Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 2
Apr 2023
Turn off MathJax
Article Contents
Hu Zheng, Guowei Dai, Wuwei Mao, Yu Huang. Rate-Dependent Weakening of the Shear Force for the Submerged Granular Medium Based on the Experimental Study. Journal of Earth Science, 2023, 34(2): 347-353. doi: 10.1007/s12583-021-1541-9
Citation: Hu Zheng, Guowei Dai, Wuwei Mao, Yu Huang. Rate-Dependent Weakening of the Shear Force for the Submerged Granular Medium Based on the Experimental Study. Journal of Earth Science, 2023, 34(2): 347-353. doi: 10.1007/s12583-021-1541-9

Rate-Dependent Weakening of the Shear Force for the Submerged Granular Medium Based on the Experimental Study

doi: 10.1007/s12583-021-1541-9
More Information
  • Corresponding author: Hu Zheng, zhenghu@tongji.edu.cn
  • Received Date: 31 May 2021
  • Accepted Date: 06 Sep 2021
  • Issue Publish Date: 30 Apr 2023
  • An experimental study is conducted to describe rate-dependent shear strength in a submerged granular medium to understand the mystery of submarine landslides with extremely small slide angles and long run-out distances. The experimental apparatus allows a long-span shear strain rate, $ \dot{\mathit{\gamma }} $, for five orders of magnitude from 10-4 to 101 s-1. It is observed that (a) submerged sand under higher shear tend to have bigger yield strength; this positive response of rate effect is significantly affected by the magnitudes of shear strain rates. (b) the residual strength of soil is clearly affected negatively by shear strain rate, decreasing as shear strain rate increases; even small variations under lower rate cause notable differences in residual strength, indicating a novel weaking rate-dependent. The yield strength and residual strength are corresponding to the shear state of soil. Hence, it is enough experimentally to explain that as long as the submarine mass flow speeds up, the slope sliding can be kept by only a small amount of force along the slide direction, which can be calculated as the gravity component even with a small slide angle.

     

  • loading
  • Barnes, H. A., 1989. An Introduction to Rheology. Elsevier, Amsterdam
    Gee, M. J. R., Uy, H. S., Warren, J., et al., 2007. The Brunei Slide: A Giant Submarine Landslide on the North West Borneo Margin Revealed by 3D Seismic Data. Marine Geology, 246(1): 9–23. https://doi.org/10.1016/j.margeo.2007.07.009
    Grelle, G., Guadagno, F. M., 2010. Shear Mechanisms and Viscoplastic Effects during Impulsive Shearing. Géotechnique, 60(2): 91–103. https://doi.org/10.1680/geot.8.p.019
    Haflidason, H., Sejrup, H. P., Nygård, A., et al., 2004. The Storegga Slide: Architecture, Geometry and Slide Development. Marine Geology, 213(1/2/3/4): 201–234. https://doi.org/10.1016/j.margeo.2004.10.007
    Hight, D. W., 1983. Laboratory Investigations of Sea-Bed Clays: [Dissertation]. The University of London, London
    Higman, B., Shugar, D. H., Stark, C. P., et al., 2018. The 2015 Landslide and Tsunami in Taan Fiord, Alaska. Scientific Reports, 8: 12993. https://doi.org/10.1038/s41598-018-30475-w
    Hunger, O., Morgenstern, N. R., 1984. High Velocity Ring Shear Tests on Sand. Géotechnique, 34(3): 415–421. https://doi.org/10.1680/geot.1984.34.3.415
    Jiang, Y., Wang, G. H., Kamai, T., 2017. Fast Shear Behavior of Granular Materials in Ring-Shear Tests and Implications for Rapid Landslides. Acta Geotechnica, 12(3): 645–655. https://doi.org/10.1007/s11440-016-0508-y
    Khosravi, M., Meehan, C. L., Cacciola, D. V., et al., 2013. Effect of Fast Shearing on the Residual Shear Strengths Measured along Pre-Existing Shear Surfaces in Kaolinite. Geo-Congress 2013. March 3–7, 2013, San Diego, California, USA. Reston, VA, USA: American Society of Civil Engineers, 245–254. https://doi.org/10.1061/9780784412787.025
    Kimura, S., Nakamura, S., Vithana, S. B., et al., 2014. Shearing Rate Effect on Residual Strength of Landslide Soils in the Slow Rate Range. Landslides, 11(6): 969–979. https://doi.org/10.1007/s10346-013-0457-6
    Kobelev, V., Schweizer, K. S., 2005. Strain Softening, Yielding, and Shear Thinning in Glassy Colloidal Suspensions. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 71(2Pt1): 021401. https://doi.org/10.1103/physreve.71.021401
    Konstadinou, M., Georgiannou, V. N., 2013. Cyclic Behaviour of Loose Anisotropically Consolidated Ottawa Sand under Undrained Torsional Loading. Géotechnique, 63(13): 1144–1158. https://doi.org/10.1680/geot.12.p.145
    Lemos, L. J., Vaughan, P. R., 2004. Shear Behaviour of Pre-Existing Shear Zones under Fast Loading. Advances in Geotechnical Engineering: The Skempton Conference: Proceedings of a Three Day Conference on Advances in Geotechnical Engineering, Organised by the Institution of Civil Engineers and Held at the Royal Geographical Society, London, UK, on 29–31 March 2004, 510–521
    Li, D. Y., Yin, K. L., Glade, T., et al., 2017. Effect of Over-Consolidation and Shear Rate on the Residual Strength of Soils of Silty Sand in the Three Gorges Reservoir. Scientific Reports, 7: 5503. https://doi.org/10.1038/s41598-017-05749-4
    Li, Y. R., Wen, B. P., Aydin, A., et al., 2013. Ring Shear Tests on Slip Zone Soils of Three Giant Landslides in the Three Gorges Project Area. Engineering Geology, 154: 106–115. https://doi.org/10.1016/j.enggeo.2012.12.015
    Locat, J., Lee, H. J., Nelson, H., et al., 1996. Analysis of the Mobility of far Reaching Debris Flows on the Mississippi Fan, Gulf of Mexico. Landslides, 555–560
    Lupini, J. F., Skinner, A. E., Vaughan, P. R., 1981. The Drained Residual Strength of Cohesive Soils. Géotechnique, 31(2): 181–213. https://doi.org/10.1680/geot.1981.31.2.181
    Nakamura, S., Gibo, S., Egashira, K., et al., 2010. Platy Layer Silicate Minerals for Controlling Residual Strength in Landslide Soils of Different Origins and Geology. Geology, 38(8): 743–746. https://doi.org/10.1130/g30908.1
    Nastev, M., Parent, M., Ross, M., et al., 2016. Geospatial Modelling of Shear-Wave Velocity and Fundamental Site Period of Quaternary Marine and Glacial Sediments in the Ottawa and St. Lawrence Valleys, Canada. Soil Dynamics and Earthquake Engineering, 85: 103–116. https://doi.org/10.1016/j.soildyn.2016.03.006
    Nisbet, E. G., Piper, D. J. W., 1998. Giant Submarine Landslides. Nature, 392(6674): 329–330. https://doi.org/10.1038/32765
    Okada, Y., Sassa, K., Fukuoka, H., 2004. Excess Pore Pressure and Grain Crushing of Sands by Means of Undrained and Naturally Drained Ring-Shear Tests. Engineering Geology, 75(3/4): 325–343. https://doi.org/10.1016/j.enggeo.2004.07.001
    Saito, R., Fukuoka, H., Sassa, K., 2006. Experimental Study on the Rate Effect on the Shear Strength. Disaster Mitigation of Debris Flows, Slope Failures and Landslides: Proceedings of the INTERPRAEVENT International Symposium, September 25–29, 2006, Niigata
    Schnyder, J. S. D., Eberli, G. P., Kirby, J. T., et al., 2016. Tsunamis Caused by Submarine Slope Failures along Western Great Bahama Bank. Scientific Reports, 6: 35925. https://doi.org/10.1038/srep35925
    Schulz, W. H., McKenna, J. P., Kibler, J. D., et al., 2009. Relations between Hydrology and Velocity of a Continuously Moving Landslide—Evidence of Pore-Pressure Feedback Regulating Landslide Motion? Landslides, 6(3): 181–190. https://doi.org/10.1007/s10346-009-0157-4
    Schulz, W. H., Wang, G. H., 2014. Residual Shear Strength Variability as a Primary Control on Movement of Landslides Reactivated by Earthquake-Induced Ground Motion: Implications for Coastal Oregon, US. Journal of Geophysical Research: Earth Surface, 119(7): 1617–1635. https://doi.org/10.1002/2014jf003088
    Skempton, A. W., 1985. Residual Strength of Clays in Landslides, Folded Strata and the Laboratory. Géotechnique, 35(1): 3–18. https://doi.org/10.1680/geot.1985.35.1.3
    Suzuki, M., Hai, N. V., Yamamoto, T., 2017. Ring Shear Characteristics of Discontinuous Plane. Soils and Foundations, 57(1): 1–22. https://doi.org/10.1016/j.sandf.2017.01.001
    Suzuki, M., Yamamoto, T., Tanikawa, K., et al., 2001. Variation in Residual Strength of Clay with Shearing Speed. Mem. Fac. Eng. Yamaguchi Univ., 52(7): 45–49
    Talling, P. J., Wynn, R. B., Masson, D. G., et al., 2007. Onset of Submarine Debris Flow Deposition far from Original Giant Landslide. Nature, 450(7169): 541–544. https://doi.org/10.1038/nature06313
    Tarnawski, V. R., Momose, T., Leong, W. H., et al., 2009. Thermal Conductivity of Standard Sands. Part I. Dry-State Conditions. International Journal of Thermophysics, 30(3): 949–968. https://doi.org/10.1007/s10765-009-0596-0
    Taylor, D. W., 1948. Fundamentals of Soil Mechanics. Soil Science, 66(2): 161. https://doi.org/10.1097/00010694-194808000-00008
    Ten Brink, U. S., Geist, E. L., Andrews, B. D., 2006. Size Distribution of Submarine Landslides and Its Implication to Tsunami Hazard in Puerto Rico. Geophysical Research Letters, 33(11): 2006GL026125. https://doi.org/10.1029/2006gl026125
    Tika, T. E., Vaughan, P. R., Lemos, L. J. L. J., 1996. Fast Shearing of Pre-Existing Shear Zones in Soil. Géotechnique, 46(2): 197–233. https://doi.org/10.1680/geot.1996.46.2.197
    Toyota, H., Takada, S., Susami, A., 2019. Rate Dependence on Mechanical Properties of Unsaturated Cohesive Soil with Stress-Induced Anisotropy. Soils and Foundations, 59(4): 1013–1023. https://doi.org/10.1016/j.sandf.2019.04.001
    Wang, L. N., Han, J., Liu, S. Y., et al., 2020. Variation in Shearing Rate Effect on Residual Strength of Slip Zone Soils due to Test Conditions. Geotechnical and Geological Engineering, 38(3): 2773–2785. https://doi.org/10.1007/s10706-020-01186-9
    Zhang, X. R., Kong, G. Q., Chen, Y. H., et al., 2021. Measurement and Prediction of the Thermal Conductivity of Fused Quartz in the Range of 5–45 ℃. International Journal of Thermophysics, 42(8): 1–21. https://doi.org/10.1007/s10765-021-02873-2
    Zheng, H., Wang, D., Behringer, R. P., 2019a. Experimental Study on Granular Biaxial Test Based on Photoelastic Technique. Engineering Geology, 260: 105208. https://doi.org/10.1016/j.enggeo.2019.105208
    Zheng, H., Wang, D., Tong, X. M., et al., 2019b. Granular Scale Responses in the Shear Band Region. Granular Matter, 21(4): 1–6. https://doi.org/10.1007/s10035-019-0958-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(137) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return