Citation: | Waleed Tariq, Gohar Rehman, Syed Ahsan Hussain Gardezi, Nawaz Ikram. Impact of Fractures and Diagenesis on Reservoir Potential of Inner Ramp Paleocene Carbonates Exposed in Western Part of the Lesser Himalayas of Pakistan. Journal of Earth Science, 2023, 34(2): 536-555. doi: 10.1007/s12583-021-1559-z |
The outcrop investigations provide a better comprehension to interrelate facies-diagenesis and fracture networks for the evaluation of reservoir potential of the carbonate rocks. In this paper, we targeted Kahi-Section (Nizampur Basin) and Peeran Tangai-Section (Kalachitta Range) to analyze structural-kinematics, Discrete Fracture Network Modelling, microfacies identification and diagenesis to interpret their impact on reservoir potential of Lockhart Limestone (Paleocene). The structural grain within the study area mostly represents the typical east-west trending tight to overturned folds and north-dipping thrust faults that mimic the north-south Indo-Eurasian collision. However, a second phase of deformation related to east-west compressions also identified which rotated the axes of pre- existing structures. Fracture analysis revealed that extensional fractures are oriented at high angle to bedding and are differentiated into three orthogonal sets trending northeast-southwest, northwest-southeast and east-west, whereas, the shear fractures formed two conjugate sets trending northeast-southwest. The Lockhart Limestone was deposited in the inner ramp setting and microfacies types are packstone, wackestone and wacke-packstone with seven sub-microfacies types. It has been identified that the Lockhart Limestone has the heterogeneous distribution of diagenetic and tectonic features throughout its extent. The observed diagenetic sequence is micritization, calcite cementation, dissolution, neomorphism, pyritization and compaction. The results highlight that open and partially filled fractures may provide an interconnected network to promote fluid mobility, leading to higher values of fracture permeability. The porosity values of the pore matrix were greater than fracture, resulting a significant impact on reservoir storage capacity. In contrast, a negative impact on reservoir potential has been shown by stylolites, veins and dissolution seams. However, based on the overall studies, the Lockhart Limestone revealed the prospect of a good reservoir unit in the study area.
Ahmad, S., Ali, F., Khan, M. I., et al., 2004. Structural Transect of the Western Kohat Fold and Thrust Belt between Hangu and Basia Khel, NWFP, Pakistan. Pakistan Journal of Hydrocarbon Research, 16: 22–35 |
Ahmed, F., Ahmad, M., Rahman, M., et al., 2017. Reservoir Characterisation of Lower Cretaceous Clastic Succession of Nizampur Basin, Eastern Tethys, Pakistan. Journal of Himalayan Earth Sciences, 50: 44–59 |
Ali, F., Qiang, J., Ahmad, S., et al., 2019. Sedimentological and Geochemical Analysis of the Middle Jurassic Shinawari Formation, Upper Indus Basin, Pakistan: Implications for Palaeoenvironmental and Hydrocarbon Assessment. Arabian Journal for Science and Engineering, 44(7): 6465–6487. https://doi.org/10.1007/s13369-019-03778-x |
Al-Jawad, S. N. A., Ahmed, M. A., Saleh, A. H., 2020. Integrated Reservoir Characterization and Quality Analysis of the Carbonate Rock Types, Case Study, Southern Iraq. Journal of Petroleum Exploration and Production Technology, 10(8): 3157–3177. https://doi.org/10.1007/s13 202-020-00982-6 doi: 10.1007/s13202-020-00982-6 |
Al-Qayim, B., Rashid, F., 2012. Reservoir Characteristics of the Albian Upper Qamchuqa Formation Carbonates, Taq Taq Oilfield, Kurdistan, Iraq. Journal of Petroleum Geology, 35(4): 317–341 doi: 10.1111/j.1747-5457.2012.00533.x |
Awais, M., Akhtar, N., Ishaq, M., 2012. Geological Mapping and Structural Analysis of a Part of Kala-Chitta Range, Kahi Village, Nizampur Khyber Pakhtunkhwa. Pakistan Journal of Hydrocarbon Research (PJHR), 22/23: 13–23 |
Awais, M., Ullah, F., Khan, N., et al., 2019. Investigation of Reservoir Characteristics, Depositional Setting and T–R Sequences of the Lockhart Limestone of Meyal Oil Field, Pakistan: A Petrophysical Approach. Journal of Petroleum Exploration and Production Technology, 9(4): 2511–2530. https://doi.org/10.1007/s13202-019-0730-x |
Aydin, A., 2000. Fractures, Faults, and Hydrocarbon Entrapment, Migration and Flow. Marine and Petroleum Geology, 17(7): 797–814. https://doi.org/10.1016/s0264-8172(00)00020-9 |
Barbier, M., Hamon, Y., Callot, J. P., et al., 2012. Sedimentary and Diagenetic Controls on the Multiscale Fracturing Pattern of a Carbonate Reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA). Marine and Petroleum Geology, 29(1): 50–67. https://doi.org/10.1016/j.marpetgeo.2011.08.009 |
Beck, R. A., Burbank, D. W., Sercombe, W. J., et al., 1995. Stratigraphic Evidence for an Early Collision between Northwest India and Asia. Nature, 373(6509): 55–58. https://doi.org/10.1038/373055a0 |
Boggs, J. S., 2009. Petrology of Sedimentary Rocks. Cambridge University Press, Cambridge |
Bourne, S. J., Rijkels, L., Stephenson, B. J., et al., 2001. Predictive Modelling of Naturally Fractured Reservoirs Using Geomechanics and Flow Simulation. GeoArabia, 6(1): 27–42. https://doi.org/10.2113/geo arabia060127 doi: 10.2113/geoarabia060127 |
Coward, M. P., Rex, D. C., Asif Khan, M., et al., 1986. Collision Tectonics in the NW Himalayas. Geological Society, London, Special Publications, 19(1): 203–219. https://doi.org/10.1144/gsl.sp.1986.019.01.11 |
Davis, G. H., Reynolds, S. J., 1996. Structural Geology of Rocks and Regions, 2nd Edition. John Wiley and Sons, New York |
DiPietro, J. A., Pogue, K. R., 2004. Tectonostratigraphic Subdivisions of the Himalaya: A View from the West. Tectonics, 23(5): TC5001. https://doi.org/10.1029/2003tc001554 |
Dipietro, J. A., Pogue, K. R., Hussain, A., et al., 1996. Geology and Tectonics of the Indus Syntaxis, Northwest Himalaya |
Dunham, R. J., 1962. Classification of Carbonate Rocks According to Depositional Texture. Mem. Amer. Assoc. Petrol. Geol, 1: 108–121 |
Flügel, E., 2004. Depositional Models, Facies Zones and Standard Microfacies. In: Flügel, E., ed. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, Springer, Berlin Heidelberg |
Folk, R. L., 1962. Spectral Subdivision of Limestone Types. Bulletin of the American Association of Petroleum Geologists, 1: 62–84 |
Folk, R. L., 1965. Some Aspects of Recrystallization in Ancient Limestones. AAPG Bulletin, 48(4): 525 |
Gardezi, S. A. H., Ahmad, S., Ikram, N., et al., 2021. Geological Constraints on the Western Kohat Foreland Basin, Khyber Pakhtunkhwa, Pakistan: Implication from 2D and 3D Structural Modelling. Iranian Journal of Earth Sciences, 13(2): 61–76. https://doi.org/10.30495/ijes.2021.678954 |
Garland, C. R., Abalioglu, I., Akca, L., et al., 2010. Appraisal and Development of the Taq Taq Field, Kurdistan Region, Iraq. Geological Society, London, Petroleum Geology Conference Series, 7(1): 801–810. https://doi.org/10.1144/0070801 |
Ghauri, A. A. K., Pervez, M. K., Riaz, M., et al., 1991. The Structure and Tectonic Setting of Attock-Cherat and Kalachitta Ranges in Nizampur Area, NWFP Pakistan. Kashmir Journal of Geology, 8(9): 99–109 |
Goldstein, R. H., 1991. Practical Aspects of Cement Stratigraphy with Illustrations from Pennsylvanian Limestone and Sandstone, New Mexico and Kansas. Luminescence Microscopy Quantitative and Qualitative Aspects. 123–131 |
Hancock, P. L., 1985. Brittle Microtectonics: Principles and Practice. Journal of Structural Geology, 7(3/4): 437–457. https://doi.org/10.10 16/0191-8141(85)90048-3 doi: 10.1016/0191-8141(85)90048-3 |
Hashmi, S., Jan, I., Khan, S., et al., 2018. Depositional, Diagenetic and Sequence Stratigraphic Controls on the Reservoir Potential of the Cretaceous Chichali and Lumshiwal Formations, Nizampur Basin, Pakistan. Journal of Himalayan Earth Sciences, 51: 44–65 |
Hussain, A., 1984. Regional Geological Map of Nizampur Covering Parts of Peshawar. Mardan and Attock Districts. Geological Survey of Pakistan, Geological Map Series, 142(1): 50 |
Ikram, N., Gardezi, S. A. H., Ahmad, S., et al., 2020. Two and Three-Dimensional Structural Modelling of Central Kohat Plateau, Northwestern Himalaya, Pakistan. Structural Geometry of Mobile Belts of the Indian Subcontinent, Springer Nature, Gewerbestrasse |
Imraz, M., Hanif, M., Ali, F., et al., 2013. Miscellaneidae: A Biostratigraphic Tool for Hydrocarbon Exploration in Paleocene Carbonate Platform Deposits of Tethys: An Example from Upper Indus Basin, Pakistan. Journal of Himalayan Earth Sciences, 46(2): 93 |
Jadoon, I. A. K., Bhatti, K. M., Siddiqui, F. I., et al., 2005. Subsurface Fracture Analysis in Carbonate Reservoirs: Kohat/Potwar Plateau, North PakistanAll Days. Pakistan Journal of Hydrocarbon Research, 17: 73–93 |
Jadoon, M. S. K., Hameed, A., Akram, M. A., et al., 2002. Simulation of Fractured Reservoir by Using Single Porosity System a Case Study. SPE Annual Technical Conference, Texas. 217–234 |
Johnson, B. D., Powell, C. M., Veevers, J. J., 1976. Spreading History of the Eastern Indian Ocean and Greater Indias Northward Flight from Antarctica and Australia. Geological Society of America Bulletin, 87(11): 1560. https://doi.org/10.1130/0016-7606(1976)871560:shotei>2.0.co;2 doi: 10.1130/0016-7606(1976)871560:shotei>2.0.co;2 |
Kazemi, H., Merrill, L. S. Jr, Porterfield, K. L., et al., 1976. Numerical Simulation of Water-Oil Flow in Naturally Fractured Reservoirs. Society of Petroleum Engineers Journal, 16(6): 317–326. https://doi.org/10.2118/5719-pa |
Kazmi, A. H., Jan, M. Q., 1997. Geology and Tectonics of Pakistan. Graphic Publishers, Oregon |
Kazmi, A. H., Rana, R. A., 1982. Tectonic Map of Pakistan 1: 2 000 000: Map Showing Structural Features and Tectonic Stages in Pakistan. Geological Survey of Pakistan, Islamabad |
Klootwijk, C. T., Gee, J. S., Peirce, J. W., et al., 1992. An Early India-Asia Contact: Paleomagnetic Constraints from Ninetyeast Ridge, ODP Leg 121. Geology, 20(5): 395–398. https://doi.org/10.1130/0091-7613(199 2)0200395:aeiacp>2.3.co;2 doi: 10.1130/0091-7613(1992)0200395:aeiacp>2.3.co;2 |
Koehn, D., Arnold, J., Passchier, C. W., 2005. Fracture and Vein Patterns as Indicators of Deformation History: A Numerical Study. Geological Society, London, Special Publications, 243(1): 11–24. https://doi.org/10.1144/gsl.sp.2005.243.01.03 |
Lai, J., Wang, G. W., Wang, S., et al., 2018. A Review on the Applications of Image Logs in Structural Analysis and Sedimentary Characterization. Marine and Petroleum Geology, 95: 139–166. https://doi.org/10.1016/j.marpetgeo.2018.04.020 |
Lamarche, J., Lavenu, A. P. C., Gauthier, B. D. M., et al., 2012. Relationships between Fracture Patterns, Geodynamics and Mechanical Stratigraphy in Carbonates (South-East Basin, France). Tectonophysics, 581: 231–245. https://doi.org/10.1016/j.tecto.2012.06.042 |
Lan, C. L., Yang, M. H., Zhang, Y. Z., 2016. Impact of Sequence Stratigraphy, Depositional Facies and Diagenesis on Reservoir Quality: A Case Study on the Pennsylvanian Taiyuan Sandstones, Northeastern Ordos Basin, China. Marine and Petroleum Geology, 69: 216–230. https://doi.org/10.1016/j.marpetgeo.2015.09.009 |
Lavenu, A. P. C., Lamarche, J., Gallois, A., et al., 2013. Tectonic Versus Diagenetic Origin of Fractures in a Naturally Fractured Carbonate Reservoir Analog (Nerthe Anticline, Southeastern France). AAPG Bulletin, 97(12): 2207–2232. https://doi.org/10.1306/04041312225 |
Lavenu, A. P. C., Lamarche, J., Salardon, R., et al., 2014. Relating Background Fractures to Diagenesis and Rock Physical Properties in a Platform-Slope Transect. Example of the Maiella Mountain (Central Italy). Marine and Petroleum Geology, 51: 2–19. https://doi.org/10.1 016/j.marpetgeo.2013.11.012 doi: 10.1016/j.marpetgeo.2013.11.012 |
Le Fort, P., 1975. Himalayas: The Collided Range. Present Knowledge of the Continental Arc. American Journal of Science, 275(1): 1–44 |
Loreau, J. P., Durlet, C., Zimmerle, W., 1999. Diagenetic Stratigraphy of Discontinuity Surfaces: An Application to Paleoenvironments and Sequence Stratigraphy. Neues Jahrbuch fur Geologie und Palaontologie, 1: 381–407 |
Meyers, W. J., 1974. Carbonate Cement Stratigraphy of the Lake Valley Formation (Mississippian) Sacramento Mountains, New Mexico. SEPM Journal of Sedimentary Research, 44(3): 837–861. https://doi.org/10.1306/212f6bc2-2b24-11d7-8648000102c1865d |
Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419–426 |
Moore, C., Wade, W. J., 2013. Carbonate Reservoirs: Porosity and Diagenesis in a Sequence Stratigraphic Framework. Elsevier Scientific Publ. Co., New York |
Nelson, R., 2001. Geologic Analysis of Naturally Fractured Reservoirs. Elsevier |
Olierook, H. K. H., Timms, N. E., Hamilton, P. J., 2014. Mechanisms for Permeability Modification in the Damage Zone of a Normal Fault, Northern Perth Basin, Western Australia. Marine and Petroleum Geology, 50: 130–147. https://doi.org/10.1016/j.marpetgeo.2013.10.012 |
Olson, J. E., Laubach, S. E., Lander, R. H., 2009. Natural Fracture Characterization in Tight Gas Sandstones: Integrating Mechanics and Diagenesis. AAPG Bulletin, 93(11): 1535–1549. https://doi.org/10.130 6/08110909100 doi: 10.1306/08110909100 |
Paterson, M. S., 1978. Experimental Rock Deformation: The Brittle Field. Springer, Berlin. 254 |
Pivnik, D. A., Wells, N. A., 1996. The Transition from Tethys to the Himalaya as Recorded in Northwest Pakistan. Geological Society of America Bulletin, 108(10): 1295–1313. https://doi.org/10.1130/0016-7 606(1996)1081295:ttfttt>2.3.co;2 doi: 10.1130/0016-7606(1996)1081295:ttfttt>2.3.co;2 |
Pollard, D. D., Aydin, A., 1988. Progress in Understanding Jointing over the Past Century. Geological Society of America Bulletin, 100(8): 1181–1204. https://doi.org/10.1130/0016-7606(1988)1001181:piujot>2.3.co;2 doi: 10.1130/0016-7606(1988)1001181:piujot>2.3.co;2 |
Rashid, F., Glover, P. W. J., Lorinczi, P., et al., 2017. Microstructural Controls on Reservoir Quality in Tight Oil Carbonate Reservoir Rocks. Journal of Petroleum Science and Engineering, 156: 814–826. https://doi.org/10.1016/j.petrol.2017.06.056 |
Rashid, F., Hussein, D., Lawrence, J. A., et al., 2020. Characterization and Impact on Reservoir Quality of Fractures in the Cretaceous Qamchuqa Formation, Zagros Folded Belt. Marine and Petroleum Geology, 113: 104117. https://doi.org/10.1016/j.marpetgeo.2019.104117 |
Rotevatn, A., Fossen, H., Hesthammer, J., et al., 2007. Are Relay Ramps Conduits for Fluid Flow? Structural Analysis of a Relay Ramp in Arches National Park, Utah. Geological Society, London, Special Publications, 270(1): 55–71. https://doi.org/10.1144/gsl.sp.2007.270.01.04 |
Sercombe, W. J., Pivnik, D. A., Wilson, W. P., et al., 1998. Wrench Faulting in the Northern Pakistan Foreland. AAPG Bulletin, 82 (11): 2003–2030 https://doi.org/10.1306/00aa7bd0-1730-11d7-8645000102c1865d |
Shah, S. M. I., 2009. Stratigraphy of Pakistan. Geologyical Survey of Pakistan, 22: 2539 |
Voorn, M., Exner, U., Barnhoorn, A., et al., 2015. Porosity, Permeability and 3D Fracture Network Characterisation of Dolomite Reservoir Rock Samples. Journal of Petroleum Science and Engineering, 127: 270–285. https://doi.org/10.1016/j.petrol.2014.12.019 |
Wilson, J. L., 1975. Carbonate Facies in Geologic History Springer-Verlag. New York. 471 |
Wilson, J. L., 1980. Limestone and Dolomite Reservoirs. Pet. Geol. (Engl. Transl.), 2: 5969468 |
Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth-Science Reviews, 76(1/2): 1–131. https://doi.org/10.1016/j.earscirev.2005.05.004 |
Zahm, C. K., Hennings, P. H., 2009. Complex Fracture Development Related to Stratigraphic Architecture: Challenges for Structural Deformation Prediction, Tensleep Sandstone at the Alcova Anticline, Wyoming. AAPG Bulletin, 93(11): 1427–1446. https://doi.org/10.1306/08040909110 |
Zebari, M. M., Burberry, C. M., 2015. 4-D Evolution of Anticlines and Implications for Hydrocarbon Exploration within the Zagros Fold-Thrust Belt, Kurdistan Region, Iraq. GeoArabia, 20(1): 161–188. https://doi.org/10.2113/geoarabia2001161 |