Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 1
Feb 2023
Turn off MathJax
Article Contents
Márton Veress, Zoltán Unger, Szilárd Vetési-Foith. Anthropogenic Pseudokarstic Depressions on Mount Bocskor (Bakony Region, Hungary). Journal of Earth Science, 2023, 34(1): 214-231. doi: 10.1007/s12583-021-1506-z
Citation: Márton Veress, Zoltán Unger, Szilárd Vetési-Foith. Anthropogenic Pseudokarstic Depressions on Mount Bocskor (Bakony Region, Hungary). Journal of Earth Science, 2023, 34(1): 214-231. doi: 10.1007/s12583-021-1506-z

Anthropogenic Pseudokarstic Depressions on Mount Bocskor (Bakony Region, Hungary)

doi: 10.1007/s12583-021-1506-z
More Information
  • Corresponding author: Márton Veress, veress.marton@sek.elte.hu
  • Received Date: 07 May 2021
  • Accepted Date: 02 Jul 2021
  • Available Online: 02 Feb 2023
  • Issue Publish Date: 28 Feb 2023
  • Surface forms above the mine (Ármin mine) of Mount Bocskor (Southern Bakony, Hungary) were examined. We made contour maps, plan maps, morphological maps and atectonic grike (cave) maps of some of the forms and their surroundings. We examined the distribution of the depth, length, elongation ratio in case of some depressions, the relation between the depth and the diameter of some depressions, the relationship between depression group directions and mine cut directions, the standard deviation of the direction differences of depression groups and of their depressions. The forms of the mountain related to surface mining can be separated to open and closed. The former are trenches and stairs, the latter are circular, elongated, and complex depressions. The formation of these forms can be related to the balancing movements of the vault over the mountain's mine. At thin vault, stairs develop by collapses, while at the atectonic fissures of thicker vault, trenches and depressions are formed at the surface. In areas bordered by sinking (subsidence through) and downwardly cohesive faults, depression groups of diverse features are arranged in the marginal bands. Elongated depressions are formed at atectonic blocks bounded by dispersing faults in non-banded distribution. Where there is a superficial deposit, atectonic fissures can also be inherited directly by collapse to the surface and form depressions. They can also form indirectly over atectonic fissures by compaction, subsequent collapse and/or suffosion of the superficial deposit. The results of the study make it possible to analyse the material loss due to mining on the vault if the atectonic structures of the vault are partly or completely covered by superficial deposit.

     

  • Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
  • loading
  • Allgaier, F. K., 1997. Environmental Effect of Mining. In: Marcus, J. J., ed., Mining Environmental Handbook: Effects of Mining on the Environment and American Environmental Controls on Mining. World Scientific Publishing, San Mateo. 132–189. https://doi.org/10.1142/9781860943768_0005
    Andrejchuk, V., 2002. Collapse above the World's Largest Potash Mine (Ural, Russia). International Journal of Speleology, 31(1/4): 137–158. https://doi.org/10.5038/1827-806x.31.1.8
    Bakonyi Erőmű Rt Bányászati Igazgatóság, 2004. Bakony Power Plant Directorate of Mining, Map of Mine Cut, Bányavágat Térképe
    Bárány, K., Márton, . K., Nelis, et al., 2015. Néhány További Adat a Hazai Karszt Dolinák Aszim-Metriájának Kialakulásához Some Additional Data on Asymmetry in the Formation of Hungarian Karst Dolines. Karsztfejlődés, XX: 125–144. https://doi.org/17701/15.125-144 (in Hungary)
    Bull, P. A., 2011. Boulder Chokes and Doline Relationships. Proc. 7th. Int. Cong. Speleol., 93–96
    Chen, J. P., Li, K., Chang, K. J., et al., 2015. Open-Pit Mining Geomorphic Feature Characterisation. International Journal of Applied Earth Observation and Geoinformation, 42: 76–86. https://doi.org/10.1016/j.jag.2015.05.001
    Chen, J., 1988. Karst Collapse in Cities and Mining Areas, China. Environmental Geology and Water Sciences, 12(1): 29–35. https://doi.org/10.1007/BF02574824
    Császár, G., ed., 1996. Kréta, Magyar Állami Földtani Intézet, Budapest. 164.
    Dontala, S. P., Byragi T. R., Vadde, R., et al., 2015. Environmental Aspects and Impacts Its Mitigation Measures of Corporate Coal Mining. Procedia Earth and Planetary Science, 11: 2–7. https://doi.org/10.1016/j.proeps.2015.06.002
    Dulias, R., 2016. The Impact of Mining on the Landscape: A Study of the Upper Silesian Coal Basin in Poland. Springer, Berlin, Heidelberg, New York. 209. https://doi.org/10.1007/978-3-319-29541-1
    Erdősi, F., 1987. A Társadalom Hatása a Felszínre, a Vizekre és az Éghajlatra a Mecsek Tágabb Környezetében (Society's Effect to Surface, Surface Waters and Climate). Budapest, Akadémia Kiadó. 228 (in Hungarian)
    Ford, D. C., Williams, P. W., 2007. Karst Hydrogeology and Geomorphology. John Wiley & Sons, Chichester. 561
    Halliday, W. R., 2004. Piping Caves and Badlands Pseudokarst. In: Gunn, J., ed., Encyclopedia of Caves and Karst Science. Fitzroy Dearban, New York. 589–593
    Horányi, L., Kolozsvári, 1989. Geodézia és Bányaméréstan: Bányaméréstan Ⅱ (Geodesy and Mining Metrology: Mining Metrology Ⅱ), Tankönyvkiadó, Budapest. 267 (in Hungarian)
    Johnson, K. S., 1987. Development of the Wink Sink in West Texas due to Salt Dissolution and Collapse. In: Beck, B. F., Wilson, W. L., eds., Karst Hydrogeology: Engineeering and Environmental Implication. Balkema, Brookfield, Vermont. 127–136
    Johnson, K. S., Collins, E. W., Seni, S. J., 2003. Sinkholes and Land Subsidence Owing to Salt Dissolution near Wink, Texas, and other Sites in Western Texas and New Mexico. Oklahoma Geological Survey Circular, 109: 183–195
    Keller, E. A., Pinter, N., 1995. Active Tectonics: Earthquakes, Uplift, and Landscape. Prentice Hall, Englewood Cliffs. 338
    Kompóty, J., 1908. Az Aknaszlatinai Kunigunda-Bánya Beomlásai (Collapses of the Kunigunda Mine by Aknaszlatina). Bányászati és Kohászati Lapok, 46: 390–392 (in Hungarian)
    Kozma, K., 1991. Az Ajkai Szénbányászat Története (History of Coal Mining in Ajka). Veszprémi Szénbányák, Veszprém. 531 (in Hungarian)
    Lu, Y. R., Cooper, A. H., 1997. Gypsum Karst Geohazards in China. In: Beck, B. F., Stephenson, J. B., eds., Engineering Geology and Hydrogeology of Karst Terrains. Balkema, Rotterdam. 117–126
    Martos, F., 1956. A Külszíni Süllyedés Számításának Egy Közelítő Módszere (An Approximate Method for Calculating Surface Subsidence). Bányászati Kutatóintézet Közleményei, 1(1): 3–12 (in Hungarian)
    Martos, F., 1958. A Külszín Elmozdulását Befolyásoló Tényezők (Factors Influencing Surface Displacement). Bányászati Lapok, 6: 367–372 (in Hungarian)
    Móga, J., Lippmann, L., Tombor, E., et al., 2015. Az Aknaszlatinai Sókarszt Felszínalaktani Vizsgálata. Karsztfejlődés, XX: 185–283 (in Hungarian)
    Móga, J., Szabó, J., Gönczy, S., et al., 2017. Az Aknaszlatinai-Sókarszt Dinamikusan Változó Felszínformáinak Vizsgálata Terepi és GIS Módsze-Rekkel the Study of the Dinamically Changing Landforms of Aknaszlatina Salt Karst by Field and GIS Methods. Karsztfejlődés, XXⅡ: 139–161 (in Hungarian)
    Monjezi, M., Shahriar, K., Dehghani, H., et al., 2009. Environmental Impact Assessment of Open Pit Mining in Iran. Environmental Geology, 58(1): 205–216. https://doi.org/10.1007/s00254-008-1509-4
    Mossa, J., James, L. A., 2013. Impacts of Mining on Geomorphic Systems. In: Shroder, J., James, L. A., Harden, C. P., et al., eds., Treatise on Geomorphology, Vol. 13, Geomorphology of Human Disturbances, Climate Change, and Natural Hazards. Academic Press, San Diego. 74–95
    Newton, J. G., 1987. Development of Sinkholes Resulting from Man's Activities in the Eastern United States. US Geological Survey Circular 968, Washington DC. 54
    Oggeri, C., Fenoglio, T. D., Godio, A., et al., 2019. Overburden Management in Open Pits: Options and Limits in Large Limestone Quarries. International Journal of Mining Science and Technology, 29(2): 217–228. https://doi.org/10.1016/j.ijmst.2018.06.011
    Quinlan, J. F., Smith, A. R., Johnson, K. S., 1986. Gypsum Karst and Salt Karst of the United States of America. Le Grotte d'Italia, 4(13): 73–92
    Rico, M., Benito, G., Díez-Herrero, A., 2008. Floods from Tailings Dam Failures. Journal of Hazardous Materials, 154(1/2/3): 79–87. https://doi.org/10.1016/j.jhazmat.2007.09.110
    Rösner, T., van Schalkwyk, A., 2000. The Environmental Impact of Gold Mine Tailings Footprints in the Johannesburg Region, South Africa. Bulletin of Engineering Geology and the Environment, 59(2): 137–148. https://doi.org/10.1007/s100640000037
    Singh, K. B., Dhar, B. B., 1997. Sinkhole Subsidence Due to Mining. Geotechnical & Geological Engineering, 15(4): 327–341. https://doi.org/10.1007/BF00880712
    Somosváry, Z., 1989. Geomechanika (Geomechanics). Tankönyvkiadó, Budapest. 301 (in Hungarian)
    Spooner, J., 1971. Mufulira Interim Report. Mining Journal, 276: 122
    Sütő, L., 2001. A Felszín Alatti Bányászat Domborzatra Gyakorolt Hatásai a Kelet-Borsodi-Szénmedencében (Impacts of Subsurface Mining on Topography in the East Borsod Coal Basin). Földrajzi Konferencia, Szeged. 20 (in Hungarian)
    Sütő, L., Homoki, E., Németh, G., 2009. Felszínsüllyedési és Bolygatottsági Térkép Készítése a Kelet-Borsodi-Szénmedencében (Construction of a Subsidence and Disturbance Map in the East Borsod COAL Basin). Geoinformatika és Domborzatmodellezés, HunDEM 2009 és GeoInfo Konferencia és Kerekasztal Válogatott Tanulmánya. 7 (in Hungarian)
    Sweeting, M. M., 1973. Karst landforms. Columbia University Press, New York. 362
    Vadász, E., 1955. Elemző Földtan (Analytical Geology). Akadémia Kiadó, Budapest. 516 (in Hungarian)
    Veress, M., 2016. Covered Karst. Springer, Berlin, Heidelberg, New York. 536. https://doi.org/10.1007/978-94-017-7518-2
    Vetési-Foith, S., 2019. Az Utánsüllyedéses Dolinák Képződését Befolyásoló Paraméterek Kapcsolatrendszerének Vizsgálata Modell Kísérlettel. (Analysing the Relations of the Parameters that Influences the Subsidence Dolines Formation Using Model Experiments). Karsztfejlődés, XXIV: 61–78. https://doi.org/10.17701/19.61-78 (in Hungarian)
    Vetési-Foith, S., Kiss, Z., Gárdonyi, I., 2017. A Mecseki Karszt Oldódásos-és Utánsüllyedéses Töbreinek Morfometriai Elemzése (Morphometric Analysis of Dissolved- and Subsidence Dolines in the Mecsek Karst). Karsztfejődés, XXⅡ: 119–138. https://doi.org/10.17701/17.119-138 (in Hungarian)
    Walters, F., 1978. Land Subsidence in Central Kansas Related to Salt Dissolution, Kansas by Robert. Bulletin Kansas Geological Survey, 214: 74–75
    Waltham, T., Bell, F., Culshaw, M., 2005. Sinkholes and Subsidence. Springer, Berlin. 382
    Wassmann, T. H., 1980. Mining Subsidence in Twente, East Netherlands. Geol. Mijnbouw, 59: 225–231
    White, W. B., 1988. Geomorphology and Hydrology of Karst Terrains. Oxford University Press, New York. 464
    Williams, P. W., 2004. Dolines. In: Gunn, J., ed., Encyclopedia of Caves and Karst Science. Fitzroy Dearborn, New York, London. 304–310
    Xu, W. G., Zhao, G. R., 1988. Mechanism and Prevention of Karst Collapse near Mine Areas in China. Environmental Geology and Water Sciences, 12(1): 37–42. https://doi.org/10.1007/BF02574825
    Yuan, D., 1987. Environmental and Engineering Problems of Karst in China. In: Beck, B. F., Wilson, W. L., eds., Karst Hydrogeology: Engineering and Environmental Applikations. Balkema, Rotterdam. 1–11
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article views(178) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return