal of Groundwater Science and Engineering, 9(2): 114–120. https://doi.org/10.19637/j.cnki.2305-7068.2021.02.003 |
Xiao, Z. C., Wang, S., Qi, S. H., et al., 2020. Petrogenesis, Tectonic Evolution and Geothermal Implications of Mesozoic Granites in the Huangshadong Geothermal Field, South China. Journal of Earth Science, 31(1): 141–158. https://doi.org/10.1007/s12583-019-1242-9 |
Xiong, S. Q., Yang, H., Ding, Y. Y., et al., 2016. Characteristics of Chinese Continent Curie Point Isotherm. Chinese Journal of Geophysics, 59(10): 3604–3617 (in Chinese with English Abstract) |
Xiong, X. S., Gao, R., Li, Q. S., et al., 2009. The Moho Depth of South China Revealed by Seismic Probing. Acta Geoscientica Sinica, 30(6): 774–786 (in Chinese with English Abstract) |
Yao, Z. J., Chen, Z. Y., 1990. Geological Evaluation of Geothermal Potential for Regional Development in Southeast Coast of China. Bulletin of Institute of Hydrogeology and Engineering Geology, Chinese Academy of Geological Sciences, 6: 43–76 (in Chinese with English Abstract) |
Yuan, Y. S., Ma, Y. S., Hu, S. B., 2006. Present-Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49: 1118–1126 (in Chinese with English Abstract) |
Zhang, X. B., Hu, Q. H., 2018. Development of Geothermal Resources in China: A Review. Journal of Earth Science, 29(2): 452–467. https://doi.org/10.1007/s12583-018-0838-9 |
Zhao, P., Wang, J. Y., Wang, J. A., et al., 1995. Characteristics of Heat Production Distribution in SE China. Acta Petrologica Sinica, 11(3): 292–305 (in Chinese with English Abstract) |
Zhou, Z. M., Ma, C. Q., Qi, S. H., et al., 2020. Late Mesozoic High-Heat-Producing (HHP) and High-Temperature Geothermal Reservoir Granitoids: The most Significant Geothermal Mechanism in South China. Lithos, 366/367: 105568. https://doi.org/10.1016/j.lithos.2020.105568 |
Zhou, Z. M., Ma, C. Q., Xie, C. F., et al., 2016. Genesis of Highly Fractionated I-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 27(3): 444–460. https://doi.org/10.1007/s12583-016-0677-3 |
Zhu, J. L., Hu, K. Y., Lu, X. L., et al., 2015. A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects. Energy, 93: 466–483. https://doi.org/10.1016/j.energy.2015.08.098 |