Citation: | Guang Yang, Ren-Xu Chen, Yong-Fei Zheng, Qiong-Xia Xia, Yong-Jie Yu, Kun Li, Zhaochu Hu, Bing Gong, Xiang-Ping Zha. Multiple Episodes of Zircon Growth during Anatectic Metamorphism of Metasedimentary Rocks in Collisional Orogens: Constraints from Felsic Granulites in the Bohemian Massif. Journal of Earth Science, 2023, 34(3): 609-639. doi: 10.1007/s12583-021-1487-y |
Zircon is a key accessary mineral for metamorphic geochronology and geochemical tracing,but it has been a challenge to interpret its complex chemical zoning and age record acquired during multiple episodes of anatectic metamorphism in collisional orogens. This is illustrated by a combined study of petrography,phase equilibrium modeling and metamorphic
Anczkiewicz, R., Szczepański, J., Mazur, S., et al., 2007. Lu-Hf Geochronology and Trace Element Distribution in Garnet: Implications for Uplift and Exhumation of Ultra-High Pressure Granulites in the Sudetes, SW Poland. Lithos, 95(3/4): 363–380. https://doi.org/10.1016/j.lithos.2006.09.001 |
Auzanneau, E., Vielzeuf, D., Schmidt, M. W., 2006. Experimental Evidence of Decompression Melting during Exhumation of Subducted Continental Crust. Contributions to Mineralogy and Petrology, 152(2): 125–148. https://doi.org/10.1007/s00410-006-0104-5 |
Bartoli, O., 2017. Phase Equilibria Modelling of Residual Migmatites and Granulites: An Evaluation of the Melt-Reintegration Approach. Journal of Metamorphic Geology, 35(8): 919–942. https://doi.org/10.1111/jmg.12261 |
Bartoli, O., 2019. Reintegrating Nanogranitoid Inclusion Composition to Reconstruct the Prograde History of Melt-Depleted Rocks. Geoscience Frontiers, 10(2): 517–525. https://doi.org/10.1016/j.gsf.2018.02.002 |
Benisek, A., Dachs, E., Kroll, H., 2010. A Ternary Feldspar-Mixing Model Based on Calorimetric Data: Development and Application. Contri-butions to Mineralogy and Petrology, 160(3): 327–337. https://doi.org/10.1007/s00410-009-0480-8 |
Boehnke, P., Watson, E. B., Trail, D., et al., 2013. Zircon Saturation Revisited. Chemical Geology, 351(7): 324–334. https://doi.org/10.1016/j.chemgeo.2013.05.028 |
Bröcker, M., Klemd, R., Kooijman, E., et al., 2010. Zircon Geochronology and Trace Element Characteristics of Eclogites and Granulites from the Orlica-Śnieżnik Complex, Bohemian Massif. Geological Magazine, 147(3): 339–362. https://doi.org/10.1017/s0016756809990665 |
Brown, M., 1994. The Generation, Segregation, Ascent and Emplacement of Granite Magma: The Migmatite-to-Crustally-Derived Granite Connection in Thickened Orogens. Earth-Science Reviews, 36(1/2): 83–130. https://doi.org/10.1016/0012-8252(94)90009-4 |
Brown, M., 2004. The Mechanism of Melt Extraction from Lower Continental Crust of Orogens. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1/2): 35–48. https://doi.org/10.1017/s0263593300000900 |
Brown, M., Johnson, T., 2019. Time's Arrow, Time's Cycle: Granulite Metamorphism and Geodynamics. Mineralogical Magazine, 83: 323–338. https://doi.org/10.1180/mgm.2019.19 |
Caddick, M. J., Thompson, A. B., 2008. Quantifying the Tectono-Metamorphic Evolution of Pelitic Rocks from a Wide Range of Tectonic Settings: Mineral Compositions in Equilibrium. Contributions to Mineralogy and Petrology, 156(2): 177–195. https://doi.org/10.1007/s00410-008-0280-6 |
Caddick, M. J., Konopásek, J., Thompson, A. B., 2010. Preservation of Garnet Growth Zoning and the Duration of Prograde Metamorphism. Journal of Petrology, 51(11): 2327–2347. https://doi.org/10.1093/petrology/egq059 |
Cao, Y. T., Liu, L., Wang, C., et al., 2019. Multi-Stage Metamorphism of the UHP Pelitic Gneiss from the Southern Altyn Tagh HP/UHP Belt, Western China: Petrological and Geochronological Evidence. Journal of Earth Science, 30(3): 603–620. https://doi.org/10.1007/s12583-019-0896-7 |
Carswell, D. A., O'Brien, P. J., 1993. Thermobarometry and Geotectonic Significance of High-Pressure Granulites: Examples from the Moldanu-bian Zone of the Bohemian Massif in Lower Austria. Journal of Petrology, 34(3): 427–459. https://doi.org/10.1093/petrology/34.3.427 |
Cesare, B., Ferrero, S., Salvioli-Mariani, E., et al., 2009. "Nanogranite" and Glassy Inclusions: The Anatectic Melt in Migmatites and Granulites. Geology, 37(7): 627–630. https://doi.org/10.1130/g25759a.1 |
Chen, R. -X., Zheng, Y. -F., Xie, L. W., 2010. Metamorphic Growth and Re-crystallization of Zircon: Distinction by Simultaneous in-situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 114(1/2): 132–154. https://doi.org/10.1016/j.lithos.2009.08.006 |
Chen, R. -X., Zheng, Y. -F., 2017. Metamorphic Zirconology of Continental Subduction Zones. Journal of Asian Earth Sciences, 145: 149–176. https://doi.org/10.1016/j.jseaes.2017.04.029 |
Cherniak, D. J., Watson, E. B., 2001. Pb Diffusion in Zircon. Chemical Geo-logy, 172(1/2): 5–24. https://doi.org/10.1016/s0009-2541(00)00233-3 |
Cherniak, D. J., Watson, E. B., 2003. Diffusion in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 113–143. https://doi.org/10.2113/0530113 |
Cherniak, D. J., Watson, E. B., 2007. Ti Diffusion in Zircon. Chemical Geology, 242(3/4): 470–483. https://doi.org/10.1016/j.chemgeo.2007. 05.005 doi: 10.1016/j.chemgeo.2007.05.005 |
Cherniak, D. J., 2010. Diffusion in Accessory Minerals: Zircon, Titanite, Apatite, Monazite and Xenotime. Reviews in Mineralogy and Geochemistry, 72(1): 827–869. https://doi.org/10.2138/rmg.2010.72.18 |
Cooke, R. A., 2000. High-Pressure/Temperature Metamorphism in the St. Leonhard Granulite Massif, Austria: Evidence from Intermediate Pyroxene-Bearing Granulites. International Journal of Earth Sciences, 89(3): 631–651. |
Cooke, R. A., O'Brien, P. J., Carswell, D. A., 2000. Garnet Zoning and the Identification of Equilibrium Mineral Compositions in High-Pressure-Temperature Granulites from the Moldanubian Zone, Austria. Journal of Metamorphic Geology, 18(5): 551–569. https://doi.org/10.1046/j.1525-1314.2000.00273.x |
Cooke, R. A., O'Brien, P. J., 2001. Resolving the Relationship between High P-T Rocks and Gneisses in Collisional Terranes: An Example from the Gföhl Gneiss-Granulite Association in the Moldanubian Zone, Austria. Lithos, 58(1/2): 33–54. https://doi.org/10.1016/s0024-4937(01)00049-4 |
Day, H. W., 2012. A Revised Diamond-Graphite Transition Curve. American Mineralogist, 97(1): 52–62. https://doi.org/10.2138/am.2011.3763 |
de Capitani, C., Brown, T. H., 1987. The Computation of Chemical Equilibrium in Complex Systems Containing Non-Ideal Solutions. Geochimica et Cosmochimica Acta, 51(10): 2639–2652. https://doi.org/10.1016/0016-7037(87)90145-1 |
de Capitani, C., Petrakakis, K., 2010. The Computation of Equilibrium Assemblage Diagrams with Theriak/Domino Software. American Mineralogist, 95(7): 1006–1016. https://doi.org/10.2138/am.2010.3354 |
Dong, J., Wei, C. J., Clarke, G. L., et al., 2018. Metamorphic Evolution during Deep Subduction and Exhumation of Continental Crust: Insights from Felsic Granulites in South Altyn Tagh, West China. Journal of Petrology, 59(10): 1965–1990. https://doi.org/10.1093/petrology/egy086 |
Dong, J., Wei, C. J., Zhang, J. X., 2019. Ultra High Temperature Metamorphism of Mafic Granulites from South Altyn Orogen, West China: A Result from the Rapid Exhumation of Deeply Subducted Continental Crust. Journal of Metamorphic Geology, 37(3): 315–338. https://doi.org/10.1111/jmg.12464 |
Elkins, L. T., Grove, T. L., 1990. Ternary Feldspar Experiments and Thermodynamic Models. American Mineralogist, 75(5/6): 544–559 http://home.dtm.ciw.edu/users/ltelkins/pdfs_of_papers/Elkins%20Grove%20feldspars%201990.pdf |
Faryad, S. W., 2009. The Kutná Hora Complex (Moldanubian Zone, Bohemian Massif): A Composite of Crustal and Mantle Rocks Subducted to HP/UHP Conditions. Lithos, 109(3/4): 193–208. https://doi.org/10.1016/j.lithos.2008.03.005 |
Faryad, S. W., Nahodilová, R., Dolejš, D., 2010. Incipient Eclogite Facies Metamorphism in the Moldanubian Granulites Revealed by Mineral Inclusions in Garnet. Lithos, 114(1/2): 54–69. https://doi.org/10.1016/j.lithos.2009.07.014 |
Faryad, S. W., 2011. Distribution and Geological Position of High-/Ultrahigh-Pressure Units within the European Variscan Belt. In: Ultrahigh-Pressure Metamorphism. Elsevier, Amsterdam. 361–397. https://doi.org/10.1016/b978-0-12-385144-4.00011-4 |
Faryad, S. W., Frank, W., 2011. Textural and Age Relations of Polymetamorphic Rocks in the HP Meliata Unit (Western Carpathians). Journal of Asian Earth Sciences, 42(1/2): 111–122. https://doi.org/10.1016/j.jseaes.2011.03.016 |
Faryad, S. W., Kachlík, V., 2013. New Evidence of Blueschist Facies Rocks and Their Geotectonic Implication for Variscan Suture(s) in the Bohemian Massif. Journal of Metamorphic Geology, 31(1): 63–82. https://doi.org/10.1111/jmg.12009 |
Faryad, S. W., Fišera, M., 2015. Olivine-Bearing Symplectites in Fractured Garnet from Eclogite, Moldanubian Zone (Bohemian Massif)—A Short-Lived, Granulite Facies Event. Journal of Metamorphic Geology, 33(6): 597–612. https://doi.org/10.1111/jmg.12135 |
Faryad, S. W., Kachlík, V., Sláma, J., et al., 2015. Implication of Corona Formation in a Metatroctolite to the Granulite Facies Overprint of HP-UHP Rocks in the Moldanubian Zone (Bohemian Massif). Journal of Metamorphic Geology, 33(3): 295–310. https://doi.org/10.1111/jmg.12121 |
Faryad, S. W., Žák, J., 2016. High-Pressure Granulites of the Podolsko Complex, Bohemian Massif: An Example of Crustal Rocks that were Subducted to Mantle Depths and Survived a Pervasive Mid-Crustal High-Temperature Overprint. Lithos, 246/247: 246–260. https://doi.org/10.1016/j.lithos.2016.01.005 |
Faryad, S. W., Cuthbert, S. J., 2020. High-Temperature Overprint in (U)HPM Rocks Exhumed from Subduction Zones: A Product of Isothermal Decompression or a Consequence of Slab Break-off (Slab Rollback)? Earth-Science Reviews, 202: 103108. |
Ferrero, S., Bartoli, O., Cesare, B., et al., 2012. Microstructures of Melt Inclusions in Anatectic Metasedimentary Rocks. Journal of Metamor-phic Geology, 30(3): 303–322. https://doi.org/10.1111/j.1525-1314.2011.00968.x |
Ferrero, S., Wunder, B., Walczak, K., et al., 2015. Preserved near Ultrahigh-Pressure Melt from Continental Crust Subducted to Mantle Depths. Geology, 43(5): 447–450. https://doi.org/10.1130/g36534.1 |
Ferrero, S., Ziemann, M. A., Angel, R. J., et al., 2016. Kumdykolite, Kokchetavite, and Cristobalite Crystallized in Nanogranites from Felsic Granulites, Orlica-Snieznik Dome (Bohemian Massif): Not Evidence for Ultrahigh-Pressure Conditions. Contributions to Mineralogy and Petrology, 171(1): 1–12. https://doi.org/10.1007/s00410-015-1220-x |
Ferrero, S., Angel, R. J., 2018. Micropetrology: Are Inclusions Grains of Truth? Journal of Petrology, 59(9): 1671–1700. |
Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201-0 |
Florence, F. P., Spear, F. S., 1991. Effects of Diffusional Modification of Garnet Growth Zoning on P-T Path Calculations. Contributions to Mineralogy and Petrology, 107(4): 487–500. https://doi.org/10.1007/bf00310683 |
Friedl, G., Cooke, R. A., Finger, F., et al., 2011. Timing of Variscan HP-HT Metamorphism in the Moldanubian Zone of the Bohemian Massif: U-Pb SHRIMP Dating on Multiply Zoned Zircons from a Granulite from the Dunkelsteiner Wald Massif, Lower Austria. Mineralogy and Petrology, 102(1): 63–75. https://doi.org/10.1007/s00710-011-0162-x |
Fritz, H., Dallmeyer, R. D., Neubauer, F., 1996. Thick-Skinned Versus Thin-Skinned Thrusting: Rheology Controlled Thrust Propagation in the Variscan Collisional Belt (the Southeastern Bohemian Massif, Czech Republic-Austria). Tectonics, 15(6): 1389–1413. https://doi.org/10.1029/ 96tc01098 doi: 10.1029/96tc01098 |
Fuhrman, M. L., Lindsley, D. H., 1988. Ternary-Feldspar Modeling and Thermometry. American Mineralogist, 73(3/4): 201–215 http://www.researchgate.net/publication/235671520_Ternary-feldspar_modeling_and_thermometry |
Geisler, T., Schaltegger, U., Tomaschek, F., 2007. Re-Equilibration of Zircon in Aqueous Fluids and Melts. Elements, 3(1): 43–50. https://doi.org/10.2113/gselements.3.1.43 |
Green, T. H., Hellman, P. L., 1982. Fe-Mg Partitioning between Coexisting Garnet and Phengite at High Pressure, and Comments on a Garnet-Phengite Geothermometer. Lithos, 15(4): 253–266. https://doi.org/10.1016/0024-4937(82)90017-2 |
Haifler, J., Kotková, J., 2016. UHP-UHT Peak Conditions and Near-Adiabatic Exhumation Path of Diamond-Bearing Garnet-Clinopyroxene Rocks from the Eger Crystalline Complex, North Bohemian Massif. Lithos, 248/249/250/251: 366–381. |
Harley, S. L., Kelly, N. M., 2007. Zircon Tiny but Timely. Elements, 3(1): 13–18. https://doi.org/10.2113/gselements.3.1.13 |
Harley, S. L., Kelly, N. M., Moller, A., 2007. Zircon Behaviour and the Thermal Histories of Mountain Chains. Elements, 3(1): 25–30. https://doi.org/10.2113/gselements.3.1.25 |
Harley, S. L., Nandakumar, V., 2014. Accessory Mineral Behaviour in Granulite Migmatites: A Case Study from the Kerala Khondalite Belt, India. Journal of Petrology, 55(10): 1965–2002. https://doi.org/10.1093/petrology/egu047 |
Holdaway, M. J., Mukhopadhyay, B., 1993. A Reevaluation of the Stability Relations of Andalusite: Thermochemical Data and Phase Diagram for the Aluminum Silicates. American Mineralogist, 78: 298–315 |
Holland, T., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formula-tion. Contributions to Mineralogy and Petrology, 145(4): 492–501. https://doi.org/10.1007/s00410-003-0464-z |
Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x |
Huang, W. L., Wyllie, P. J., 1973. Melting Relations of Muscovite-Granite to 35 kbar as a Model for Fusion of Metamorphosed Subducted Oceanic Sediments. Contributions to Mineralogy and Petrology, 42(1): 1–14. https://doi.org/10.1007/bf00521643 |
Indares, A., White, R. W., Powell, R., 2008. Phase Equilibria Modelling of Kyanite-Bearing Anatectic Paragneisses from the Central Grenville Province. Journal of Metamorphic Geology, 26(8): 815–836. https://doi.org/10.1111/j.1525-1314.2008.00788.x |
Jedlicka, R., Faryad, S. W., Hauzenberger, C., 2015. Prograde Metamorphic History of UHP Granulites from the Moldanubian Zone (Bohemian Massif) Revealed by Major Element and Y + REE Zoning in Garnets. Journal of Petrology, 56(10): 2069–2088. https://doi.org/10.1093/petrology/egv066 |
Kelsey, D. E., 2008. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research, 13(1): 1–29. https://doi.org/10.1016/j.gr.2007. 06.001 doi: 10.1016/j.gr.2007.06.001 |
Kelsey, D. E., Powell, R., 2011. Progress in Linking Accessory Mineral Growth and Breakdown to Major Mineral Evolution in Metamorphic Rocks: A Thermodynamic Approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 System. Journal of Metamorphic Geology, 29(1): 151–166. https://doi.org/10.1111/j.1525-1314.2010.00910.x |
Kohn, M. J., 2016. Metamorphic Chronology—A Tool for all Ages: Past Achievements and Future Prospects. American Mineralogist, 101(1): 25–42. https://doi.org/10.2138/am-2016-5146 |
Kohn, M. J., Kelly, N. M., 2017. Petrology and Geochronology of Metamorphic Zircon. In: Moser, D. E., Corfu, F., Darling, J. R., et al., eds., Microstructural Geochronology: Planetary Records down to Atom Scale. John Wiley & Sons, Inc., Hoboken, NJ. 35–61. |
Korhonen, F. J., Powell, R., Stout, J. H., 2012. Stability of Sapphirine + Quartz in the Oxidized Rocks of the Wilson Lake Terrane, Labrador: Calculated Equilibria in NCKFMASHTO. Journal of Metamorphic Geology, 30(1): 21–36. https://doi.org/10.1111/j.1525-1314.2011.00954.x |
Korhonen, F. J., Brown, M., Clark, C., et al., 2013. Osumilite-Melt Interactions in Ultrahigh Temperature Granulites: Phase Equilibria Modelling and Implications for the P-T-t Evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology, 31(8): 881–907. https://doi.org/10.1111/jmg.12049 |
Košler, J., Konopásek, J., Sláma, J., et al., 2014. U-Pb Zircon Provenance of Moldanubian Metasediments in the Bohemian Massif. Journal of the Geological Society, 171(1): 83–95. https://doi.org/10.1144/jgs2013-059 |
Kotková, J., 2007. High-Pressure Granulites of the Bohemian Massif: Recent Advances and Open Questions. Journal of Geosciences, 52(1/2): 45–71. https://doi.org/10.3190/jgeosci.006 |
Kotková, J., O'Brien, P. J., Ziemann, M. A., 2011. Diamond and Coesite Discovered in Saxony-Type Granulite: Solution to the Variscan Garnet Peridotite Enigma. Geology, 39(7): 667–670. https://doi.org/10.1130/g31971.1 |
Kotková, J., Whitehouse, M., Schaltegger, U., et al., 2016. The Fate of Zircon during UHT-UHP Metamorphism: Isotopic (U/Pb, δ18O, Hf) and Trace Element Constraints. Journal of Metamorphic Geology, 34(7): 719–739. https://doi.org/10.1111/jmg.12206 |
Kretz, R., 1983. Symbols for Rock-Forming Minerals. American Mineralogist, 68: 277–279. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=68/1-2/277 |
Kotková, J., Janák, M., 2015. UHP Kyanite Eclogite Associated with Garnet Peridotite and Diamond-Bearing Granulite, Northern Bohemian Massif. Lithos, 226: 255–264. https://doi.org/10.1016/j.lithos.2015.01.016 |
Kröner, A., Wendt, I., Liew, T. C., et al., 1988. U-Pb Zircon and Sm-Nd Model Ages of High-Grade Moldanubian Metasediments, Bohemian Massif, Czechoslovakia. Contributions to Mineralogy and Petrology, 99(2): 257–266. https://doi.org/10.1007/bf00371466 |
Kröner, A., O'Brien, P. J., Nemchin, A. A., et al., 2000. Zircon Ages for High Pressure Granulites from South Bohemia, Czech Republic, and Their Connection to Carboniferous High Temperature Processes. Contributions to Mineralogy and Petrology, 138(2): 127–142. https://doi.org/10.1007/s004100050013 |
Li, W. -C., Chen, R. -X., Zheng, Y. -F., et al., 2016. Two Episodes of Partial Melting in Ultrahigh-Pressure Migmatites from Deeply Subducted Continental Crust in the Sulu Orogen, China. Geological Society of America Bulletin, 128(9/10): 1521–1542. https://doi.org/10.1130/b31366.1 |
Liang, X., Xu, Y. J., Zi, J. W., et al., 2022. Genetic Mineralogy of Monazite and Constraints on Interpretation of U-Th-Pb Ages. Earth Science, 47(4): 1383–1398. https://doi.org/10.3799/dqkx.2021.157 (in Chinese with English Abstract) |
Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1–39. https://doi.org/10.1016/j.jseaes.2010.08.007 |
Luo, T., Hu, Z. C., 2022. Recent Advances in U-Th-Pb Dating of Accessory Minerals by Laser Ablation Inductively Coupled Plasma Mass Spectro-metry. Earth Science, 47(11): 4122–4144. https://doi.org/10.3799/dqkx.2022.365 (in Chinese with English Abstract) |
Massonne, H. -J., 2001. First Find of Coesite in the Ultrahigh-Pressure Metamorphic Area of the Central Erzgebirge, Germany. European Journal of Mineralogy, 13(3): 565–570. https://doi.org/10.1127/0935-1221/2001/0013-0565 |
Massonne, H. -J., 2003. A Comparison of the Evolution of Diamondiferous Quartz-Rich Rocks from the Saxonian Erzgebirge and the Kokchetav Massif: Are So-Called Diamondiferous Gneisses Magmatic Rocks? Earth and Planetary Science Letters, 216(3): 347–364. |
Massonne, H. -J., Fockenberg, T., 2012. Melting of Metasedimentary Rocks at Ultrahigh Pressure—Insights from Experiments and Thermo-dynamic Calculations. Lithosphere, 4(4): 269–285. https://doi.org/10.1130/l185.1 |
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4 |
Mirwald, P. W., Massonne, H. -J., 1980. The Low-High Quartz and Quartz-Coesite Transition to 40 kbar between 600 and 1 600 ℃ and some Reconnaissance Data on the Effect of NaAlO2 Component on the Low Quartz-Coesite Transition. Journal of Geophysical Research: Solid Earth, 85(B12): 6983–6990. https://doi.org/10.1029/jb085ib12p06983 |
Nahodilová, R., Faryad, S. W., Dolejš, D., et al., 2011. High-Pressure Partial Melting and Melt Loss in Felsic Granulites in the Kutná Hora Complex, Bohemian Massif (Czech Republic). Lithos, 125(1/2): 641–658. https://doi.org/10.1016/j.lithos.2011.03.017 |
Nahodilová, R., Štípská, P., Powell, R., et al., 2014. High-Ti Muscovite as a Prograde Relict in High Pressure Granulites with Metamorphic Devonian Zircon Ages (Běstvina Granulite Body, Bohemian Massif): Consequences for the Relamination Model of Subducted Crust. Gondwana Research, 25(2): 630–648. https://doi.org/10.1016/j.gr.2012.08.021 |
O'Brien, P. J., Rötzler, J., 2003. High-Pressure Granulites: Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 21(1): 3–20. https://doi.org/10.1046/j.1525-1314.2003.00420.x |
Perraki, M., Faryad, S. W., 2014. First Finding of Microdiamond, Coesite and other UHP Phases in Felsic Granulites in the Moldanubian Zone: Implications for Deep Subduction and a Revised Geodynamic Model for Variscan Orogeny in the Bohemian Massif. Lithos, 202/203: 157–166. https://doi.org/10.1016/j.lithos.2014.05.025 |
Powell, R., Guiraud, M., White, R. W., 2005. Truth and Beauty in Metamorphic Phase-Equilibria: Conjugate Variables and Phase Diagrams. The Canadian Mineralogist, 43(1): 21–33. https://doi.org/10.2113/gscanmin.43.1.21 |
Prince, C. I., Košler, J., Vance, D., et al., 2000. Comparison of Laser Ablation ICP-MS and Isotope Dilution REE Analyses—Implications for Sm-Nd Garnet Geochronology. Chemical Geology, 168(3/4): 255–274. https://doi.org/10.1016/s0009-2541(00)00203-5 |
Roberts, M. P., Finger, F., 1997. Do U-Pb Zircon Ages from Granulites Reflect Peak Metamorphic Conditions? Geology, 25(4): 319–322. |
Rötzler, J., Romer, R. L., 2001. P-T-t Evolution of Ultrahigh-Temperature Granulites from the Saxon Granulite Massif, Germany. Part Ⅰ: Petrology. Journal of Petrology, 42(11): 1995–2013. https://doi.org/10.1093/petrology/42.11.1995 |
Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2 |
Rubatto, D., 2017. Zircon: The Metamorphic Mineral. Reviews in Mineralogy and Geochemistry, 83(1): 261–295. https://doi.org/10.2138/rmg.2017.83.9 |
Schantl, P., Hauzenberger, C., Finger, F., et al., 2019. New Evidence for the Prograde and Retrograde PT-Path of High-Pressure Granulites, Moldanubian Zone, Lower Austria, by Zr-in-Rutile Thermometry and Garnet Diffusion Modelling. Lithos, 342/343: 420–439. https://doi.org/10.1016/j.lithos.2019.05.041 |
Schulmann, K., Kröner, A., Hegner, E., et al., 2005. Chronological Constraints on the Pre-Orogenic History, Burial and Exhumation of Deep-Seated Rocks along the Eastern Margin of the Variscan Orogen, Bohemian Massif, Czech Republic. American Journal of Science, 305(5): 407–448. https://doi.org/10.2475/ajs.305.5.407 |
Schulmann, K., Lexa, O., Štípská, P., et al., 2008. Vertical Extrusion and Horizontal Channel Flow of Orogenic Lower Crust: Key Exhumation Mechanisms in Large Hot Orogens? Journal of Metamorphic Geology, 26(2): 273–297. |
Schulmann, K., Konopásek, J., Janoušek, V., et al., 2009. An Andean Type Palaeozoic Convergence in the Bohemian Massif. Comptes Rendus Geoscience, 341(2/3): 266–286. https://doi.org/10.1016/j.crte.2008. 12.006 doi: 10.1016/j.crte.2008.12.006 |
Sizova, E., Gerya, T., Brown, M., 2012. Exhumation Mechanisms of Melt-Bearing Ultrahigh Pressure Crustal Rocks during Collision of Sponta-neously Moving Plates. Journal of Metamorphic Geology, 30(9): 927–955. https://doi.org/10.1111/j.1525-1314.2012.01004.x |
Sizova, E., Hauzenberger, C., Fritz, H., et al., 2019. Late Orogenic Heating of (Ultra)High Pressure Rocks: Slab Rollback vs. Slab Breakoff. Geosciences, 9(12): 499. https://doi.org/10.3390/geosciences9120499 |
Sláma, J., Košler, J., Pedersen, R. B., 2007. Behaviour of Zircon in High-Grade Metamorphic Rocks: Evidence from Hf Isotopes, Trace Elements and Textural Studies. Contributions to Mineralogy and Petrology, 154(3): 335–356. https://doi.org/10.1007/s00410-007-0196-6 |
Sláma, J., Dunkley, D. J., Kachlík, V., et al., 2008. Transition from Island-Arc to Passive Setting on the Continental Margin of Gondwana: U-Pb Zircon Dating of Neoproterozoic Metaconglomerates from the SE Margin of the Teplá-Barrandian Unit, Bohemian Massif. Tectonophysics, 461(1–4): 44–59. |
Smith, J. V., 1974. Feldspar Minerals. Volume 1. Crystal Structure and Physical Properties. Springer, Berlin. 625 |
Stern, C. R., Huang, W. L., Wyllie, P. J., 1975. Basalt-Andesite-Rhyolite-H2O: Crystallization Intervals with Excess H2O and H2O-Undersaturated Liquidus Surfaces to 35 Kolbras, with Implications for Magma Genesis. Earth and Planetary Science Letters, 28(2): 189–196. https://doi.org/10.1016/0012-821x(75)90226-5 |
Štípská, P., Powell, R., 2005. Does Ternary Feldspar Constrain the Metamor-phic Conditions of High-Grade Meta-Igneous Rocks? Evidence from Orthopyroxene Granulites, Bohemian Massif. Journal of Metamorphic Geology, 23(8): 627–647. https://doi.org/10.1111/j.1525-1314.2005. 00600.x doi: 10.1111/j.1525-1314.2005.00600.x |
Štípská, P., Powell, R., Racek, M., 2014. Rare Eclogite-Mafic Granulite in Felsic Granulite in Blanský Les: Precursor of Intermediate Granulite in the Bohemian Massif? Journal of Metamorphic Geology, 32(4): 325–345. |
Štípská, P., Powell, R., Hacker, B. R., et al., 2016. Uncoupled U/Pb and REE Response in Zircon during the Transformation of Eclogite to Mafic and Intermediate Granulite (Blanský Les, Bohemian Massif). Journal of Metamorphic Geology, 34(6): 551–572. https://doi.org/10.1111/jmg.12193 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. |
Tajčmanová, L., Konopásek, J., Schulmann, K., 2006. Thermal Evolution of the Orogenic Lower Crust during Exhumation within a Thickened Moldanubian Root of the Variscan Belt of Central Europe. Journal of Metamorphic Geology, 24(2): 119–134. https://doi.org/10.1111/j.1525-1314.2006.00629.x |
Taylor, R. J. M., Kirkland, C. L., Clark, C., 2016. Accessories after the Facts: Constraining the Timing, Duration and Conditions of High-Temperature Metamorphic Processes. Lithos, 264: 239–257. https://doi.org/10.1016/j.lithos.2016.09.004 |
Tu, C., Zhang, S. B., Su, K., et al., 2021. Zircon U-Pb Dating and Lu-Hf Isotope Results for Feidong Complex: Implications for Coherent Base-ment of the Yangtze Craton. Earth Science, 46(5): 1630–1643. https://doi.org/10.3799/dqkx.2020.169 (in Chinese with English Abstract) |
Usuki, T., Iizuka, Y., Hirajima, T., et al., 2017. Significance of Zr-in-Rutile Thermometry for Deducing the Decompression P-T Path of a Garnet-Clinopyroxene Granulite in the Moldanubian Zone of the Bohemian Massif. Journal of Petrology, 58(6): 1173–1198. https://doi.org/10.1093/petrology/egx050 |
Valley, J. W., 2003. Oxygen Isotopes in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 343–385. https://doi.org/10.2113/0530343 |
Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295–304. https://doi.org/10.1016/0012-821x(83)90211-x |
Wen, S. X., Nekvasil, H., 1994. SOLVALC: An Interactive Graphics Program Package for Calculating the Ternary Feldspar Solvus and for Two-Feldspar Geothermometry. Computers & Geosciences, 20(6): 1025–1040. https://doi.org/10.1016/0098-3004(94)90039-6 |
White, R. W., Powell, R., 2002. Melt Loss and the Preservation of Granulite Facies Mineral Assemblages. Journal of Metamorphic Geology, 20(7): 621–632. https://doi.org/10.1046/j.1525-1314.2002.00206_20_7.x |
White, R. W., Powell, R., Halpin, J. A., 2004. Spatially-Focussed Melt Formation in Aluminous Metapelites from Broken Hill, Australia. Journal of Metamorphic Geology, 22(9): 825–845. https://doi.org/10.1111/j.1525-1314.2004.00553.x |
Whitehouse, M. J., Platt, J. P., 2003. Dating High-Grade Metamorphism—Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 145(1): 61–74. https://doi.org/10.1007/s00410-002-0432-z |
Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371 |
Wu, Y. B., Zheng, Y. -F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554–1569. https://doi.org/10.1007/bf03184122 |
Wu, Y. B., Zheng, Y. -F., Zhao, Z. F., et al., 2006. U-Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen. Geochimica et Cosmochimica Acta, 70(14): 3743–3761. https://doi.org/10.1016/j.gca.2006.05.011 |
Wu, Y. B., Gao, S., Zhang, H. F., et al., 2009. U-Pb Age, Trace-Element, and Hf-Isotope Compositions of Zircon in a Quartz Vein from Eclogite in the Western Dabie Mountains: Constraints on Fluid Flow during Early Exhumation of Ultrahigh-Pressure Rocks. American Mineralogist, 94(2/3): 303–312. https://doi.org/10.2138/am.2009.3042 |
Xia, Q. -X., Zheng, Y. -F., Yuan, H. L., et al., 2009. Contrasting Lu-Hf and U-Th-Pb Isotope Systematics between Metamorphic Growth and Recrystallization of Zircon from Eclogite-Facies Metagranites in the Dabie Orogen, China. Lithos, 112(3/4): 477–496. https://doi.org/10.1016/j.lithos.2009.04.015 |
Xiong, Z. W., Xu, H. J., Wang, P., et al., 2021. Zircon U-Pb Age and Hf Isotope of Paleoproterozoic Pelitic Granulites at Weihai, Sulu Orogen: Implications for Tectonic Affinity. Earth Science, 46(2): 504–526. https://doi.org/10.3799/dqkx.2020.036 (in Chinese with English Abstract) |
Zheng, Y. -F., 2021a. Metamorphism in Subduction Zones. In: Alderton, D., Elias, S. A., eds., Encyclopedia of Geology, 2nd Edition. Academic Press. 2: 612–622 |
Zheng, Y. -F., 2021b. Exhumation of Ultrahigh-Pressure Metamorphic Terranes. In: Alderton, D., Elias, S. A., eds., Encyclopedia of Geology, 2nd Edition. Academic Press. 2: 868–878 |
Zheng, Y. -F., Chen, R. -X., 2017. Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145: 46–73. https://doi.org/10.1016/j.jseaes.2017.03.009 |
Zheng, Y. -F., Chen, Y. -X., Chen, R. -X., et al., 2022. Tectonic Evolution of Convergent Plate Margins and Its Geological Effects. Science China Earth Sciences, 65(7): 1247–1276. https://doi.org/10.1007/s11430-022-9947-6 |
Zheng, Y. -F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1/2): 105–161. https://doi.org/10.1016/s0012-8252(02)00133-2 |
Zheng, Y. -F., Hermann, J., 2014. Geochemistry of Continental Subduction-Zone Fluids. Earth, Planets and Space, 66(1): 93. |
Zheng, Y. -F., Zhao, Z. F., Chen, Y. X., 2013. Continental Subduction Channel Processes: Plate Interface Interaction during Continental Collision. Chinese Science Bulletin, 58(35): 4371–4377. https://doi.org/10.1007/s11434-013-6066-x |