Citation: | Mohamed Ben Chelbi. Early Cretaceous Tectonostratigraphic Evolution of the Southern Tunisian Margin Based on Gravity, Seismic and Potential Field Data: New Insights into a Geodynamic Evolution in a Tethyan and Mesogean Rifting Context. Journal of Earth Science, 2023, 34(3): 879-899. doi: 10.1007/s12583-021-1540-x |
Many geophysical and geological data have been used to interpret the tectonic evolution of the south-eastern part of the Tunisian margin and to analyze the dominant structures in the area. The Menzel Habib Plain (MHP) and surroundings, targeted by this study, exhibits thick siliciclastic and carbonate formations attributed to the Early Cretaceous period. Integration of seismic and gravimetric data coupled with analysis of the syndepositional faults affecting these formations prove that the Tunisian margin is dominated, during this period, by N-S to NE-SW extensional directions. The geodynamic evolution of the MHP is mainly due to the irregular normal movement of the N-S faults, which represents the southernmost branch of the N-S Axis (NSA) and of the NW-SE faults, which constitutes the SE segment of the South Atlasic fault corridor (SAFC). In addition, the NE-SW and E-W oriented faults contributed to this evolution. Over extensive periods, this network of faults determines horst and grabens basin geometry or tilted blocks inducing formation of several distinct areas with different subsidence rates. Simultaneously, the normal activity of the major faults promotes the vertical mobilization of the Triassic salt resulting in the individualization of several diapiric bodies, some of which pierced their sedimentary cover. These dynamics reflect echoes of the sinistral drifting of Africa with respect to Europe, integrated in a long Tethyan rifting cycle, and the beginning of opening of the Mesogean Sea, respectively.
Abadi, A. M., van Wees, J. D., van Dijk, P. M., et al., 2008. Tectonics and Subsidence Evolution of the Sirt Basin, Libya. AAPG Bulletin, 92(8): 993–1027. https://doi.org/10.1306/03310806070 |
Abbès, C., Turki, M. M., Truillet, R., 1981. Un Elément Structural Nouveau dans L'Atlas Tunisien: le Contact Tangentiel Décakilometrique à Vergence Ouest des Djebels Ousselat et Bou Dabous (Axe Nord-Sud-Tunisie). Comptes Rendus Académie Sciences, Paris, 292(Ⅱ): 473–476 |
Agard, P., Jolivet, L., Vrielynck, B., et al., 2007. Plate Acceleration: The Obduction Trigger? Earth and Planetary Science Letters, 258(3/4): 428–441. https://doi.org/10.1016/j.epsl.2007.04.002 |
Agard, P., Zuo, X., Funiciello, F., et al., 2014. Obduction: Why, how and where. Clues from Analog Models. Earth and Planetary Science Letters, 393: 132–145. https://doi.org/10.1016/j.epsl.2014.02.021 |
Ait Brahim, L., Chotin, P., Hinaj, S., et al., 2002. Paleostress Evolution in the Moroccan African Margin from Triassic to Present. Tectonophysics, 357(1/2/3/4): 187–205. https://doi.org/10.1016/s0040-1951(02)00368-2 |
Arfaoui, M., Reid, A., Inoubli, M. H., 2015. Evidence for a New Regional NW-SE Fault and Crustal Structure in Tunisia Derived from Gravity Data. Geophysical Prospecting, 63(5): 1272–1283. https://doi.org/10.1111/1365-2478.12248 |
Ben Chelbi, M., 2019. La Compression de L'Albo-Cenomanien dans la Marge Tunisienne Preuve Géostructurale de la Phase Autrichienne et Prémices de L'inversion Tectonique. 2ème Colloque International sur la Géologie de la Chaîne des Maghrébides et des Régions Voisines. Sétif, al Gérie du 4 AU 6 Décembre 2018 |
Ben Chelbi, M., 2021. Geodynamic Evolution of the Tunisian Margin during the Albian-Cenomanian: Structural Evidence of the Austrian Orogenic Phase and the Early Tectonic Inversion of the Tunisian Atlas. Journal of the Geological Society, 178(3). https://doi.org/10.1144/jgs2019-195 |
Ben Chelbi, M., Kamel, S., Harrab, S., et al., 2013. Tectonosedimentary Evidence in the Tunisian Atlas, Bou Arada Trough: Insights for the Geodynamic Evolution and Africa-Eurasia Plate Convergence. Journal of the Geological Society, 170(3): 435–449. https://doi.org/10.1144/jgs2012-095 |
Ben Chelbi, M., Melki, F., Zargouni, F., 2006. Mode de Mise En Place des Corps Salifères Dans L'Atlas Septentrional de Tunisie. Exemple de L'appareil de Bir Afou. Comptes Rendus Geoscience, 338(5): 349–358. https://doi.org/10.1016/j.crte.2006.02.009 |
Ben Chelbi, M., Melki, F., Zargouni, F., 2008. Précision sur L'évolution Structurale de L'Atlas Septentrional de Tunisie Depuis le Crétacé (Bassin de Bir M'Cherga). Echos d'une Evolution Polyphasée de la Marge Tunisienne Dans Son Cadre Méditerranéen. Africa Geosciences Review, 15(3): 229–246 |
Berra, F., Angiolini, L., 2014. The Evolution of the Tethys Region Throughout the Phanerozoic: A Brief Tectonic Reconstruction. AAPG Memoir, 106: 1–27. https://doi.org/10.1306/13431840m1063606 |
Boccaletti, M., Cello, G., Tortorici, L., 1988. Structure and Tectonic Significance of the North South Axis of Tunsia. Annales Tectonicae, 1(Ⅱ): 12–22 http://www.researchgate.net/publication/283358379_Structure_and_tectonic_significance_of_the_north-south_axis_of_Tunisia |
Bodin, S., Petitpierre, L., Wood, J., et al., 2010. Timing of Early to Mid-Cretaceous Tectonic Phases along North Africa: New Insights from the Jeffara Escarpment (Libya-Tunisia). Journal of African Earth Sciences, 58(3): 489–506. https://doi.org/10.1016/j.jafrearsci.2010.04.010 |
Bouaziz, S., Barrier, E., Soussi, M., et al., 2002. Tectonic Evolution of the Northern African Margin in Tunisia from Paleostress Data and Sedimentary Record. Tectonophysics, 357(1/2/3/4): 227–253. https://doi.org/10.1016/s0040-1951(02)00370-0 |
Boughdiri, M., Sallouhi, H., Maâlaoui, K., et al., 2006. Calpionellid Zonation of the Jurassic-Cretaceous Transition in North-Atlasic Tunisia. Updated Upper Jurassic Stratigraphy of the 'Tunisian Trough' and Regional Correlations. Comptes Rendus Geoscience, 338(16): 1250–1259. https://doi.org/10.1016/j.crte.2006.09.015 |
Burollet, P. F., 1956. Contribution à L'étude Stratigraphique de La Tunisie Centrale. Annales Mines et Géololgie, Tunis. 18: 350 http://www.researchgate.net/publication/303602546_Contribution_a_l'etude_stratigraphique_de_la_Tunisie_centrale |
Capitanio, F. A., Goes, S., 2006. Mesozoic Spreading Kinematics: Consequences for Cenozoic Central and Western Mediterranean Subduction. Geophysical Journal International, 165(3): 804–816. https://doi.org/10.1111/j.1365-246x.2006.02892.x |
Carminati, E., Doglioni, C., 2005. Europe: Mediterranean Tectonics. Encyclopedia of Geology. Elsevier, Amsterdam. 135–146. |
Chirchi, A., Trémolière, P., 1984. Nouvelles Données sur L'évolution Struc-turale au Mésozoïque et au Cénozoïque de la Sardaigne et leurs Implications Géodynamiques dans le Cadre Méditerranéen. Comptes Rendus Académie Sciences Paris, 298(20): 889–894 |
Comas, M. C., Platt, J. P., Soto, J. I., et al., 1999. The Origin and Tectonic History of the Alboran Basin: Insights from Leg 161 Results. Proceedings of the Ocean Drilling Program Scientific Results, 161: 555–580. https://doi.org/10.2973/odp.proc.sr.161.262.1999 |
Coward, M. P., Ries, A. C., 2003. Tectonic Development of North African Basins. Geological Society, London, Special Publications, 207(1): 61–83. https://doi.org/10.1144/gsl.sp.2003.207.4 |
Dercourt, J., Zonenshain, L. P., Ricou, L. E., et al., 1985. Présentation de 9 Cartes Paléogéographiques au 1/20 000 000 s'étendant de L'Atlantique au Pamir Pour la Période du Lias à L'Actuel. Bulletin Société Géologique France, 8(I5): 637–652 |
Doglioni, C., Bosellini, A., Frare, M. C., et al., 1990. Annali Dell Universita di Ferrara. Scienze della Terra, 2(5): 77–94 |
Doglioni, C., Gueguen, E., Harabaglia, P., et al., 1999. On the Origin of West-Directed Subduction Zones and Applications to the Western Mediterranean. Geological Society, London, Special Publications, 156(1): 541–561. https://doi.org/10.1144/gsl.sp.1999.156.01.24 |
Doglioni, C., Mongelli, F., Pieri, P., 1994. The Puglia Uplift (SE Italy): An Anomaly in the Foreland of the Apenninic Subduction Due to Buckling of a Thick Continental Lithosphere. Tectonics, 13(5): 1309–1321. https://doi.org/10.1029/94tc01501 |
Ghanmi, M., Bahrouni, A., Ghanmi, M., et al., 2017. Aptian-Albian Boundary in Central Southern Atlas of Tunisia: New Tectono-Sedimentary Facts. Journal of African Earth Sciences, 132: 27–36. https://doi.org/10.1016/j.jafrearsci.2017.04.030 |
Gharbi, M., Masrouhi, A., Espurt, N., et al., 2013. New Tectono-Sedimentary Evidences for Aptian to Santonian Extension of the Cretaceous Rifting in the Northern Chotts Range (Southern Tunisia). Journal of African Earth Sciences, 79: 58–73. https://doi.org/10.1016/j.jafrearsci.2012.09.017 |
Ghedhoui, R., Deffontaines, B., Rabia, M. C., 2016. Neotectonics of Coastal Jeffara (Southern Tunisia): State of the Art. Tectonophysics, 676: 211–228. https://doi.org/10.1016/j.tecto.2015.11.032 |
Gong, Z., Langereis, C. G., Mullender, T. A. T., 2008. The Rotation of Iberia during the Aptian and the Opening of the Bay of Biscay. Earth and Planetary Science Letters, 273(1/2): 80–93. https://doi.org/10.1016/j.epsl.2008.06.016 |
Guerrera, F., Martín-Martín, M., Tramontana, M., 2021. Evolutionary Geological Models of the Central-Western Peri-Mediterranean Chains: A Review. International Geology Review, 63(1): 65–86. https://doi.org/10.1080/00206814.2019.1706056 |
Guiraud, R., Bellion, Y., 1995. Late Carboniferous to Recent, Geodynamic Evolution of the West Gondwanian, Cratonic, Tethyan Margins. The Tethys Ocean. Springer US, Boston, MA. 101–124. |
Guiraud, R., Bosworth, W., Thierry, J., et al., 2005. Phanerozoic Geological Evolution of Northern and Central Africa: An Overview. Journal of African Earth Sciences, 43(1/2/3): 83–143. https://doi.org/10.1016/j.jafrearsci.2005.07.017 |
Guiraud, R., Maurin, J. C., 1991. Le Rifting en Afrique au Cretace Inferieur; Synthese Structurale, Mise en Evidence de Deux Etapes Dans la Genese des Bassins, Relations Avec Les Ouvertures Oceaniques Peri-Africaines. Bulletin de la Société Géologique de France, 162(5): 811–823. https://doi.org/10.2113/gssgfbull.162.5.811 |
Handy, M. R., Schmid, S. M., Bousquet, R., et al., 2010. Reconciling Plate-Tectonic Reconstructions of Alpine Tethys with the Geological-Geophysical Record of Spreading and Subduction in the Alps. Earth-Science Reviews, 102(3/4): 121–158. https://doi.org/10.1016/j.earscirev.2010.06.002 |
Hippolyte, J. C., Müller, C., Kaymakci, N., et al., 2010. Dating of the Black Sea Basin: New Nannoplankton Ages from Its Inverted Margin in the Central Pontides (Turkey). Geological Society, London, Special Publications, 340(1): 113–136. https://doi.org/10.1144/sp340.7 |
Hlaiem, A., 1999. Halokinesis and Structural Evolution of the Major Features in Eastern and Southern Tunisian Atlas. Tectonophysics, 306(1): 79–95. https://doi.org/10.1016/s0040-1951(99)00045-1 |
Jolivet, L., Faccenna, C., Agard, P., et al., 2016. Neo-Tethys Geodynamics and Mantle Convection: From Extension to Compression in Africa and a Conceptual Model for Obduction. Canadian Journal of Earth Sciences, 53(11): 1190–1204. https://doi.org/10.1139/cjes-2015-0118 |
Khomsi, S., Bédir, M., Soussi, M., et al., 2006. Mise en Évidence en Subsurface D'événements Compressifs Éocène Moyen-Supérieur en Tunisie Orientale (Sahel): Généralité de la Phase Atlasique en Afrique du Nord. Comptes Rendus Geoscience, 338(1/2): 41–49. https://doi.org/10.1016/j.crte.2005.11.001 |
Lustrino, M., Wilson, M., 2007. The Circum-Mediterranean Anorogenic Cenozoic Igneous Province. Earth-Science Reviews, 81(1/2): 1–65. https://doi.org/10.1016/j.earscirev.2006.09.002 |
M'Rabet, A., Mejri, F., Burollet, P. F., et al., 1995. Catalog of Type Sections in Tunisia. Cetaceous Memories ETAP, 8A: 123 |
Martinez, C., Chikhaoui, M., Truillet, R., et al., 1991. Le Contexte Géodynamique de la Distension Albo-Aptienne en Tunisie Septentrionale et Centrale: Structuration Éocrétacée de L'Atlas Tunisien. Eclogae Geologicae Helvetiae, 84: 61–82 http://www.researchgate.net/publication/32979497_Le_contexte_geodynamique_de_la_distension_albo-aptienne_en_Tunisie_septentrionale_et_centrale_structuration_eocretacee_de_l'Atlas_tunisien |
Masrouhi, A., Ghanmi, M., Ben Slama, M. M., et al., 2008. New Tectono-Sedimentary Evidence Constraining the Timing of the Positive Tectonic Inversion and the Eocene Atlasic Phase in Northern Tunisia: Implication for the North African Paleo-Margin Evolution. Comptes Rendus Geoscience, 340(11): 771–778. https://doi.org/10.1016/j.crte.2008.07.007 |
Mejri, F., Burollet, P. F., Ben Ferjani, A., 2006. Petroleum Geology of Tunisia. Mémoir de L'ETAP, Tunisia. 22: 233 http://www.researchgate.net/publication/236479607_Petroleum_Geology_of_Tunisia |
Melki, F., Zouaghi, T., Ben Chelbi, M., et al., 2010. Tectono-Sedimentary Events and Geodynamic Evolution of the Mesozoic and Cenozoic Basins of the Alpine Margin, Gulf of Tunis, North-Eastern Tunisia Offshore. Comptes Rendus Geoscience, 342(9): 741–753. https://doi.org/10.1016/j.crte.2010.04.005 |
Menant, A., Jolivet, L., Vrielynck, B., 2016. Kinematic Reconstructions and Magmatic Evolution Illuminating Crustal and Mantle Dynamics of the Eastern Mediterranean Region since the Late Cretaceous. Tectonophysics, 675: 103–140. https://doi.org/10.1016/j.tecto.2016.03.007 |
Midassi, M. S., 1982. Regional Gravity of Tunisia: [Dissertation]. Univ. South Carolina. USA. 125 |
Min, G., Hou, G. T., 2019. Mechanism of the Mesozoic African Rift System: Paleostress Field Modeling. Journal of Geodynamics, 132: 101655. https://doi.org/10.1016/j.jog.2019.101655 |
Morgan, M. A., Grocott, J., Moody, R. T. J., 1998. The Structural Evolution of the Zaghouan-Ressas Structural Belt, Northern Tunisia. Geological Society, London, Special Publications, 132(1): 405–422. https://doi.org/10.1144/gsl.sp.1998.132.01.23 |
Nejia, L. O., Bédir, M., 2004. Les Migrations Tectono-Magmatiques du Trias au Miocène sur la Marge Orientale de la Tunisie. Africa Geosciences Review, 11(3): 179–196 |
Nikishin, A. M., Cloetingh, S. A. P. L., Brunet, M. F., et al., 1998. Scythian Platform, Caucasus and Black Sea Region: Mesozoic–Cenozoic Tectonic History and Dynamics. In: Crasquin-Soleau, S., Barrier, E., eds., Peri-Tethys Memoir 3: Stratigraphy and Evolution of Teri-Tethyan Platforms, Paris. 163–176 |
Nikishin, A. M., Okay, A., Tüysüz, O., et al., 2015a. The Black Sea Basins Structure and History: New Model Based on New Deep Penetration Regional Seismic Data. Part 1: Basins Structure and Fill. Marine and Petroleum Geology, 59: 638–655. https://doi.org/610.1016/j.marpetgeo.2014.1008.1017 |
Nikishin, A. M., Okay, A., Tüysüz, O., et al., 2015b. The Black Sea Basins Structure and History: New Model Based on New Deep Penetration Regional Seismic Data. Part 2: Tectonic History and Paleogeography. Marine and Petroleum Geology, 59: 656–670. https://doi.org/10.1016/j.marpetgeo.2014.08.018 |
Piqué, A., Ait Brahim, L., Ait Ouali, R., et al., 1998. Evolution Structurale des Domaines Atlasique du Maghreb au Méso-Cénozoïque: Le Rôle des Structures Héritées dans la Déformation du Domaine Atlasique de L'Afrique de Nord. Bulletin de la Société Géologique France, 169(6): 797–810 http://www.researchgate.net/publication/249010515_Evolution_structurale_des_domaines_atlasiques_du_Maghreb_au_Meso-Cenozoique_le_role_des_structures_heritees_dans_la_deformation_du_domaine_atlasique_de_l'Afrique_du_Nord |
Piqué, A., Tricart, P., Guiraud, R., et al., 2002. The Mesozoic-Cenozoic Atlas Belt (North Africa): An Overview. Geodinamica Acta, 15(3): 185–208. https://doi.org/10.1080/09853111.2002.10510752 |
Platt, J. P., Behr, W., Johanesen, K., et al., 2013. The Betic-Rif Arc and Its Orogenic Hinterland: A Review. Annual Review of Earth and Planetary Sciences, 41: 313–357. https://doi.org/10.1146/annurev-earth-050212-123951 |
Raulin, C., de Lamotte, D. F., Bouaziz, S., et al., 2011. Late Triassic-Early Jurassic Block Tilting along E-W Faults, in Southern Tunisia: New Interpretation of the Tebaga of Medenine. Journal of African Earth Sciences, 61(1): 94–104. https://doi.org/10.1016/j.jafrearsci.2011.05.007 |
Rosenbaum, G., 2014. Geodynamics of Oroclinal Bending: Insights from the Mediterranean. Journal of Geodynamics, 82: 5–15. https://doi.org/10.1016/j.jog.2014.05.002 |
Rosenbaum, G., Lister, G. S., Duboz, C., 2002. Relative Motions of Africa, Iberia and Europe during Alpine Orogeny. Tectonophysics, 359(1/2): 117–129. https://doi.org/10.1016/s0040-1951(02)00442-0 |
Saïd, A., Baby, P., Chardon, D., et al., 2011. Structure, Paleogeographic Inheritance, and Deformation History of the Southern Atlas Foreland Fold and Thrust Belt of Tunisia. Tectonics, 30(6): TC6004. https://doi.org/10.1029/2011tc002862 |
Saïd, A., Chardon, D., Baby, P., et al., 2011. Active Oblique Ramp Faulting in the Southern Tunisian Atlas. Tectonophysics, 499(1/2/3/4): 178–189. https://doi.org/10.1016/j.tecto.2011.01.010 |
Sekatni, N., Fauré, P., Alouani, R., et al., 2008. Le Passage Lias-Dogger de la Dorsale de Tunisie Septentrionale. Comptes Rendus Palevol, 7(4): 185–194. https://doi.org/10.1016/j.crpv.2008.03.001 |
Soussi, M., 2003. New Jurassic Lithostratigraphic Chart for the Tunisian Atlas. Geobios, 36(6): 761–773 |
Soyer, C., Tricart, P., 1987. La Crise Aptienne en Tunisie Central: Approche Paléostructurale aux Confins de L'Atlas et de L'Axe Nord-Sud. Comptes Rendus de l'Académie des Sciences Paris, 305(Ⅱ): 301–305 http://www.researchgate.net/publication/279551599_The_Aptian_Crisis_in_central_Tunisia_a_paleostructural_approach_at_the_Atlas_and_North-South_Axis_junctionLa_crise_aptienne_en_Tunisie_centrale_approche_paleostructurale_aux_confins_de_l'Atlas_et_de_l |
Stampfli, G. M., Borel, G. D., 2002. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons. Earth and Planetary Science Letters, 196(1/2): 17–33. https://doi.org/10.1016/s0012-821x(01)00588-x |
Tanfous Amri, D., Bédir, M., Soussi, M., et al., 2005. Halocinèse Précoce Associée au Rifting Jurassique Dans L'Atlas Central de Tunisie (Région de Majoura-El Hfay). Comptes Rendus Geoscience, 337(7): 703–711. https://doi.org/10.1016/j.crte.2005.02.007 |
Tlig, S., Er-Raoui, L., Ben Aissa, L., et al., 1991. Tectogenèses Alpine et Atlasique: Deux Evènements Distincts dans L'histoire Géologique de la Tunisie. Corrélation avec les Evènements Clés de la Méditerranée. Comptes Rendus Académie de Sciences Paris, 312(Ⅱ): 295–301 |
Vila, J. M., Ben Youssef, M., Charrière, A., et al., 1994. Découverte en Tunisie au SW du Kef de Matériel Triasique Interstratifié dans L'Albien: Extension du Domaine à «Glacier de sel» Sous-Marin des Confins Algéro-Tunisiens. Comptes Rendus Académie de Sciences Paris, 318(Ⅱ): 109–116 |
Vissers, R. L. M., Meijer, P. T., 2012. Iberian Plate Kinematics and Alpine Collision in the Pyrenees. Earth-Science Reviews, 114(1/2): 61–83. https://doi.org/10.1016/j.earscirev.2012.05.001 |
Ye, J., Chardon, D., Rouby, D., et al., 2017. Paleogeographic and Structural Evolution of Northwestern Africa and Its Atlantic Margins since the Early Mesozoic. Geosphere, 13(4): 1254–1284. https://doi.org/10.1130/ges01426.1 |
Yelles-Chaouche, A. K., Ait Ouali, R., Bracene, R., et al., 2001. Chronologie de L'ouverture du Bassin des Ksour (Atlas Saharien, Algerie) au debut du Mesozoique. Bulletin de la Société Géologique de France, 172(3): 285–293. https://doi.org/10.2113/172.3.285 |
Zouaghi, T., Bedir, M., Inoubli, M. H., 2005. 2D Seismic Interpretation of Strike-Slip Faulting, Salt Tectonics, and Cretaceous Unconformities, Atlas Mountains, Central Tunisia. Journal of African Earth Sciences, 43(4): 464–486. https://doi.org/10.1016/j.jafrearsci.2005.09.010 |
Zouaghi, T., Ferhi, I., Bédir, M., et al., 2011. Analysis of Cretaceous (Aptian) Strata in Central Tunisia, Using 2D Seismic Data and Well Logs. Journal of African Earth Sciences, 61(1): 38–61. https://doi.org/10.1016/j.jafrearsci.2011.05.002 |
Zouaghi, T., Inoubli, M. H., Bédir, M., 2007. Contribution of Seismic Velocity Studies to Structural and Lithostratigraphic Reconstructions: Salt-Intruded Corridor Ceiling and Lower Turonian Beida Anhydrite Deposits' Outline in the Central-Southern Atlas of Tunisia. Comptes Rendus Geoscience, 339(1): 13–23. https://doi.org/10.1016/j.crte.2006.12.002 |
Zouari, H., Turki, M., Delteil, J., et al., 1999. Tectonique Transtensive de la Paléomarge Tunisienne au cours due L'Aptien-Campanien. Bulletin de la Societe Geologique de France, 170(3): 295–301 http://bsgf.geoscienceworld.org/content/170/3/295 |