Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 3
Jun 2023
Turn off MathJax
Article Contents
Guang Yang, Ren-Xu Chen, Yong-Fei Zheng, Qiong-Xia Xia, Yong-Jie Yu, Kun Li, Zhaochu Hu, Bing Gong, Xiang-Ping Zha. Multiple Episodes of Zircon Growth during Anatectic Metamorphism of Metasedimentary Rocks in Collisional Orogens: Constraints from Felsic Granulites in the Bohemian Massif. Journal of Earth Science, 2023, 34(3): 609-639. doi: 10.1007/s12583-021-1487-y
Citation: Guang Yang, Ren-Xu Chen, Yong-Fei Zheng, Qiong-Xia Xia, Yong-Jie Yu, Kun Li, Zhaochu Hu, Bing Gong, Xiang-Ping Zha. Multiple Episodes of Zircon Growth during Anatectic Metamorphism of Metasedimentary Rocks in Collisional Orogens: Constraints from Felsic Granulites in the Bohemian Massif. Journal of Earth Science, 2023, 34(3): 609-639. doi: 10.1007/s12583-021-1487-y

Multiple Episodes of Zircon Growth during Anatectic Metamorphism of Metasedimentary Rocks in Collisional Orogens: Constraints from Felsic Granulites in the Bohemian Massif

doi: 10.1007/s12583-021-1487-y
More Information
  • Corresponding author: Ren-Xu Chen, chenrx@ustc.edu.cn
  • Received Date: 21 Apr 2021
  • Accepted Date: 24 May 2021
  • Available Online: 08 Jun 2023
  • Issue Publish Date: 30 Jun 2023
  • Zircon is a key accessary mineral for metamorphic geochronology and geochemical tracing,but it has been a challenge to interpret its complex chemical zoning and age record acquired during multiple episodes of anatectic metamorphism in collisional orogens. This is illustrated by a combined study of petrography,phase equilibrium modeling and metamorphic P-T-t determination for granulites from the Bohemian Massif in the Variscan Orogen. These rocks record multiple episodes of zircon growth during anatectic metamorphism. They started from the compressional heating for prograde metamorphism to high-pressure (HP) to ultrahigh-pressure (UHP) eclogite facies with low degrees of partial melting. Afterwards,they underwent a decompressional stage from UHP eclogite facies to HP granulite facies for dehydration melting. These were followed by a further decompressional stage either to kyanite granulite facies or to sillimanite granulite facies at ultrahigh-temperature (UHT) conditions. Episodes of zircon growth are linked to specific metamorphic conditions for peritectic reactions on the basis of zoning patterns,trace element signatures,index mineral inclusions in dated domains and textural relationships to coexisting minerals. The results indicate that relict zircon domains are preserved even at UHT granulite facies conditions. A few zircon domains in the kyanite granulite grew during the prograde to peak UHP metamorphism,possibly corresponding to consumption of biotite and plagioclase but growth of garnet. During the decompressional exhumation to the HP granulite-facies,relict or prograde zircon domains were mostly dissolved into anatectic melts produced by muscovite breakdown. Most zircon grains grew during this transition to the HP granulite-facies in the kyanite granulite and are chemically related to continuous growth of garnet,whereas abundant zircon grains grew subsequently at the UHT granulite facies in the sillimanite granulite and are chemically related to garnet breakdown reactions. Another peak of zircon growth occurred at the final crystallization of anatectic melts in the sillimanite granulite rather than in the kyanite granulite,and these zircon grains mostly show oscillatory zoning,low HREE + Y contents and significantly negative Eu anomalies. In terms of the inference for protolith nature,it appears that zircon in metasedimentary rocks can grow at a short timescale in different stages of anatectic metamorphism,and its dissolution and growth are mainly dictated by anatectic conditions and extent,the property of peritectic reactions,and the stability of Ti-rich minerals.

     

  • Electronic Supplementary Materials: Supplementary materials (ESM Ⅰ: Figs. S1–S5; ESM Ⅱ: Tables S1–S5; ESM Ⅲ: Analytical Methods) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1487-y.
  • loading
  • Anczkiewicz, R., Szczepański, J., Mazur, S., et al., 2007. Lu-Hf Geochronology and Trace Element Distribution in Garnet: Implications for Uplift and Exhumation of Ultra-High Pressure Granulites in the Sudetes, SW Poland. Lithos, 95(3/4): 363–380. https://doi.org/10.1016/j.lithos.2006.09.001
    Auzanneau, E., Vielzeuf, D., Schmidt, M. W., 2006. Experimental Evidence of Decompression Melting during Exhumation of Subducted Continental Crust. Contributions to Mineralogy and Petrology, 152(2): 125–148. https://doi.org/10.1007/s00410-006-0104-5
    Bartoli, O., 2017. Phase Equilibria Modelling of Residual Migmatites and Granulites: An Evaluation of the Melt-Reintegration Approach. Journal of Metamorphic Geology, 35(8): 919–942. https://doi.org/10.1111/jmg.12261
    Bartoli, O., 2019. Reintegrating Nanogranitoid Inclusion Composition to Reconstruct the Prograde History of Melt-Depleted Rocks. Geoscience Frontiers, 10(2): 517–525. https://doi.org/10.1016/j.gsf.2018.02.002
    Benisek, A., Dachs, E., Kroll, H., 2010. A Ternary Feldspar-Mixing Model Based on Calorimetric Data: Development and Application. Contri-butions to Mineralogy and Petrology, 160(3): 327–337. https://doi.org/10.1007/s00410-009-0480-8
    Boehnke, P., Watson, E. B., Trail, D., et al., 2013. Zircon Saturation Revisited. Chemical Geology, 351(7): 324–334. https://doi.org/10.1016/j.chemgeo.2013.05.028
    Bröcker, M., Klemd, R., Kooijman, E., et al., 2010. Zircon Geochronology and Trace Element Characteristics of Eclogites and Granulites from the Orlica-Śnieżnik Complex, Bohemian Massif. Geological Magazine, 147(3): 339–362. https://doi.org/10.1017/s0016756809990665
    Brown, M., 1994. The Generation, Segregation, Ascent and Emplacement of Granite Magma: The Migmatite-to-Crustally-Derived Granite Connection in Thickened Orogens. Earth-Science Reviews, 36(1/2): 83–130. https://doi.org/10.1016/0012-8252(94)90009-4
    Brown, M., 2004. The Mechanism of Melt Extraction from Lower Continental Crust of Orogens. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1/2): 35–48. https://doi.org/10.1017/s0263593300000900
    Brown, M., Johnson, T., 2019. Time's Arrow, Time's Cycle: Granulite Metamorphism and Geodynamics. Mineralogical Magazine, 83: 323–338. https://doi.org/10.1180/mgm.2019.19
    Caddick, M. J., Thompson, A. B., 2008. Quantifying the Tectono-Metamorphic Evolution of Pelitic Rocks from a Wide Range of Tectonic Settings: Mineral Compositions in Equilibrium. Contributions to Mineralogy and Petrology, 156(2): 177–195. https://doi.org/10.1007/s00410-008-0280-6
    Caddick, M. J., Konopásek, J., Thompson, A. B., 2010. Preservation of Garnet Growth Zoning and the Duration of Prograde Metamorphism. Journal of Petrology, 51(11): 2327–2347. https://doi.org/10.1093/petrology/egq059
    Cao, Y. T., Liu, L., Wang, C., et al., 2019. Multi-Stage Metamorphism of the UHP Pelitic Gneiss from the Southern Altyn Tagh HP/UHP Belt, Western China: Petrological and Geochronological Evidence. Journal of Earth Science, 30(3): 603–620. https://doi.org/10.1007/s12583-019-0896-7
    Carswell, D. A., O'Brien, P. J., 1993. Thermobarometry and Geotectonic Significance of High-Pressure Granulites: Examples from the Moldanu-bian Zone of the Bohemian Massif in Lower Austria. Journal of Petrology, 34(3): 427–459. https://doi.org/10.1093/petrology/34.3.427
    Cesare, B., Ferrero, S., Salvioli-Mariani, E., et al., 2009. "Nanogranite" and Glassy Inclusions: The Anatectic Melt in Migmatites and Granulites. Geology, 37(7): 627–630. https://doi.org/10.1130/g25759a.1
    Chen, R. -X., Zheng, Y. -F., Xie, L. W., 2010. Metamorphic Growth and Re-crystallization of Zircon: Distinction by Simultaneous in-situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 114(1/2): 132–154. https://doi.org/10.1016/j.lithos.2009.08.006
    Chen, R. -X., Zheng, Y. -F., 2017. Metamorphic Zirconology of Continental Subduction Zones. Journal of Asian Earth Sciences, 145: 149–176. https://doi.org/10.1016/j.jseaes.2017.04.029
    Cherniak, D. J., Watson, E. B., 2001. Pb Diffusion in Zircon. Chemical Geo-logy, 172(1/2): 5–24. https://doi.org/10.1016/s0009-2541(00)00233-3
    Cherniak, D. J., Watson, E. B., 2003. Diffusion in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 113–143. https://doi.org/10.2113/0530113
    Cherniak, D. J., Watson, E. B., 2007. Ti Diffusion in Zircon. Chemical Geology, 242(3/4): 470–483. https://doi.org/10.1016/j.chemgeo.2007. 05.005 doi: 10.1016/j.chemgeo.2007.05.005
    Cherniak, D. J., 2010. Diffusion in Accessory Minerals: Zircon, Titanite, Apatite, Monazite and Xenotime. Reviews in Mineralogy and Geochemistry, 72(1): 827–869. https://doi.org/10.2138/rmg.2010.72.18
    Cooke, R. A., 2000. High-Pressure/Temperature Metamorphism in the St. Leonhard Granulite Massif, Austria: Evidence from Intermediate Pyroxene-Bearing Granulites. International Journal of Earth Sciences, 89(3): 631–651. https://doi.org/10.1007/s005310000123
    Cooke, R. A., O'Brien, P. J., Carswell, D. A., 2000. Garnet Zoning and the Identification of Equilibrium Mineral Compositions in High-Pressure-Temperature Granulites from the Moldanubian Zone, Austria. Journal of Metamorphic Geology, 18(5): 551–569. https://doi.org/10.1046/j.1525-1314.2000.00273.x
    Cooke, R. A., O'Brien, P. J., 2001. Resolving the Relationship between High P-T Rocks and Gneisses in Collisional Terranes: An Example from the Gföhl Gneiss-Granulite Association in the Moldanubian Zone, Austria. Lithos, 58(1/2): 33–54. https://doi.org/10.1016/s0024-4937(01)00049-4
    Day, H. W., 2012. A Revised Diamond-Graphite Transition Curve. American Mineralogist, 97(1): 52–62. https://doi.org/10.2138/am.2011.3763
    de Capitani, C., Brown, T. H., 1987. The Computation of Chemical Equilibrium in Complex Systems Containing Non-Ideal Solutions. Geochimica et Cosmochimica Acta, 51(10): 2639–2652. https://doi.org/10.1016/0016-7037(87)90145-1
    de Capitani, C., Petrakakis, K., 2010. The Computation of Equilibrium Assemblage Diagrams with Theriak/Domino Software. American Mineralogist, 95(7): 1006–1016. https://doi.org/10.2138/am.2010.3354
    Dong, J., Wei, C. J., Clarke, G. L., et al., 2018. Metamorphic Evolution during Deep Subduction and Exhumation of Continental Crust: Insights from Felsic Granulites in South Altyn Tagh, West China. Journal of Petrology, 59(10): 1965–1990. https://doi.org/10.1093/petrology/egy086
    Dong, J., Wei, C. J., Zhang, J. X., 2019. Ultra High Temperature Metamorphism of Mafic Granulites from South Altyn Orogen, West China: A Result from the Rapid Exhumation of Deeply Subducted Continental Crust. Journal of Metamorphic Geology, 37(3): 315–338. https://doi.org/10.1111/jmg.12464
    Elkins, L. T., Grove, T. L., 1990. Ternary Feldspar Experiments and Thermodynamic Models. American Mineralogist, 75(5/6): 544–559 http://home.dtm.ciw.edu/users/ltelkins/pdfs_of_papers/Elkins%20Grove%20feldspars%201990.pdf
    Faryad, S. W., 2009. The Kutná Hora Complex (Moldanubian Zone, Bohemian Massif): A Composite of Crustal and Mantle Rocks Subducted to HP/UHP Conditions. Lithos, 109(3/4): 193–208. https://doi.org/10.1016/j.lithos.2008.03.005
    Faryad, S. W., Nahodilová, R., Dolejš, D., 2010. Incipient Eclogite Facies Metamorphism in the Moldanubian Granulites Revealed by Mineral Inclusions in Garnet. Lithos, 114(1/2): 54–69. https://doi.org/10.1016/j.lithos.2009.07.014
    Faryad, S. W., 2011. Distribution and Geological Position of High-/Ultrahigh-Pressure Units within the European Variscan Belt. In: Ultrahigh-Pressure Metamorphism. Elsevier, Amsterdam. 361–397. https://doi.org/10.1016/b978-0-12-385144-4.00011-4
    Faryad, S. W., Frank, W., 2011. Textural and Age Relations of Polymetamorphic Rocks in the HP Meliata Unit (Western Carpathians). Journal of Asian Earth Sciences, 42(1/2): 111–122. https://doi.org/10.1016/j.jseaes.2011.03.016
    Faryad, S. W., Kachlík, V., 2013. New Evidence of Blueschist Facies Rocks and Their Geotectonic Implication for Variscan Suture(s) in the Bohemian Massif. Journal of Metamorphic Geology, 31(1): 63–82. https://doi.org/10.1111/jmg.12009
    Faryad, S. W., Fišera, M., 2015. Olivine-Bearing Symplectites in Fractured Garnet from Eclogite, Moldanubian Zone (Bohemian Massif)—A Short-Lived, Granulite Facies Event. Journal of Metamorphic Geology, 33(6): 597–612. https://doi.org/10.1111/jmg.12135
    Faryad, S. W., Kachlík, V., Sláma, J., et al., 2015. Implication of Corona Formation in a Metatroctolite to the Granulite Facies Overprint of HP-UHP Rocks in the Moldanubian Zone (Bohemian Massif). Journal of Metamorphic Geology, 33(3): 295–310. https://doi.org/10.1111/jmg.12121
    Faryad, S. W., Žák, J., 2016. High-Pressure Granulites of the Podolsko Complex, Bohemian Massif: An Example of Crustal Rocks that were Subducted to Mantle Depths and Survived a Pervasive Mid-Crustal High-Temperature Overprint. Lithos, 246/247: 246–260. https://doi.org/10.1016/j.lithos.2016.01.005
    Faryad, S. W., Cuthbert, S. J., 2020. High-Temperature Overprint in (U)HPM Rocks Exhumed from Subduction Zones: A Product of Isothermal Decompression or a Consequence of Slab Break-off (Slab Rollback)? Earth-Science Reviews, 202: 103108. https://doi.org/10.1016/j.earscirev.2020.103108
    Ferrero, S., Bartoli, O., Cesare, B., et al., 2012. Microstructures of Melt Inclusions in Anatectic Metasedimentary Rocks. Journal of Metamor-phic Geology, 30(3): 303–322. https://doi.org/10.1111/j.1525-1314.2011.00968.x
    Ferrero, S., Wunder, B., Walczak, K., et al., 2015. Preserved near Ultrahigh-Pressure Melt from Continental Crust Subducted to Mantle Depths. Geology, 43(5): 447–450. https://doi.org/10.1130/g36534.1
    Ferrero, S., Ziemann, M. A., Angel, R. J., et al., 2016. Kumdykolite, Kokchetavite, and Cristobalite Crystallized in Nanogranites from Felsic Granulites, Orlica-Snieznik Dome (Bohemian Massif): Not Evidence for Ultrahigh-Pressure Conditions. Contributions to Mineralogy and Petrology, 171(1): 1–12. https://doi.org/10.1007/s00410-015-1220-x
    Ferrero, S., Angel, R. J., 2018. Micropetrology: Are Inclusions Grains of Truth? Journal of Petrology, 59(9): 1671–1700. https://doi.org/10.1093/petrology/egy075
    Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201-0
    Florence, F. P., Spear, F. S., 1991. Effects of Diffusional Modification of Garnet Growth Zoning on P-T Path Calculations. Contributions to Mineralogy and Petrology, 107(4): 487–500. https://doi.org/10.1007/bf00310683
    Friedl, G., Cooke, R. A., Finger, F., et al., 2011. Timing of Variscan HP-HT Metamorphism in the Moldanubian Zone of the Bohemian Massif: U-Pb SHRIMP Dating on Multiply Zoned Zircons from a Granulite from the Dunkelsteiner Wald Massif, Lower Austria. Mineralogy and Petrology, 102(1): 63–75. https://doi.org/10.1007/s00710-011-0162-x
    Fritz, H., Dallmeyer, R. D., Neubauer, F., 1996. Thick-Skinned Versus Thin-Skinned Thrusting: Rheology Controlled Thrust Propagation in the Variscan Collisional Belt (the Southeastern Bohemian Massif, Czech Republic-Austria). Tectonics, 15(6): 1389–1413. https://doi.org/10.1029/ 96tc01098 doi: 10.1029/96tc01098
    Fuhrman, M. L., Lindsley, D. H., 1988. Ternary-Feldspar Modeling and Thermometry. American Mineralogist, 73(3/4): 201–215 http://www.researchgate.net/publication/235671520_Ternary-feldspar_modeling_and_thermometry
    Geisler, T., Schaltegger, U., Tomaschek, F., 2007. Re-Equilibration of Zircon in Aqueous Fluids and Melts. Elements, 3(1): 43–50. https://doi.org/10.2113/gselements.3.1.43
    Green, T. H., Hellman, P. L., 1982. Fe-Mg Partitioning between Coexisting Garnet and Phengite at High Pressure, and Comments on a Garnet-Phengite Geothermometer. Lithos, 15(4): 253–266. https://doi.org/10.1016/0024-4937(82)90017-2
    Haifler, J., Kotková, J., 2016. UHP-UHT Peak Conditions and Near-Adiabatic Exhumation Path of Diamond-Bearing Garnet-Clinopyroxene Rocks from the Eger Crystalline Complex, North Bohemian Massif. Lithos, 248/249/250/251: 366–381. https://doi.org/10.1016/j.lithos. 2016.02.001
    Harley, S. L., Kelly, N. M., 2007. Zircon Tiny but Timely. Elements, 3(1): 13–18. https://doi.org/10.2113/gselements.3.1.13
    Harley, S. L., Kelly, N. M., Moller, A., 2007. Zircon Behaviour and the Thermal Histories of Mountain Chains. Elements, 3(1): 25–30. https://doi.org/10.2113/gselements.3.1.25
    Harley, S. L., Nandakumar, V., 2014. Accessory Mineral Behaviour in Granulite Migmatites: A Case Study from the Kerala Khondalite Belt, India. Journal of Petrology, 55(10): 1965–2002. https://doi.org/10.1093/petrology/egu047
    Holdaway, M. J., Mukhopadhyay, B., 1993. A Reevaluation of the Stability Relations of Andalusite: Thermochemical Data and Phase Diagram for the Aluminum Silicates. American Mineralogist, 78: 298–315
    Holland, T., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formula-tion. Contributions to Mineralogy and Petrology, 145(4): 492–501. https://doi.org/10.1007/s00410-003-0464-z
    Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
    Huang, W. L., Wyllie, P. J., 1973. Melting Relations of Muscovite-Granite to 35 kbar as a Model for Fusion of Metamorphosed Subducted Oceanic Sediments. Contributions to Mineralogy and Petrology, 42(1): 1–14. https://doi.org/10.1007/bf00521643
    Indares, A., White, R. W., Powell, R., 2008. Phase Equilibria Modelling of Kyanite-Bearing Anatectic Paragneisses from the Central Grenville Province. Journal of Metamorphic Geology, 26(8): 815–836. https://doi.org/10.1111/j.1525-1314.2008.00788.x
    Jedlicka, R., Faryad, S. W., Hauzenberger, C., 2015. Prograde Metamorphic History of UHP Granulites from the Moldanubian Zone (Bohemian Massif) Revealed by Major Element and Y + REE Zoning in Garnets. Journal of Petrology, 56(10): 2069–2088. https://doi.org/10.1093/petrology/egv066
    Kelsey, D. E., 2008. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research, 13(1): 1–29. https://doi.org/10.1016/j.gr.2007. 06.001 doi: 10.1016/j.gr.2007.06.001
    Kelsey, D. E., Powell, R., 2011. Progress in Linking Accessory Mineral Growth and Breakdown to Major Mineral Evolution in Metamorphic Rocks: A Thermodynamic Approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 System. Journal of Metamorphic Geology, 29(1): 151–166. https://doi.org/10.1111/j.1525-1314.2010.00910.x
    Kohn, M. J., 2016. Metamorphic Chronology—A Tool for all Ages: Past Achievements and Future Prospects. American Mineralogist, 101(1): 25–42. https://doi.org/10.2138/am-2016-5146
    Kohn, M. J., Kelly, N. M., 2017. Petrology and Geochronology of Metamorphic Zircon. In: Moser, D. E., Corfu, F., Darling, J. R., et al., eds., Microstructural Geochronology: Planetary Records down to Atom Scale. John Wiley & Sons, Inc., Hoboken, NJ. 35–61. https://doi.org/10.1002/9781119227250.ch2
    Korhonen, F. J., Powell, R., Stout, J. H., 2012. Stability of Sapphirine + Quartz in the Oxidized Rocks of the Wilson Lake Terrane, Labrador: Calculated Equilibria in NCKFMASHTO. Journal of Metamorphic Geology, 30(1): 21–36. https://doi.org/10.1111/j.1525-1314.2011.00954.x
    Korhonen, F. J., Brown, M., Clark, C., et al., 2013. Osumilite-Melt Interactions in Ultrahigh Temperature Granulites: Phase Equilibria Modelling and Implications for the P-T-t Evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology, 31(8): 881–907. https://doi.org/10.1111/jmg.12049
    Košler, J., Konopásek, J., Sláma, J., et al., 2014. U-Pb Zircon Provenance of Moldanubian Metasediments in the Bohemian Massif. Journal of the Geological Society, 171(1): 83–95. https://doi.org/10.1144/jgs2013-059
    Kotková, J., 2007. High-Pressure Granulites of the Bohemian Massif: Recent Advances and Open Questions. Journal of Geosciences, 52(1/2): 45–71. https://doi.org/10.3190/jgeosci.006
    Kotková, J., O'Brien, P. J., Ziemann, M. A., 2011. Diamond and Coesite Discovered in Saxony-Type Granulite: Solution to the Variscan Garnet Peridotite Enigma. Geology, 39(7): 667–670. https://doi.org/10.1130/g31971.1
    Kotková, J., Whitehouse, M., Schaltegger, U., et al., 2016. The Fate of Zircon during UHT-UHP Metamorphism: Isotopic (U/Pb, δ18O, Hf) and Trace Element Constraints. Journal of Metamorphic Geology, 34(7): 719–739. https://doi.org/10.1111/jmg.12206
    Kretz, R., 1983. Symbols for Rock-Forming Minerals. American Mineralogist, 68: 277–279. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=68/1-2/277
    Kotková, J., Janák, M., 2015. UHP Kyanite Eclogite Associated with Garnet Peridotite and Diamond-Bearing Granulite, Northern Bohemian Massif. Lithos, 226: 255–264. https://doi.org/10.1016/j.lithos.2015.01.016
    Kröner, A., Wendt, I., Liew, T. C., et al., 1988. U-Pb Zircon and Sm-Nd Model Ages of High-Grade Moldanubian Metasediments, Bohemian Massif, Czechoslovakia. Contributions to Mineralogy and Petrology, 99(2): 257–266. https://doi.org/10.1007/bf00371466
    Kröner, A., O'Brien, P. J., Nemchin, A. A., et al., 2000. Zircon Ages for High Pressure Granulites from South Bohemia, Czech Republic, and Their Connection to Carboniferous High Temperature Processes. Contributions to Mineralogy and Petrology, 138(2): 127–142. https://doi.org/10.1007/s004100050013
    Li, W. -C., Chen, R. -X., Zheng, Y. -F., et al., 2016. Two Episodes of Partial Melting in Ultrahigh-Pressure Migmatites from Deeply Subducted Continental Crust in the Sulu Orogen, China. Geological Society of America Bulletin, 128(9/10): 1521–1542. https://doi.org/10.1130/b31366.1
    Liang, X., Xu, Y. J., Zi, J. W., et al., 2022. Genetic Mineralogy of Monazite and Constraints on Interpretation of U-Th-Pb Ages. Earth Science, 47(4): 1383–1398. https://doi.org/10.3799/dqkx.2021.157 (in Chinese with English Abstract)
    Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1–39. https://doi.org/10.1016/j.jseaes.2010.08.007
    Luo, T., Hu, Z. C., 2022. Recent Advances in U-Th-Pb Dating of Accessory Minerals by Laser Ablation Inductively Coupled Plasma Mass Spectro-metry. Earth Science, 47(11): 4122–4144. https://doi.org/10.3799/dqkx.2022.365 (in Chinese with English Abstract)
    Massonne, H. -J., 2001. First Find of Coesite in the Ultrahigh-Pressure Metamorphic Area of the Central Erzgebirge, Germany. European Journal of Mineralogy, 13(3): 565–570. https://doi.org/10.1127/0935-1221/2001/0013-0565
    Massonne, H. -J., 2003. A Comparison of the Evolution of Diamondiferous Quartz-Rich Rocks from the Saxonian Erzgebirge and the Kokchetav Massif: Are So-Called Diamondiferous Gneisses Magmatic Rocks? Earth and Planetary Science Letters, 216(3): 347–364. https://doi.org/10.1016/s0012-821x(03)00512-0
    Massonne, H. -J., Fockenberg, T., 2012. Melting of Metasedimentary Rocks at Ultrahigh Pressure—Insights from Experiments and Thermo-dynamic Calculations. Lithosphere, 4(4): 269–285. https://doi.org/10.1130/l185.1
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
    Mirwald, P. W., Massonne, H. -J., 1980. The Low-High Quartz and Quartz-Coesite Transition to 40 kbar between 600 and 1 600 ℃ and some Reconnaissance Data on the Effect of NaAlO2 Component on the Low Quartz-Coesite Transition. Journal of Geophysical Research: Solid Earth, 85(B12): 6983–6990. https://doi.org/10.1029/jb085ib12p06983
    Nahodilová, R., Faryad, S. W., Dolejš, D., et al., 2011. High-Pressure Partial Melting and Melt Loss in Felsic Granulites in the Kutná Hora Complex, Bohemian Massif (Czech Republic). Lithos, 125(1/2): 641–658. https://doi.org/10.1016/j.lithos.2011.03.017
    Nahodilová, R., Štípská, P., Powell, R., et al., 2014. High-Ti Muscovite as a Prograde Relict in High Pressure Granulites with Metamorphic Devonian Zircon Ages (Běstvina Granulite Body, Bohemian Massif): Consequences for the Relamination Model of Subducted Crust. Gondwana Research, 25(2): 630–648. https://doi.org/10.1016/j.gr.2012.08.021
    O'Brien, P. J., Rötzler, J., 2003. High-Pressure Granulites: Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 21(1): 3–20. https://doi.org/10.1046/j.1525-1314.2003.00420.x
    Perraki, M., Faryad, S. W., 2014. First Finding of Microdiamond, Coesite and other UHP Phases in Felsic Granulites in the Moldanubian Zone: Implications for Deep Subduction and a Revised Geodynamic Model for Variscan Orogeny in the Bohemian Massif. Lithos, 202/203: 157–166. https://doi.org/10.1016/j.lithos.2014.05.025
    Powell, R., Guiraud, M., White, R. W., 2005. Truth and Beauty in Metamorphic Phase-Equilibria: Conjugate Variables and Phase Diagrams. The Canadian Mineralogist, 43(1): 21–33. https://doi.org/10.2113/gscanmin.43.1.21
    Prince, C. I., Košler, J., Vance, D., et al., 2000. Comparison of Laser Ablation ICP-MS and Isotope Dilution REE Analyses—Implications for Sm-Nd Garnet Geochronology. Chemical Geology, 168(3/4): 255–274. https://doi.org/10.1016/s0009-2541(00)00203-5
    Roberts, M. P., Finger, F., 1997. Do U-Pb Zircon Ages from Granulites Reflect Peak Metamorphic Conditions? Geology, 25(4): 319–322. https://doi.org/10.1130/0091-7613(1997)0250319:dupzaf>2.3.co;2
    Rötzler, J., Romer, R. L., 2001. P-T-t Evolution of Ultrahigh-Temperature Granulites from the Saxon Granulite Massif, Germany. Part Ⅰ: Petrology. Journal of Petrology, 42(11): 1995–2013. https://doi.org/10.1093/petrology/42.11.1995
    Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2
    Rubatto, D., 2017. Zircon: The Metamorphic Mineral. Reviews in Mineralogy and Geochemistry, 83(1): 261–295. https://doi.org/10.2138/rmg.2017.83.9
    Schantl, P., Hauzenberger, C., Finger, F., et al., 2019. New Evidence for the Prograde and Retrograde PT-Path of High-Pressure Granulites, Moldanubian Zone, Lower Austria, by Zr-in-Rutile Thermometry and Garnet Diffusion Modelling. Lithos, 342/343: 420–439. https://doi.org/10.1016/j.lithos.2019.05.041
    Schulmann, K., Kröner, A., Hegner, E., et al., 2005. Chronological Constraints on the Pre-Orogenic History, Burial and Exhumation of Deep-Seated Rocks along the Eastern Margin of the Variscan Orogen, Bohemian Massif, Czech Republic. American Journal of Science, 305(5): 407–448. https://doi.org/10.2475/ajs.305.5.407
    Schulmann, K., Lexa, O., Štípská, P., et al., 2008. Vertical Extrusion and Horizontal Channel Flow of Orogenic Lower Crust: Key Exhumation Mechanisms in Large Hot Orogens? Journal of Metamorphic Geology, 26(2): 273–297. https://doi.org/10.1111/j.1525-1314.2007.00755.x
    Schulmann, K., Konopásek, J., Janoušek, V., et al., 2009. An Andean Type Palaeozoic Convergence in the Bohemian Massif. Comptes Rendus Geoscience, 341(2/3): 266–286. https://doi.org/10.1016/j.crte.2008. 12.006 doi: 10.1016/j.crte.2008.12.006
    Sizova, E., Gerya, T., Brown, M., 2012. Exhumation Mechanisms of Melt-Bearing Ultrahigh Pressure Crustal Rocks during Collision of Sponta-neously Moving Plates. Journal of Metamorphic Geology, 30(9): 927–955. https://doi.org/10.1111/j.1525-1314.2012.01004.x
    Sizova, E., Hauzenberger, C., Fritz, H., et al., 2019. Late Orogenic Heating of (Ultra)High Pressure Rocks: Slab Rollback vs. Slab Breakoff. Geosciences, 9(12): 499. https://doi.org/10.3390/geosciences9120499
    Sláma, J., Košler, J., Pedersen, R. B., 2007. Behaviour of Zircon in High-Grade Metamorphic Rocks: Evidence from Hf Isotopes, Trace Elements and Textural Studies. Contributions to Mineralogy and Petrology, 154(3): 335–356. https://doi.org/10.1007/s00410-007-0196-6
    Sláma, J., Dunkley, D. J., Kachlík, V., et al., 2008. Transition from Island-Arc to Passive Setting on the Continental Margin of Gondwana: U-Pb Zircon Dating of Neoproterozoic Metaconglomerates from the SE Margin of the Teplá-Barrandian Unit, Bohemian Massif. Tectonophysics, 461(1–4): 44–59. https://doi.org/10.1016/j.tecto.2008.03.005
    Smith, J. V., 1974. Feldspar Minerals. Volume 1. Crystal Structure and Physical Properties. Springer, Berlin. 625
    Stern, C. R., Huang, W. L., Wyllie, P. J., 1975. Basalt-Andesite-Rhyolite-H2O: Crystallization Intervals with Excess H2O and H2O-Undersaturated Liquidus Surfaces to 35 Kolbras, with Implications for Magma Genesis. Earth and Planetary Science Letters, 28(2): 189–196. https://doi.org/10.1016/0012-821x(75)90226-5
    Štípská, P., Powell, R., 2005. Does Ternary Feldspar Constrain the Metamor-phic Conditions of High-Grade Meta-Igneous Rocks? Evidence from Orthopyroxene Granulites, Bohemian Massif. Journal of Metamorphic Geology, 23(8): 627–647. https://doi.org/10.1111/j.1525-1314.2005. 00600.x doi: 10.1111/j.1525-1314.2005.00600.x
    Štípská, P., Powell, R., Racek, M., 2014. Rare Eclogite-Mafic Granulite in Felsic Granulite in Blanský Les: Precursor of Intermediate Granulite in the Bohemian Massif? Journal of Metamorphic Geology, 32(4): 325–345. https://doi.org/10.1111/jmg.12075
    Štípská, P., Powell, R., Hacker, B. R., et al., 2016. Uncoupled U/Pb and REE Response in Zircon during the Transformation of Eclogite to Mafic and Intermediate Granulite (Blanský Les, Bohemian Massif). Journal of Metamorphic Geology, 34(6): 551–572. https://doi.org/10.1111/jmg.12193
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tajčmanová, L., Konopásek, J., Schulmann, K., 2006. Thermal Evolution of the Orogenic Lower Crust during Exhumation within a Thickened Moldanubian Root of the Variscan Belt of Central Europe. Journal of Metamorphic Geology, 24(2): 119–134. https://doi.org/10.1111/j.1525-1314.2006.00629.x
    Taylor, R. J. M., Kirkland, C. L., Clark, C., 2016. Accessories after the Facts: Constraining the Timing, Duration and Conditions of High-Temperature Metamorphic Processes. Lithos, 264: 239–257. https://doi.org/10.1016/j.lithos.2016.09.004
    Tu, C., Zhang, S. B., Su, K., et al., 2021. Zircon U-Pb Dating and Lu-Hf Isotope Results for Feidong Complex: Implications for Coherent Base-ment of the Yangtze Craton. Earth Science, 46(5): 1630–1643. https://doi.org/10.3799/dqkx.2020.169 (in Chinese with English Abstract)
    Usuki, T., Iizuka, Y., Hirajima, T., et al., 2017. Significance of Zr-in-Rutile Thermometry for Deducing the Decompression P-T Path of a Garnet-Clinopyroxene Granulite in the Moldanubian Zone of the Bohemian Massif. Journal of Petrology, 58(6): 1173–1198. https://doi.org/10.1093/petrology/egx050
    Valley, J. W., 2003. Oxygen Isotopes in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 343–385. https://doi.org/10.2113/0530343
    Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295–304. https://doi.org/10.1016/0012-821x(83)90211-x
    Wen, S. X., Nekvasil, H., 1994. SOLVALC: An Interactive Graphics Program Package for Calculating the Ternary Feldspar Solvus and for Two-Feldspar Geothermometry. Computers & Geosciences, 20(6): 1025–1040. https://doi.org/10.1016/0098-3004(94)90039-6
    White, R. W., Powell, R., 2002. Melt Loss and the Preservation of Granulite Facies Mineral Assemblages. Journal of Metamorphic Geology, 20(7): 621–632. https://doi.org/10.1046/j.1525-1314.2002.00206_20_7.x
    White, R. W., Powell, R., Halpin, J. A., 2004. Spatially-Focussed Melt Formation in Aluminous Metapelites from Broken Hill, Australia. Journal of Metamorphic Geology, 22(9): 825–845. https://doi.org/10.1111/j.1525-1314.2004.00553.x
    Whitehouse, M. J., Platt, J. P., 2003. Dating High-Grade Metamorphism—Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 145(1): 61–74. https://doi.org/10.1007/s00410-002-0432-z
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
    Wu, Y. B., Zheng, Y. -F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554–1569. https://doi.org/10.1007/bf03184122
    Wu, Y. B., Zheng, Y. -F., Zhao, Z. F., et al., 2006. U-Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen. Geochimica et Cosmochimica Acta, 70(14): 3743–3761. https://doi.org/10.1016/j.gca.2006.05.011
    Wu, Y. B., Gao, S., Zhang, H. F., et al., 2009. U-Pb Age, Trace-Element, and Hf-Isotope Compositions of Zircon in a Quartz Vein from Eclogite in the Western Dabie Mountains: Constraints on Fluid Flow during Early Exhumation of Ultrahigh-Pressure Rocks. American Mineralogist, 94(2/3): 303–312. https://doi.org/10.2138/am.2009.3042
    Xia, Q. -X., Zheng, Y. -F., Yuan, H. L., et al., 2009. Contrasting Lu-Hf and U-Th-Pb Isotope Systematics between Metamorphic Growth and Recrystallization of Zircon from Eclogite-Facies Metagranites in the Dabie Orogen, China. Lithos, 112(3/4): 477–496. https://doi.org/10.1016/j.lithos.2009.04.015
    Xiong, Z. W., Xu, H. J., Wang, P., et al., 2021. Zircon U-Pb Age and Hf Isotope of Paleoproterozoic Pelitic Granulites at Weihai, Sulu Orogen: Implications for Tectonic Affinity. Earth Science, 46(2): 504–526. https://doi.org/10.3799/dqkx.2020.036 (in Chinese with English Abstract)
    Zheng, Y. -F., 2021a. Metamorphism in Subduction Zones. In: Alderton, D., Elias, S. A., eds., Encyclopedia of Geology, 2nd Edition. Academic Press. 2: 612–622
    Zheng, Y. -F., 2021b. Exhumation of Ultrahigh-Pressure Metamorphic Terranes. In: Alderton, D., Elias, S. A., eds., Encyclopedia of Geology, 2nd Edition. Academic Press. 2: 868–878
    Zheng, Y. -F., Chen, R. -X., 2017. Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145: 46–73. https://doi.org/10.1016/j.jseaes.2017.03.009
    Zheng, Y. -F., Chen, Y. -X., Chen, R. -X., et al., 2022. Tectonic Evolution of Convergent Plate Margins and Its Geological Effects. Science China Earth Sciences, 65(7): 1247–1276. https://doi.org/10.1007/s11430-022-9947-6
    Zheng, Y. -F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1/2): 105–161. https://doi.org/10.1016/s0012-8252(02)00133-2
    Zheng, Y. -F., Hermann, J., 2014. Geochemistry of Continental Subduction-Zone Fluids. Earth, Planets and Space, 66(1): 93.https://doi.org/10.1186/1880-5981-66-93
    Zheng, Y. -F., Zhao, Z. F., Chen, Y. X., 2013. Continental Subduction Channel Processes: Plate Interface Interaction during Continental Collision. Chinese Science Bulletin, 58(35): 4371–4377. https://doi.org/10.1007/s11434-013-6066-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views(411) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return