Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 5
Oct 2022
Turn off MathJax
Article Contents
Zhen Guo, Mei Xue, Adnan Aydin, Yu Huang. Locating the Source Regions of the Single and Double- Frequency Microseisms to Investigate the Source Effects on HVSR in Site Effect Analysis. Journal of Earth Science, 2022, 33(5): 1219-1232. doi: 10.1007/s12583-021-1501-4
Citation: Zhen Guo, Mei Xue, Adnan Aydin, Yu Huang. Locating the Source Regions of the Single and Double- Frequency Microseisms to Investigate the Source Effects on HVSR in Site Effect Analysis. Journal of Earth Science, 2022, 33(5): 1219-1232. doi: 10.1007/s12583-021-1501-4

Locating the Source Regions of the Single and Double- Frequency Microseisms to Investigate the Source Effects on HVSR in Site Effect Analysis

doi: 10.1007/s12583-021-1501-4
More Information
  • Corresponding author: Mei Xue, meixue@tongji.edu.cn
  • Received Date: 19 Mar 2021
  • Accepted Date: 22 Jun 2021
  • Available Online: 19 Oct 2022
  • Issue Publish Date: 30 Oct 2022
  • Evaluating the seismic site effect by the ambient noise based horizontal-to-vertical spectral ratio (HVSR) method is strongly affected by the spatial and temporal variations of the ambient noise sources. Therefore, it is necessary to locate the source regions of ambient noise and investigate the relationships between the source energy and HVSR values at the predominant frequency (HVSRf0) of the site. The generation mechanisms of the single- and double-frequency microseisms (SFMs, 0.05-0.085 Hz and DFMs, 0.1-0.5 Hz) in ambient noise are better understood than the noise in other frequency bands and they are dominantly composed of fundamental Rayleigh (Rg) waves. With this advantage, the recordings of SFMs and DFMs at 30 stations in the east coast region of the United States are used to demonstrate a study on locating their source regions with reasonable certainty and constructing the functional relationship between the HVSRf0 and the source energy of SFMs and DFMs. The recordings are processed in four sub-frequency bands (Fs) of SF and DF bands and a polarization analysis is carried out to select the ellipsoids approximating the particle motions of Rg waves. Then the probability density functions of the back azimuths of the ellipsoids' semi-major axes are computed for each F and station, and are projected on the ocean to determine their possible source regions. These regions are further constrained by (1) the correlation coefficients between the SFMs and the WAVEWATCH Ⅲ (WWⅢ) hindcasts of ocean wave spectra in the SF band, or between the DFMs and the modeled DF energy on ocean surface in the selected time windows in the DF band, (2) the energy contribution defined by (ⅰ) the average WWⅢ ocean wave energy and the ocean bottom topographical gradient in the SF band, or (ⅱ) the average modeled DF energy on ocean surface and a frequency and water depth dependent coefficient measuring the conversion efficiency of DF energy from water to solid earth in the DF band, and (3) the percentile retained energy of Rg waves in both the SF and DF bands. Results of source regions reveal that (1) the SFMs recorded in eastern US result from the interactions of low frequency (0.05-0.085 Hz) ocean waves with the continental slope and shelf of western North Atlantic Ocean; (2) the source regions for long- (0.1-0.2 Hz) period DFMs are located in the deep ocean close to the continental slope; and (3) the short- (0.2–0.5 Hz) period DFMs are generated in the continental shelf. Finally, the correlation analyses between the simulated source energy and the HVSRf0values at the stations whose f0s fall in DF band are carried out revealing significant source effect on thick sediments at low frequencies.

     

  • loading
  • Ardhuin, F., 2018. Large-Scale Forces under Surface Gravity Waves at a Wavy Bottom: A Mechanism for the Generation of Primary Microseisms. Geophysical Research Letters, 45(16): 8173–8181. https://doi.org/10.1029/2018gl078855
    Ardhuin, F., Balanche, A., Stutzmann, E., et al., 2012. From Seismic Noise to Ocean Wave Parameters: General Methods and Validation. Journal of Geophysical Research: Oceans, 117(C5): C05002. https://doi.org/10.1029/2011jc007449
    Ardhuin, F., Gille, S. T., Menemenlis, D., et al., 2017. Small-Scale Open Ocean Currents Have Large Effects on Wind Wave Heights. Journal of Geophysical Research: Oceans, 122(6): 4500–4517. https://doi.org/10.1002/2016jc012413
    Ardhuin, F., Stutzmann, E., Schimmel, M., et al., 2011. Ocean Wave Sources of Seismic Noise. Journal of Geophysical Research Atmospheres, 116(C9): C09004. https://doi.org/10.1029/2011jc006952
    Babcock, J. M., Kirkendall, B. A., Orcutt, J. A., 1994. Relationships between Ocean Bottom Noise and the Environment. Bulletin-Seismological Society of America, 84(6): 1991–2007. https://doi.org/10.1007/bf00807992
    Bard, P. Y., Acerra, C., Aguacil, G., et al., 2008. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation. Bulletin of Earthquake Engineering, 6(4): 1–2
    Bard, P. -Y., 1999. Microtremor Measurements: A Tool for Site Effect Estimation? Proc. 2nd Int. Symp. on the Effects of Surface Geology on Seismic Motion, Yokohama, 1–3 December 1998, 1251–1279
    Bendat, J. S., Piersol, A. G., 1971. Random Data: Analysis and Measurement Procedures, Wiley-Interscience, New York
    Benhama, A., Cliet, C., Dubesset, M., 1988. Study and Applications of Spatial Directional Filtering in Three-Component Recordings1. Geophysical Prospecting, 36(6): 591–613. https://doi.org/10.1111/j.1365-2478.1988.tb02182.x
    Bodin, P., Smith, K., Horton, S., et al., 2001. Microtremor Observations of Deep Sediment Resonance in Metropolitan Memphis, Tennessee. Engineering Geology, 62(1/2/3): 159–168. https://doi.org/10.1016/s0013-7952(01)00058-8
    Bonnefoy-Claudet, S., Kohler, A., Cornou, C., et al., 2008. Effects of Love Waves on Microtremor H/V Ratio. Bulletin of the Seismological Society of America, 98(1): 288–300. https://doi.org/10.1785/0120070063
    Bromirski, P. D., 2002. The Near-Coastal Microseism Spectrum: Spatial and Temporal Wave Climate Relationships. Journal of Geophysical Research Atmospheres, 107(B8): 2166. https://doi.org/10.1029/2001jb000265
    Bromirski, P. D., Duennebier, F. K., Stephen, R. A., 2005. Mid-Ocean Microseisms. Geochemistry, Geophysics, Geosystems, 6(4): Q04009. https://doi.org/10.1029/2004gc000768
    Bromirski, P. D., Stephen, R. A., Gerstoft, P., 2013. Are Deep-Ocean-Generated Surface-Wave Microseisms Observed on Land? Journal of Geophysical Research: Solid Earth, 118(7): 3610–3629. https://doi.org/10.1002/jgrb.50268
    Cessaro, R. K., 1994. Sources of Primary and Secondary Microseisms. Bulletin-Seismological Society of America, 84(1): 142–148 doi: 10.1785/BSSA0840010142
    Dalton, C. A., Ekström, G., Dziewoński, A. M., 2008. The Global Attenuation Structure of the Upper Mantle. Journal of Geophysical Research Atmospheres, 113(B9): B09303. https://doi.org/10.1029/2007jb005429
    Dorman, L. M., Schreiner, A. E., Bibee, L. D., et al., 1993. Deep-Water Sea-Floor Array Observations of Seismo-Acoustic Noise in the Eastern Pacific and Comparisons with Wind and Swell. Natural Physical Sources of Underwater Sound. Springer Netherlands, Dordrecht, 165–174. https://doi.org/10.1007/978-94-011-1626-8_14
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7
    Ebeling, C. W., 2012. Inferring Ocean Storm Characteristics from Ambient Seismic Noise. A Historical Perspective. Advances in Geophysics, 53: 1–33. https://doi.org/10.1016/b978-0-12-380938-4.00001-x
    Essen, H. H., Krüger, F., Dahm, T., et al., 2003. On the Generation of Secondary Microseisms Observed in Northern and Central Europe. Journal of Geophysical Research: Solid Earth, 108(B10): 2506. https://doi.org/10.1029/2002jb002338
    Friedrich, A., Krüger, F., Klinge, K., 1998. Ocean-Generated Microseismic Noise Located with the Gräfenberg Array. J. Seismol., 2: 47–64. https://doi.org/10.1023/a:1009788904007
    Gal, M., Reading, A. M., Ellingsen, S. P., et al., 2017. Full Wavefield Decomposition of High-Frequency Secondary Microseisms Reveals Distinct Arrival Azimuths for Rayleigh and Love Waves. Journal of Geophysical Research: Solid Earth, 122(6): 4660–4675. https://doi.org/10.1002/2017jb014141
    Gerstoft, P., Bromirski, P. D., 2016. "Weather Bomb" Induced Seismic Signals. Science, 353(6302): 869–870. https://doi.org/10.1126/science.aag1616
    Gerstoft, P., Tanimoto, T., 2007. A Year of Microseisms in Southern California. Geophysical Research Letters, 34(20): L20304. https://doi.org/10.1029/2007gl031091
    Gualtieri, L., Stutzmann, E., Capdeville, Y., et al., 2013. Modelling Secondary Microseismic Noise by Normal Mode Summation. Geophysical Journal International, 193(3): 1732–1745. https://doi.org/10.1093/gji/ggt090
    Guo, Z., Aydin, A., 2015. Double-Frequency Microseisms in Ambient Noise Recorded in Mississippi. Bulletin of the Seismological Society of America, 105(3): 1691–1710. https://doi.org/10.1785/0120140299
    Guo, Z., Aydin, A., 2016. A Modified HVSR Method to Evaluate Site Effect in Northern Mississippi Considering Ocean Wave Climate. Engineering Geology, 200: 104–113. https://doi.org/10.1016/j.enggeo.2015.12.012
    Guo, Z., Aydin, A., Huang, Y., et al., 2021. Polarization Characteristics of Rayleigh Waves to Improve Seismic Site Effects Analysis by HVSR Method. Engineering Geology, 292: 106274. https://doi.org/10.101610.1016/j.enggeo.2021.106274
    Guo, Z., Aydin, A., Kuszmaul, J. S., 2014. Microtremor Recordings in Northern Mississippi. Engineering Geology, 179: 146–157. https://doi.org/10.1016/j.enggeo.2014.07.001
    Guo, Z., Xue, M., Aydin, A., et al., 2020. Exploring Source Regions of Single- and Double-Frequency Microseisms Recorded in Eastern North American Margin (ENAM) by Cross-Correlation. Geophysical Journal International, 220(2): 1352–1367. https://doi.org/10.1093/gji/ggz470
    Hasselmann, K., 1963. A Statistical Analysis of the Generation of Microseisms. Reviews of Geophysics, 1(2): 177–210. https://doi.org/10.1029/rg001i002p00177
    Juretzek, C., Hadziioannou, C., 2016. Where do Ocean Microseisms Come from? A Study of Love-to-Rayleigh Wave Ratios. Journal of Geophysical Research: Solid Earth, 121(9): 6741–6756. https://doi.org/10.1002/2016jb013017
    Jurkevics, A., 1988. Polarization Analysis of Three Component Array Data. Bull. Seism. Soc. Am., 78: 1725–1743
    Kawase, H., Nagashima, F., Nakano, K., et al., 2019. Direct Evaluation of S-Wave Amplification Factors from Microtremor H/V Ratios: Double Empirical Corrections to "Nakamura" Method. Soil Dynamics and Earthquake Engineering, 126: 105067. https://doi.org/10.1016/j.soildyn.2018.01.049
    Kedar, S., Longuet-Higgins, M., Webb, F., et al., 2008. The Origin of Deep Ocean Microseisms in the North Atlantic Ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2091): 777–793. https://doi.org/10.1098/rspa.2007.0277
    Kibblewhite, A. C., Ewans, K. C., 1985. Wave-Wave Interactions, Microseisms, and Infrasonic Ambient Noise in the Ocean. The Journal of the Acoustical Society of America, 78(3): 981–994. https://doi.org/10.1121/1.392931
    Kibblewhite, A. C., Wu, C. Y., 1991. The Theoretical Description of Wave-Wave Interactions as a Noise Source in the Ocean. The Journal of the Acoustical Society of America, 89(5): 2241–2252. https://doi.org/10.1121/1.400970
    Konno, K., Ohmachi, T., 1998. Ground-Motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor. Bulletin of the Seismological Society of America, 88(1): 228–241. https://doi.org/10.1029/98jb00054
    Koper, K. D., Burlacu, R., 2015. The Fine Structure of Double-Frequency Microseisms Recorded by Seismometers in North America. Journal of Geophysical Research: Solid Earth, 120(3): 1677–1691. https://doi.org/10.1002/2014jb011820
    Koper, K. D., Hawley, V. L., 2010. Frequency Dependent Polarization Analysis of Ambient Seismic Noise Recorded at a Broadband Seismometer in the Central United States. Earthquake Science, 23(5): 439–447. https://doi.org/10.1007/s11589-010-0743-5
    Kudryavtsev, V., Yurovskaya, M., Chapron, B., et al., 2017. Sun Glitter Imagery of Surface Waves. Part 2: Waves Transformation on Ocean Currents. Journal of Geophysical Research: Oceans, 122(2): 1384–1399. https://doi.org/10.1002/2016jc012426
    Leckler, F., Ardhuin, F., Peureux, C., et al., 2015. Analysis and Interpretation of Frequency-Wavenumber Spectra of Young Wind Waves. Journal of Physical Oceanography, 45(10): 2484–2496. https://doi.org/10.1175/jpo-d-14-0237.1
    Li, H. Y., Liu, X., Li, X. F., et al., 2011. Rayleigh Wave Group Velocity Distribution in Ningxia. Journal of Earth Science, 22(1): 117–123. https://doi.org/10.1007/s12583-011-0162-0
    Lin, F. C., Moschetti, M. P., Ritzwoller, M. H., 2008. Surface Wave Tomography of the Western United States from Ambient Seismic Noise: Rayleigh and Love Wave Phase Velocity Maps. Geophysical Journal International, 173(1): 281–298. https://doi.org/10.1111/j.1365-246x.2008.03720.x
    Liu, Q. X., Koper, K. D., Burlacu, R., et al., 2016. Source Locations of Teleseismic P, SV, and SH Waves Observed in Microseisms Recorded by a Large Aperture Seismic Array in China. Earth and Planetary Science Letters, 449: 39–47. https://doi.org/10.1016/j.epsl.2016.05.035
    Longuet-Higgins, M. S., 1950. A Theory for the Generation of Microseisms, Philos. Trans. R. Soc. London, 243: 1-35 doi: 10.1098/rsta.1950.0012
    Lunedei, E., Albarello, D., 2010. Theoretical HVSR Curves from Full Wavefield Modelling of Ambient Vibrations in a Weakly Dissipative Layered Earth. Geophysical Journal International, 181(2): 1093–1108. https://doi.org/10.1111/j.1365-246X.2010.04560.x
    Masters, G., Woodhouse, J. H., Gilbert, F., 2011. Mineos v1.0.2 [software]. Computational Infrastructure for Geodynamics. https://geodynamics.org/cig/software/mineos/
    Matsuzawa, T., Obara, K., Maeda, T., et al., 2012. Love- and Rayleigh-Wave Microseisms Excited by Migrating Ocean Swells in the North Atlantic Detected in Japan and Germany. Bulletin of the Seismological Society of America, 102(4): 1864–1871. https://doi.org/10.1785/0120110269
    McNamara, D. E., 2004. Ambient Noise Levels in the Continental United States. Bulletin of the Seismological Society of America, 94(4): 1517–1527. https://doi.org/10.1785/012003001
    Moro, G. D., 2014. Surface Wave Analysis for near Surface Applications. Elsevier, Oxford
    Nakamura, Y., 1989. Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), 30(1): 25–33.
    Nishida, K., Kawakatsu, H., Fukao, Y., et al., 2008. Background Love and Rayleigh Waves Simultaneously Generated at the Pacific Ocean Floors. Geophysical Research Letters, 35(16): L16307. https://doi.org/10.1029/2008gl034753
    Nishida, K., Takagi, R., 2016. Teleseismic S Wave Microseisms. Science, 353(6302): 919–921. https://doi.org/10.1126/science.aaf7573
    Peterson, J., 1993. Observation and Modeling of Seismic Background Noise, U. S. Department of Interior Geological Survey, Open-File Rept. 93–322, Albuquerque, New Mexico
    Qin, W. B., Zhang, S. X., Li, M. K., et al., 2018. Distribution of Intra-Crustal Low Velocity Zones beneath Yunnan from Seismic Ambient Noise Tomography. Journal of Earth Science, 29(6): 1409–1418. https://doi.org/10.1007/s12583-017-0815-8
    Rawlinson, N., Hauser, J., Sambridge, M., 2008. Seismic Ray Tracing and Wavefront Tracking in Laterally Heterogeneous Media. Advances in Geophysics, 49: 203–273. https://doi.org/10.1016/s0065-2687(07)49003-3
    Rhie, J., Romanowicz, B., 2004. Excitation of Earth's Continuous Free Oscillations by Atmosphere-Ocean-Seafloor Coupling. Nature, 431(7008): 552–556. https://doi.org/10.1038/nature02942
    Rybin, A. K., Bataleva, E. A., Nepeina, K. S., et al., 2020. Definition of the Seismic Field of the Underground Sources in the Ambient Seismic Noise in the Tien Shan Region Using a Three-Component Gradient System. Journal of Earth Science, 31(5): 988–992. https://doi.org/10.1007/s12583-020-1327-5
    Sánchez-Sesma, F. J., Rodríguez, M., Iturrarán-Viveros, U., et al., 2011. A Theory for Microtremor H/V Spectral Ratio: Application for a Layered Medium. Geophysical Journal International, 186(1): 221–225. https://doi.org/10.1111/j.1365-246x.2011.05064.x
    Schimmel, M., Stutzmann, E., Ardhuin, F., et al., 2011. Polarized Earth's Ambient Microseismic Noise. Geochemistry, Geophysics, Geosystems, 12(7): Q07014. https://doi.org/10.1029/2011gc003661
    Seht, M. I. -v., Wohlenberg, J., 1999. Microtremor Measurements Used to Map Thickness of Soft Sediments. Bulletin of the Seismological Society of America, 89(1): 250–259. https://doi.org/10.1785/bssa089 0010250 doi: 10.1785/bssa0890010250
    Seo, K., Samano, T., Yamanaka, H., et al., 1990. Comparison of Ground Vibration Characteristics among Several Districts Mainly with Microtremor Measurement, Proc. of 8th Japan Earthquake Engineering Symp., Tokyo, 12–14 December 1990, 685–690
    Stephen, R. A., Spiess, F. N., Collins, J. A., et al., 2003. Ocean Seismic Network Pilot Experiment. Geochemistry, Geophysics, Geosystems, 4(10): 1092. https://doi.org/10.1029/2002gc000485
    Stutzmann, E., Ardhuin, F., Schimmel, M., et al., 2012. Modelling Long-Term Seismic Noise in Various Environments. Geophysical Journal International, 191(2): 707–722. https://doi.org/10.1111/j.1365-246x.2012.05638.x
    Tan, J., Li, H. Y., Li, X. F., et al., 2015. Radial Anisotropy in the Crust beneath the Northeastern Tibetan Plateau from Ambient Noise Tomography. Journal of Earth Science, 26(6): 864–871. https://doi.org/10.1007/s12583-015-0543-x
    Tanimoto, T., 2010. Equivalent Forces for Colliding Ocean Waves. Geophysical Journal International, 181(1): 468–478. https://doi.org/10.1111/j.1365-246x.2010.04505.x
    Tanimoto, T., Hadziioannou, C., Igel, H., et al., 2015. Estimate of Rayleigh-to-Love Wave Ratio in the Secondary Microseism by Colocated Ring Laser and Seismograph. Geophysical Research Letters, 42(8): 2650–2655. https://doi.org/10.1002/2015gl063637
    Tanimoto, T., Ishimaru, S., Alvizuri, C., 2006. Seasonality in Particle Motion of Microseisms. Geophysical Journal International, 166(1): 253–266. https://doi.org/10.1111/j.1365-246x.2006.02931.x
    Theodulidis, N., Bard, P. Y., Archuleta, R., et al., 1996. Horizontal-to-Vertical Spectral Ratio and Geological Conditions: The Case of Garner Valley Downhole Array in Southern California. Bulletin of the Seismological Society of America, 86(2): 306–319 doi: 10.1785/BSSA0860020306
    Wang, K., Luo, Y. H., Zhao, K. F., et al., 2014. Body Waves Revealed by Spatial Stacking on Long-Term Cross-Correlation of Ambient Noise. Journal of Earth Science, 25(6): 977–984. https://doi.org/10.1007/s12583-014-0495-6
    Webb, S. C., 1998. Broadband Seismology and Noise under the Ocean. Reviews of Geophysics, 36(1): 105–142.https://doi.org/10.1029/97rg 02287 doi: 10.1029/97rg02287
    Williams, J., 1962. Oceanography, Little, Brown, Boston and Co., Boston
    Wu, L. H., Wang, D., Lei, Z. G., et al., 2020. Campus Vibration in Nanwangshan Campus, China University of Geosciences at Wuhan Monitored by Short-Period Seismometers. Journal of Earth Science, 31(5): 950–956. https://doi.org/10.1007/s12583-020-1332-8
    Xu, X. M., Li, H. Y., Gong, M., et al., 2011. Three-Dimensional S-Wave Velocity Structure in Eastern Tibet from Ambient Noise Rayleigh and Love Wave Tomography. Journal of Earth Science, 22(2): 195–204. https://doi.org/10.1007/s12583-011-0172-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(175) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return