Citation: | Márton Veress, Zoltán Unger, Szilárd Vetési-Foith. Anthropogenic Pseudokarstic Depressions on Mount Bocskor (Bakony Region, Hungary). Journal of Earth Science, 2023, 34(1): 214-231. doi: 10.1007/s12583-021-1506-z |
Surface forms above the mine (Ármin mine) of Mount Bocskor (Southern Bakony, Hungary) were examined. We made contour maps, plan maps, morphological maps and atectonic grike (cave) maps of some of the forms and their surroundings. We examined the distribution of the depth, length, elongation ratio in case of some depressions, the relation between the depth and the diameter of some depressions, the relationship between depression group directions and mine cut directions, the standard deviation of the direction differences of depression groups and of their depressions. The forms of the mountain related to surface mining can be separated to open and closed. The former are trenches and stairs, the latter are circular, elongated, and complex depressions. The formation of these forms can be related to the balancing movements of the vault over the mountain's mine. At thin vault, stairs develop by collapses, while at the atectonic fissures of thicker vault, trenches and depressions are formed at the surface. In areas bordered by sinking (subsidence through) and downwardly cohesive faults, depression groups of diverse features are arranged in the marginal bands. Elongated depressions are formed at atectonic blocks bounded by dispersing faults in non-banded distribution. Where there is a superficial deposit, atectonic fissures can also be inherited directly by collapse to the surface and form depressions. They can also form indirectly over atectonic fissures by compaction, subsequent collapse and/or suffosion of the superficial deposit. The results of the study make it possible to analyse the material loss due to mining on the vault if the atectonic structures of the vault are partly or completely covered by superficial deposit.
Allgaier, F. K., 1997. Environmental Effect of Mining. In: Marcus, J. J., ed., Mining Environmental Handbook: Effects of Mining on the Environment and American Environmental Controls on Mining. World Scientific Publishing, San Mateo. 132–189. https://doi.org/10.1142/9781860943768_0005 |
Andrejchuk, V., 2002. Collapse above the World's Largest Potash Mine (Ural, Russia). International Journal of Speleology, 31(1/4): 137–158. https://doi.org/10.5038/1827-806x.31.1.8 |
Bakonyi Erőmű Rt Bányászati Igazgatóság, 2004. Bakony Power Plant Directorate of Mining, Map of Mine Cut, Bányavágat Térképe |
Bárány, K., Márton, . K., Nelis, et al., 2015. Néhány További Adat a Hazai Karszt Dolinák Aszim-Metriájának Kialakulásához Some Additional Data on Asymmetry in the Formation of Hungarian Karst Dolines. Karsztfejlődés, XX: 125–144. https://doi.org/17701/15.125-144 (in Hungary) |
Bull, P. A., 2011. Boulder Chokes and Doline Relationships. Proc. 7th. Int. Cong. Speleol., 93–96 |
Chen, J. P., Li, K., Chang, K. J., et al., 2015. Open-Pit Mining Geomorphic Feature Characterisation. International Journal of Applied Earth Observation and Geoinformation, 42: 76–86. https://doi.org/10.1016/j.jag.2015.05.001 |
Chen, J., 1988. Karst Collapse in Cities and Mining Areas, China. Environmental Geology and Water Sciences, 12(1): 29–35. https://doi.org/10.1007/BF02574824 |
Császár, G., ed., 1996. Kréta, Magyar Állami Földtani Intézet, Budapest. 164. |
Dontala, S. P., Byragi T. R., Vadde, R., et al., 2015. Environmental Aspects and Impacts Its Mitigation Measures of Corporate Coal Mining. Procedia Earth and Planetary Science, 11: 2–7. https://doi.org/10.1016/j.proeps.2015.06.002 |
Dulias, R., 2016. The Impact of Mining on the Landscape: A Study of the Upper Silesian Coal Basin in Poland. Springer, Berlin, Heidelberg, New York. 209. https://doi.org/10.1007/978-3-319-29541-1 |
Erdősi, F., 1987. A Társadalom Hatása a Felszínre, a Vizekre és az Éghajlatra a Mecsek Tágabb Környezetében (Society's Effect to Surface, Surface Waters and Climate). Budapest, Akadémia Kiadó. 228 (in Hungarian) |
Ford, D. C., Williams, P. W., 2007. Karst Hydrogeology and Geomorphology. John Wiley & Sons, Chichester. 561 |
Halliday, W. R., 2004. Piping Caves and Badlands Pseudokarst. In: Gunn, J., ed., Encyclopedia of Caves and Karst Science. Fitzroy Dearban, New York. 589–593 |
Horányi, L., Kolozsvári, 1989. Geodézia és Bányaméréstan: Bányaméréstan Ⅱ (Geodesy and Mining Metrology: Mining Metrology Ⅱ), Tankönyvkiadó, Budapest. 267 (in Hungarian) |
Johnson, K. S., 1987. Development of the Wink Sink in West Texas due to Salt Dissolution and Collapse. In: Beck, B. F., Wilson, W. L., eds., Karst Hydrogeology: Engineeering and Environmental Implication. Balkema, Brookfield, Vermont. 127–136 |
Johnson, K. S., Collins, E. W., Seni, S. J., 2003. Sinkholes and Land Subsidence Owing to Salt Dissolution near Wink, Texas, and other Sites in Western Texas and New Mexico. Oklahoma Geological Survey Circular, 109: 183–195 |
Keller, E. A., Pinter, N., 1995. Active Tectonics: Earthquakes, Uplift, and Landscape. Prentice Hall, Englewood Cliffs. 338 |
Kompóty, J., 1908. Az Aknaszlatinai Kunigunda-Bánya Beomlásai (Collapses of the Kunigunda Mine by Aknaszlatina). Bányászati és Kohászati Lapok, 46: 390–392 (in Hungarian) |
Kozma, K., 1991. Az Ajkai Szénbányászat Története (History of Coal Mining in Ajka). Veszprémi Szénbányák, Veszprém. 531 (in Hungarian) |
Lu, Y. R., Cooper, A. H., 1997. Gypsum Karst Geohazards in China. In: Beck, B. F., Stephenson, J. B., eds., Engineering Geology and Hydrogeology of Karst Terrains. Balkema, Rotterdam. 117–126 |
Martos, F., 1956. A Külszíni Süllyedés Számításának Egy Közelítő Módszere (An Approximate Method for Calculating Surface Subsidence). Bányászati Kutatóintézet Közleményei, 1(1): 3–12 (in Hungarian) |
Martos, F., 1958. A Külszín Elmozdulását Befolyásoló Tényezők (Factors Influencing Surface Displacement). Bányászati Lapok, 6: 367–372 (in Hungarian) |
Móga, J., Lippmann, L., Tombor, E., et al., 2015. Az Aknaszlatinai Sókarszt Felszínalaktani Vizsgálata. Karsztfejlődés, XX: 185–283 (in Hungarian) |
Móga, J., Szabó, J., Gönczy, S., et al., 2017. Az Aknaszlatinai-Sókarszt Dinamikusan Változó Felszínformáinak Vizsgálata Terepi és GIS Módsze-Rekkel the Study of the Dinamically Changing Landforms of Aknaszlatina Salt Karst by Field and GIS Methods. Karsztfejlődés, XXⅡ: 139–161 (in Hungarian) |
Monjezi, M., Shahriar, K., Dehghani, H., et al., 2009. Environmental Impact Assessment of Open Pit Mining in Iran. Environmental Geology, 58(1): 205–216. https://doi.org/10.1007/s00254-008-1509-4 |
Mossa, J., James, L. A., 2013. Impacts of Mining on Geomorphic Systems. In: Shroder, J., James, L. A., Harden, C. P., et al., eds., Treatise on Geomorphology, Vol. 13, Geomorphology of Human Disturbances, Climate Change, and Natural Hazards. Academic Press, San Diego. 74–95 |
Newton, J. G., 1987. Development of Sinkholes Resulting from Man's Activities in the Eastern United States. US Geological Survey Circular 968, Washington DC. 54 |
Oggeri, C., Fenoglio, T. D., Godio, A., et al., 2019. Overburden Management in Open Pits: Options and Limits in Large Limestone Quarries. International Journal of Mining Science and Technology, 29(2): 217–228. https://doi.org/10.1016/j.ijmst.2018.06.011 |
Quinlan, J. F., Smith, A. R., Johnson, K. S., 1986. Gypsum Karst and Salt Karst of the United States of America. Le Grotte d'Italia, 4(13): 73–92 |
Rico, M., Benito, G., Díez-Herrero, A., 2008. Floods from Tailings Dam Failures. Journal of Hazardous Materials, 154(1/2/3): 79–87. https://doi.org/10.1016/j.jhazmat.2007.09.110 |
Rösner, T., van Schalkwyk, A., 2000. The Environmental Impact of Gold Mine Tailings Footprints in the Johannesburg Region, South Africa. Bulletin of Engineering Geology and the Environment, 59(2): 137–148. https://doi.org/10.1007/s100640000037 |
Singh, K. B., Dhar, B. B., 1997. Sinkhole Subsidence Due to Mining. Geotechnical & Geological Engineering, 15(4): 327–341. https://doi.org/10.1007/BF00880712 |
Somosváry, Z., 1989. Geomechanika (Geomechanics). Tankönyvkiadó, Budapest. 301 (in Hungarian) |
Spooner, J., 1971. Mufulira Interim Report. Mining Journal, 276: 122 |
Sütő, L., 2001. A Felszín Alatti Bányászat Domborzatra Gyakorolt Hatásai a Kelet-Borsodi-Szénmedencében (Impacts of Subsurface Mining on Topography in the East Borsod Coal Basin). Földrajzi Konferencia, Szeged. 20 (in Hungarian) |
Sütő, L., Homoki, E., Németh, G., 2009. Felszínsüllyedési és Bolygatottsági Térkép Készítése a Kelet-Borsodi-Szénmedencében (Construction of a Subsidence and Disturbance Map in the East Borsod COAL Basin). Geoinformatika és Domborzatmodellezés, HunDEM 2009 és GeoInfo Konferencia és Kerekasztal Válogatott Tanulmánya. 7 (in Hungarian) |
Sweeting, M. M., 1973. Karst landforms. Columbia University Press, New York. 362 |
Vadász, E., 1955. Elemző Földtan (Analytical Geology). Akadémia Kiadó, Budapest. 516 (in Hungarian) |
Veress, M., 2016. Covered Karst. Springer, Berlin, Heidelberg, New York. 536. https://doi.org/10.1007/978-94-017-7518-2 |
Vetési-Foith, S., 2019. Az Utánsüllyedéses Dolinák Képződését Befolyásoló Paraméterek Kapcsolatrendszerének Vizsgálata Modell Kísérlettel. (Analysing the Relations of the Parameters that Influences the Subsidence Dolines Formation Using Model Experiments). Karsztfejlődés, XXIV: 61–78. https://doi.org/10.17701/19.61-78 (in Hungarian) |
Vetési-Foith, S., Kiss, Z., Gárdonyi, I., 2017. A Mecseki Karszt Oldódásos-és Utánsüllyedéses Töbreinek Morfometriai Elemzése (Morphometric Analysis of Dissolved- and Subsidence Dolines in the Mecsek Karst). Karsztfejődés, XXⅡ: 119–138. https://doi.org/10.17701/17.119-138 (in Hungarian) |
Walters, F., 1978. Land Subsidence in Central Kansas Related to Salt Dissolution, Kansas by Robert. Bulletin Kansas Geological Survey, 214: 74–75 |
Waltham, T., Bell, F., Culshaw, M., 2005. Sinkholes and Subsidence. Springer, Berlin. 382 |
Wassmann, T. H., 1980. Mining Subsidence in Twente, East Netherlands. Geol. Mijnbouw, 59: 225–231 |
White, W. B., 1988. Geomorphology and Hydrology of Karst Terrains. Oxford University Press, New York. 464 |
Williams, P. W., 2004. Dolines. In: Gunn, J., ed., Encyclopedia of Caves and Karst Science. Fitzroy Dearborn, New York, London. 304–310 |
Xu, W. G., Zhao, G. R., 1988. Mechanism and Prevention of Karst Collapse near Mine Areas in China. Environmental Geology and Water Sciences, 12(1): 37–42. https://doi.org/10.1007/BF02574825 |
Yuan, D., 1987. Environmental and Engineering Problems of Karst in China. In: Beck, B. F., Wilson, W. L., eds., Karst Hydrogeology: Engineering and Environmental Applikations. Balkema, Rotterdam. 1–11 |