Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 2
Apr 2023
Turn off MathJax
Article Contents
Yu Huang, Hao Shi, Bei Zhang. Crown-Like Baffle System against Rock Avalanches: Energy Dissipation Mechanism and Numerical Verification. Journal of Earth Science, 2023, 34(2): 304-315. doi: 10.1007/s12583-021-1571-3
Citation: Yu Huang, Hao Shi, Bei Zhang. Crown-Like Baffle System against Rock Avalanches: Energy Dissipation Mechanism and Numerical Verification. Journal of Earth Science, 2023, 34(2): 304-315. doi: 10.1007/s12583-021-1571-3

Crown-Like Baffle System against Rock Avalanches: Energy Dissipation Mechanism and Numerical Verification

doi: 10.1007/s12583-021-1571-3
Funds:

the National Natural Science Foundation of China 41831291

More Information
  • Corresponding author: Yu Huang, yhuang@tongji.edu.cn
  • Received Date: 23 Aug 2021
  • Accepted Date: 21 Oct 2021
  • Issue Publish Date: 30 Apr 2023
  • In mountainous areas, rock avalanches swarm downslope leading to large impact forces on structures. Baffle systems are usually set up in torrent channels to dissipate the flow energy and reduce the destructive effects. In this paper, a crown-like baffle system is proposed to better dissipate the flow energy. The energy dissipation mechanism of this system was investigated based on DEM. The results reveal more than 90% of the kinetic energy of the granular flow was dissipated by particle-particle interaction. Two effects, the impedance effect and the deflection effect, were identified. The influence of these effects leads to the formation and growth of cushions behind the baffles, and these cushions enhance the particle-particle interaction. Two crown-like baffle systems were compared with a conventional baffle system based on the typical avalanche model. The results reveal the cumulative residual kinetic energy of the crown-like baffle system with square baffles decreased by 18.75% with the same concrete consumption as the conventional baffle system. For the crown-like baffle system with triangular baffles, the cumulative residual kinetic energy decreased by 6.22% with 83.94% of the concrete consumption of the conventional baffle system. Hence, the proposed baffle system is more cost-effective compared with the conventional baffle system.

     

  • loading
  • Bi, Y. Z., Du, Y. J., He, S. M., et al., 2018. Numerical Analysis of Effect of Baffle Configuration on Impact Force Exerted from Rock Avalanches. Landslides, 15(5): 1029–1043. https://doi.org/10.1007/s10346-018-097 9-z doi: 10.1007/s10346-018-0979-z
    Choi, C. E., Cui, Y., Liu, L. H. D., et al., 2017. Impact Mechanisms of Granular Flow Against Curved Barriers. Géotechnique Letters, 7(4): 330–338. https://doi.org/10.1680/jgele.17.00068
    Choi, C. E., Ng, C. W. W., Song, D., et al., 2014. Flume Investigation of Landslide Debris–Resisting Baffles. Canadian Geotechnical Journal, 51(5): 540–553. https://doi.org/10.1139/cgj-2013-0115
    Choi, C. E., Ng, C. W. W., Law, R. P. H., et al., 2015. Computational Investigation of Baffle Configuration on Impedance of Channelized Debris Flow. Canadian Geotechnical Journal, 52(2): 182–197. https://doi.org/10.1139/cgj-2013-0157
    Choi, C. E., Ng, C. W. W., Goodwin, G. R., et al., 2016. Flume Investigation of the Influence of Rigid Barrier Deflector Angle on Dry Granular Overflow Mechanisms. Canadian Geotechnical Journal, 53(10): 1751–1759. https://doi.org/10.1139/cgj-2015-0248
    Dang, B. L., Nguyen-Ngoc, H., Hoang, T. D., et al., 2019. Numerical Investigation of Novel Prefabricated Hollow Concrete Blocks for Stepped-Type Seawall Structures. Engineering Structures, 198: 109558. https://doi.org/10.1016/j.engstruct.2019.109558
    Daoud, M., Williams, C. E., 1999. Soft Matter Physics. Springer, Berlin. 320
    Delannay, R., Valance, A., Mangeney, A., et al., 2017. Granular and Particle-Laden Flows: From Laboratory Experiments to Field Observations. Journal of Physics D: Applied Physics, 50(5): 053001. https://doi.org/10.1088/1361-6463/50/5/053001
    DEM Solutions (2020) EDEM 2020.1 Document. Edinburgh
    Fei, J. B., Jie, Y. X., Sun, X. H., et al., 2020. Experimental Investigation on Granular Flow Past Baffle Piles and Numerical Simulation Using a Μ(I)-Rheology-Based Approach. Powder Technology, 359: 36–46. https://doi.org/10.1016/j.powtec.2019.09.069
    Goodwin, S. R., Choi, C. E., 2020. Slit Structures: Fundamental Mechanisms of Mechanical Trapping of Granular Flows. Computers and Geotechnics, 119: 103376. https://doi.org/10.1016/j.compgeo.201 9.103376 doi: 10.1016/j.compgeo.2019.103376
    van der Gucht, J., 2018. Grand Challenges in Soft Matter Physics. Frontiers in Physics, 6: 6–8. https://doi.org/10.3389/fphy.2018.00087
    Hu, M. B., Liu, Q. Y., Jiang, R., et al., 2015. Phase Transition and Flow-Rate Behavior of Merging Granular Flows. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 91(2): 022206. https://doi.org/10.1103/physreve.91.022206
    Huang, Y., Zhang, B., Zhu, C. Q., 2021. Computational Assessment of Baffle Performance Against Rapid Granular Flows. Landslides, 18(1): 485–501. https://doi.org/10.1007/s10346-020-01511-6
    Hungr, O., Evans, S. G., Bovis, M. J., et al., 2001. A Review of the Classification of Landslides of the Flow Type. Environmental and Engineering Geoscience, 7(3): 221–238. https://doi.org/10.2113/gsee geosci.7.3.221 doi: 10.2113/gseegeosci.7.3.221
    Jiang, Y. J., Fan, X. Y., Li, T. H., et al., 2018. Influence of Particle-Size Segregation on the Impact of Dry Granular Flow. Powder Technology, 340: 39–51. https://doi.org/10.1016/j.powtec.2018.09.014
    Jiang, Y. J., Towhata, I., 2013. Experimental Study of Dry Granular Flow and Impact Behavior Against a Rigid Retaining Wall. Rock Mechanics and Rock Engineering, 46(4): 713–729. https://doi.org/10.1007/s0060 3-012-0293-3 doi: 10.1007/s00603-012-0293-3
    Khan, A., Verma, S., Hankare, P., et al., 2020. Shock-Shock Interactions in Granular Flows. Journal of Fluid Mechanics, 884: 1–13. https://doi.org/10.1017/jfm.2019.988
    Kwan, J. S. H., Koo, R. C. H., Ng, C. W. W., 2015. Landslide Mobility Analysis for Design of Multiple Debris-Resisting Barriers. Canadian Geotechnical Journal, 52(9): 1345–1359. https://doi.org/10.1139/cgj-2014-0152
    Law, R. P. H., Choi, C. E., Ng, C. W. W., 2016. Discrete-Element Investigation of Influence of Granular Debris Flow Baffles on Rigid Barrier Impact. Canadian Geotechnical Journal, 53(1): 179–185. https://doi.org/10.1139/cgj-2014-0394
    Li, X. P., Yan, Q. W., Zhao, S. X., et al., 2020. Investigation of Influence of Baffles on Landslide Debris Mobility by 3D Material Point Method. Landslides, 17(5): 1129–1143. https://doi.org/10.1007/s10346-020-013 46-1 doi: 10.1007/s10346-020-01346-1
    Mancarella, D., Hungr, O., 2010. Analysis of Run-up of Granular Avalanches Against Steep, Adverse Slopes and Protective Barriers. Canadian Geotechnical Journal, 47(8): 827–841. https://doi.org/10.1139/t09-143
    Matthew R. K., 2017. Granular Geomechanics. Elsevier, 274
    Mead, S. R., Cleary, P. W., 2015. Validation of DEM Prediction for Granular Avalanches on Irregular Terrain. Journal of Geophysical Research: Earth Surface, 120(9): 1724–1742. https://doi.org/10.1002/2014jf003331
    MOHURD (Ministry of Housing and Urban-Rural Development of the People's Republic of China), 2010. GB 50010-2010: Code for design of concrete structures. SAC, Beijing, China (in Chinese)
    Ng, C. W. W., Choi, C. E., Kwan, J. S. H., et al., 2014. Effects of Baffle Transverse Blockage on Landslide Debris Impedance. Procedia Earth and Planetary Science, 9: 3–13. https://doi.org/10.1016/j.proeps.20 14.0 6.012 doi: 10.1016/j.proeps.2014.06.012
    Ng, C. W. W., Choi, C. E., Song, D., et al., 2015. Physical Modeling of Baffles Influence on Landslide Debris Mobility. Landslides, 12(1): 1–18. https://doi.org/10.1007/s10346-014-0476-y
    Ng, C. W. W., Choi, C. E., Goodwin, S. R., et al., 2017. Interaction between Dry Granular Flow and Deflectors. Landslides, 14(4): 1375–1387. https://doi.org/10.1007/s10346-016-0794-3
    Salciarini, D., Tamagnini, C., Conversini, P., 2010. Discrete Element Modeling of Debris-Avalanche Impact on Earthfill Barriers. Physics and Chemistry of the Earth, Parts A/B/C, 35(3/4/5): 172–181. https://doi.org/10.1016/j.pce.2009.05.002
    Shen, W. G., Zhao, T., Zhao, J. D., et al., 2018. Quantifying the Impact of Dry Debris Flow Against a Rigid Barrier by DEM Analyses. Engineering Geology, 241: 86–96. https://doi.org/10.1016/j.engge o.2018.05.011 doi: 10.1016/j.enggeo.2018.05.011
    Sosio, R., Crosta, G. B., Hungr, O., 2008. Complete Dynamic Modeling Calibration for the Thurwieser Rock Avalanche (Italian Central Alps). Engineering Geology, 100(1/2): 11–26. https://doi.org/10.1016/j.enggeo.2 008.02.012 doi: 10.1016/j.enggeo.2008.02.012
    Suda, J., Strauss, A., Rudolf-Miklau, F., et al., 2009. Safety Assessment of Barrier Structures. Structure and Infrastructure Engineering, 5(4): 311–324. https://doi.org/10.1080/15732470701189498
    Tiago, P., Júlio, E., 2010. Case Study: Damage of an RC Building after a Landslide—Inspection, Analysis and Retrofitting. Engineering Structures, 32(7): 1814–1820. https://doi.org/10.1016/j.engstruct.20 10.02.018 doi: 10.1016/j.engstruct.2010.02.018
    Wang, D. P., Li, Q. Z., Bi, Y. Z., et al., 2020. Effects of New Baffles System under the Impact of Rock Avalanches. Engineering Geology, 264: 105261. https://doi.org/10.1016/j.enggeo.2019.105261
    Wang, D. P., Li, Q. Z., Bi, Y. Z., et al., 2020b. Optimal Layout of a New Type of Baffle Based on High-Risk Areas of Rock Avalanches. Rock and Soil Mechanics, 41(4): 1323–1365 (in Chinese with English Abstract)
    Wang, W. P., Yin, Y. P., Yang, L. W., et al., 2020. Investigation and Dynamic Analysis of the Catastrophic Rockslide Avalanche at Xinmo, Maoxian, after the Wenchuan Ms 8.0 Earthquake. Bulletin of Engineering Geology and the Environment, 79(1): 495–512. https://doi.org/10.1007/s10064-019-01557-4
    Zhang, L. R., Nguyen, N. G. H., Lambert, S., et al., 2017. The Role of Force Chains in Granular Materials: From Statics to Dynamics. European Journal of Environmental and Civil Engineering, 21(7/8): 874–895. https://doi.org/10.1080/19648189.2016.1194332
    Zhang, X., Wang, X. Y., Chen, W. S., et al., 2021. Numerical Study of Rockfall Impact on Bridge Piers and Its Effect on the Safe Operation of High-Speed Trains. Structure and Infrastructure Engineering, 17(1): 1–19. https://doi.org/10.1080/15732479.2020.1730406
    Zhao, Y. D., Shi, Y., Wu, F. H., 2020. Preliminary Analyses of a Catastrophic Rock Avalanche that Occurred in Ganluo County, Sichuan Province, China. Landslides, 17(6): 1515–1517. https://doi.org/10.1007/s10346-020-01412-8
    Zhou, G. G. D., Du, J. H., Song, D. R., et al., 2020. Numerical Study of Granular Debris Flow Run-up Against Slit Dams by Discrete Element Method. Landslides, 17(3): 585–595. https://doi.org/10.1007/s10346-019-01287-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Article Metrics

    Article views(311) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return