Citation: | Haissen Faouziya, Montero Pilar, Molina Jose Francisco, Lodeiro Francisco, Mouttaqi Abdellah, Chaib Mustapha, Bea Fernando. Meso-Archean to Mid-Paleozoic Granitoids in Oulad Dlim Massif (the Pericratonic Terrane of the Reguibat Shield, West African Craton, Morocco): Petrology, Geochemistry, Geochronology and Geological Implications. Journal of Earth Science, 2022, 33(5): 1152-1165. doi: 10.1007/s12583-021-1591-z |
The Oulad Dlim Massif, adjacent to the Reguibat Shield in South Morocco was considered up to now as part of the Variscan belt (Mauritanides) with a polyphase geologic history and a complex geodynamic evolution implicating oceans closures and accretion of exotic terranes (Avalonian and Meguman) during the Variscan–Alleghanian orogeny. The use of modern technology to characterize the petrology, the geochemistry and the geochronology of the lithological units forming this region, combined to field surveys has led to an updated geological architecture and different geological history. The Oulad Dlim Massif is mainly a deformed Archean terrane, as recorded by its eastern and western sectors, dominated in its central part by a bimodal felsic-mafic magmatism forming the Ediacaran sector. The study of these magmatic complexes supports strongly the intracontinental origin of this bimodal magmatism vs. the oceanic origin published before in literature. The exploration of this massif conducted also to the identification of a Silurian–Devonian sector in the western part. Therefore, up to date, different magmatic events lasting from the Meso-Archean to the Cretaceous are recorded in the Oulad Dlim Massif rocks, among them different generations of granitoids are reported. New data on granitoids from the Ediacaran sector are presented in this paper. This recent data demonstrates that Oulad Dlim Massif has been affected by the main Ediacaran–Cambrian extensional event widely documented in other structural domains of Morocco and other parts of North Gondwana. Additionally, the study of the Silurian–Devonian sector rocks highlighted the presence of a Caledonian tectonic event challenging the ideas about the paleogeography of this part of northwestern Africa and its geological evolution during the Paleozoic. However, despite the significant contribution of this extensive survey and the abundance of data on the Oulad Dlim Massif, more studies are required to reconstruct the puzzle at plate tectonic scale.
Alia-Medina, M., 1949a. El Sahara Espanol, 2e part. Estudio Geologico, Instituto de Estudios Africanos, Madrid |
Alia-Medina, M., 1949b. Contributional Conocimiento Geomorfologico de las Zonas del Sahara Espanol. Consejo Superior de Investigationes Cienticas. Instituto de Estudios Africanos, Madrid |
Alia-Medina, M., 1952. Bosquejo Geologico del Sahara Espanol. 1 Sheet 1 : 2 000 000. Direccion General de Marruecos y Colonias, Instituto de Estudios Africanos. Servicio Geologico del Africa Occidental Espanola |
Alia-Medina, M., 1958. Esquema Geologico del Sahara Espanol. Instituto de Estudios Africanos, Madrid |
Alia-Medina, M., 1960. La tectonica del Sahara Espanol. In: 21th International Geological Congress, Norden Copenhagen XVIII, 193–202 |
Álvaro, J. J., Bellido, F., Gasquet, D., et al., 2014. Diachronism in the Late Neoproterozoic–Cambrian Arc-Rift Transition of North Gondwana: A Comparison of Morocco and the Iberian Ossa-Morena Zone. Journal of African Earth Sciences, 98: 113–132. https://doi.org/10.1016/j.jafrearsci.2014.03.024 |
Amelin, Y., Davis, W. J., 2005. Geochemical Test for Branching Decay of 176Lu. Geochimica et Cosmochimica Acta, 69(2): 465–473. https://doi.org/10.1016/j.gca.2004.04.028 |
Arribas, A., 1960. Las Formaciones Metamorficas del Sahara Espanol y sus Relationes con el Precambrico de Otras Regiones Africanas. Rep. 21st International Geological Congress, Norden 1960, Copenhagen, Denmark, Part Ⅸ, 193–202 |
Arribas, A., 1968. El Precámbrico Del Sahara Español y Sus Relaciones Con Las Series Sedimentarias Más Modernas. Bol. Geológico y Minero, 445–480 |
Bea, F., Castañón, C. L. G., Fershtater, G. B., 2000. A Systematic Typology of Granitoid Rocks from Major Element Composition: Ⅰ, the Upper Silica Range. Boletin Sociedad Espanola Mineralogia, 23: 121–133 |
Bea, F., Fershtater, G. B., Montero, P., et al., 2005. Deformation-Driven Differentiation of Granitic Magma: The Stepninsk Pluton of the Uralides, Russia. Lithos, 81(1/2/3/4): 209–233. https://doi.org/10.1016/j.lithos.2004.10.004 |
Bea, F., Montero, P., Haissen, F., et al., 2013. 2.46 Ga Kalsilite and Nepheline Syenites from the Awsard Pluton, Reguibat Rise of the West African Craton, Morocco. Generation of Extremely K-Rich Magmas at the Archean-Proterozoic Transition. Precambrian Research, 224: 242–254. https://doi.org/10.1016/j.precamres.2012.09.024 |
Bea, F., Montero, P., Haissen, F., et al., 2014. Kalsilite-Bearing Plutonic Rocks: The Deep-Seated Archean Awsard Massif of the Reguibat Rise, South Morocco, West African Craton. Earth-Science Reviews, 138: 1–24. https://doi.org/10.1016/j.earscirev.2014.08.003 |
Bea, F., Montero, P., Haissen, F., et al., 2016. First Evidence for Cambrian Rift-Related Magmatism in the West African Craton Margin: The Derraman Peralkaline Felsic Complex. Gondwana Research, 36: 423–438. https://doi.org/10.1016/j.gr.2015.07.017 |
Bea, F., Montero, P., Haissen, F., et al., 2020. The Archean to Late-Paleozoic Architecture of the Oulad Dlim Massif, the Main Gondwanan Indenter during the Collision with Laurentia. Earth-Science Reviews, 208: 103273. https://doi.org/10.1016/j.earscirev.2020.103273 |
Bea, F., Montero, P., Molina, J. F., et al., 2018. Lu-Hf Ratios of Crustal Rocks and Their Bearing on Zircon Hf Isotope Model Ages: The Effects of Accessories. Chemical Geology, 484: 179–190. https://doi.org/10.1016/j.chemgeo.2017.11.034 |
Benaouda, R., Kraemer, D., Sitnikova, M., et al., 2020a. Discovery of High-Grade REE-Nb-Fe Mineralization Associated with Calciocarbonatite in South Morocco. Ore Geology Reviews, 124: 103631. https://doi.org/10.1016/j.oregeorev.2020.103631 |
Benaouda, R., Kraemer, D., Sitnikova, M., et al., 2020b. Thorium-Poor Monazite and Columbite-(Fe) Mineralization in the Gleibat Lafhouda Carbonatite and Its Associated Iron-Oxide-Apatite Deposit of the Ouled Dlim Massif, South Morocco. Gondwana Research, 77: 19–39. https://doi.org/10.1016/j.gr.2019.06.011 |
Black, L. P., Kamo, S. L., Allen, C. M., et al., 2003. TEMORA 1: A New Zircon Standard for Phanerozoic U-Pb Geochronology. Chemical Geology, 200(1/2): 155–170. https://doi.org/10.1016/s0009-2541(03)00165-7 |
Black, L. P., Kamo, S. L., Allen, C. M., et al., 2004. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology, 205(1/2): 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003 |
Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2): 48–57. https://doi.org/10.1016/j.epsl.2008.06.010 |
Brönner, G., Marchand, J., Sougy, J., 1985. Carte Géologique du Maroc 1: 1.000.000, feuille Sud. Notes et Mémoires 260. Editions du Service Géologique du Maroc |
Charlot, R., Rhalib, M., Tisserant, D., 1973. Etude Géochronologique Préliminaire des Granites de la Région de Rabat–Tiflet (Maroc Occidental). Notes et Mém. Serv. Géol. Maroc, 249: 55–58 |
Cumming, G. L., Richards, J. R., 1975. Ore Lead Isotope Ratios in a Continuously Changing Earth. Earth and Planetary Science Letters, 28(2): 155–171. https://doi.org/10.1016/0012-821x(75)90223-x |
De la Vina, J., Munoz-Cabezon, C., 1958. Mapa Geologico del Sahara Espanol y Zonas Limitrofes 1 : 500 000. Instituto Geologico y Minero de Espana |
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 |
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033 |
Gärtner, A., Villeneuve, M., Linnemann, U., et al., 2013. An Exotic Terrane of Laurussian Affinity in the Mauritanides and Souttoufides (Moroccan Sahara). Gondwana Research, 24(2): 687–699. https://doi.org/10.1016/j.gr.2012.12.019 |
Gärtner, A., Villeneuve, M., Linnemann, U., et al., 2016. History of the West African Neoproterozoic Ocean: Key to the Geotectonic History of Circum-Atlantic Peri-Gondwana (Adrar Souttouf Massif, Moroccan Sahara). Gondwana Research, 29(1): 220–233. https://doi.org/10.1016/j.gr.2014.11.011 |
Gouiza, M., Bertotti, G., Andriessen, P. A. M., 2018. Mesozoic and Cenozoic Thermal History of the Western Reguibat Shield (West African Craton). Terra Nova, 30(2): 135–145. https://doi.org/10.1111/ter.12318 |
Govindaraju, K., Potts, P. J., Webb, P. C., et al., 1994. Report on Whin Sill Dolerite Ws-E from England and Pitscurrie Microgabbro Pm-S from Scotland: Assessment by one Hundred and Four International Laboratories. Geostandards Newsletter, 18(2): 211–300. https://doi.org/10.1111/j.1751-908x.1994.tb00520.x |
Haissen, F., Cambeses, A., Montero, P., et al., 2017. The Archean Kalsilite-Nepheline Syenites of the Awsard Intrusive Massif (Reguibat Shield, West African Craton, Morocco) and Its Relationship to the Alkaline Magmatism of Africa. Journal of African Earth Sciences, 127: 16–50. https://doi.org/10.1016/j.jafrearsci.2016.08.019 |
Haissen, F., Montero, P., Cambeses, A., et al., 2018. Petrogenesis of Derraman Peralkaline Granite (Oulad Dlim Massif, West African Craton Margin, Morocco): New Constraints from Zircon Hf and O Isotopic Compositions. Comptes Rendus Geoscience, 350(6): 236–244. https://doi.org/10.1016/j.crte.2018.06.007 |
Haissen, F., Montero, P., Molina, J. F., et al., 2019. Bimodal Felsic-Mafic Ediacaran Magmatism in the Pericratonic Terranes of the Reguibat Rise (West African Craton, Morocco): Petrology, Geochemistry and Geochronology of the Felsic Side. 9th Hutton Symposium, 14–19 October, Nanjing |
Ickert, R. B., Hiess, J., Williams, I. S., et al., 2008. Determining High Precision, in situ, Oxygen Isotope Ratios with a SHRIMP Ⅱ: Analyses of MPI-DING Silicate-Glass Reference Materials and Zircon from Contrasting Granites. Chemical Geology, 257(1/2): 114–128. https://doi.org/10.1016/j.chemgeo.2008.08.024 |
Lenz, O., 1882. Geologische Karte von West-Afrika, 1: 12 500 000. Petermann's Geographische Mittheilungen28, Tafel I |
Le Prêtre, R., 2015. Evolution Phanérozoïque Du Craton Ouest Africain et de Ses Bordures Nord et Ouest: [Dissertation]. Université Paris-Sud, Paris |
Letsch, D., Large, S. J. E., Buechi, M. W., et al., 2018. Ediacaran Glaciations of the West African Craton-Evidence from Morocco. Precambrian Research, 310: 17–38. https://doi.org/10.1016/j.precamres.2018.02.015 |
Martin, R. F., 2006. A-Type Granites of Crustal Origin Ultimately Result from Open-System Fenitization-Type Reactions in an Extensional Environment. Lithos, 91(1/2/3/4): 125–136. https://doi.org/10.1016/j.lithos.2006.03.012 |
Michard, A., Soulaimani, A., Hoepffner, C., et al., 2010. The South-Western Branch of the Variscan Belt: Evidence from Morocco. Tectonophysics, 492(1/2/3/4): 1–24. https://doi.org/10.1016/j.tecto.2010.05.021 |
Molina, J. F., Bea, F., Montero, P., et al., 2018. High-P Amphibolite-Facies Metamorphism in the Adrar-Souttouf Metamafic Complex, Oulad Dlim Massif (West African Craton Margin, Morocco). Comptes Rendus Geoscience, 350(6): 245–254. https://doi.org/10.1016/j.crte.2018.05.005 |
Montero, P., Bea, F., Haissen, F., et al., 2017a. The Gareg Granites: First Evidence for an Archean Core in the Oulad Dlim. West African Craton and Margins International Workshop WACMA1, Dakhla Morocco, 24–29 April |
Montero, P., Bea, F., Haissen, F., et al., 2017b. Dorsale Reguibat et Massif des Oulad Dlim, l'avancee des Connaisances. Geologues, 194: 1–5 |
Montero, P., Bea, F., Haissen, F., et al., 2019. Granites Show the First Evidence of a Caledonian Orogenic Belt in Western Africa. 9th Hutton Symposium, 14–19 October, Nanjing. http://doi.org/10.13140/rg.2.2.29747.04643 |
Montero, P., Floor, P., Corretge, G., 1998. The Accumulation of Rare-Earth and High-Fieldstrength Elements in Peralkaline Granitic Rocks: The Galineiro Orthogneissic Complex, Northwestern Spain. Canadian Mineralogist, 36(3): 683–700. https://pubs.geoscienceworld.org/minmag/article/85608/t-goldschmidt-abstracts-2013 https://pubs.geoscienceworld.org/minmag/article/85608/t-goldschmidt-abstracts-2013 |
Montero, P., Haissen, F., Archi, A. E., et al., 2014. Timing of Archean Crust Formation and Cratonization in the Awsard-Tichla Zone of the NW Reguibat Rise, West African Craton: A SHRIMP, Nd-Sr Isotopes, and Geochemical Reconnaissance Study. Precambrian Research, 242: 112–137. https://doi.org/10.1016/j.precamres.2013.12.013 |
Montero, P., Haissen, F., Mouttaqi, A., et al., 2016. Contrasting SHRIMP U-Pb Zircon Ages of Two Carbonatite Complexes from the Peri-Cratonic Terranes of the Reguibat Shield: Implications for the Lateral Extension of the West African Craton. Gondwana Research, 38: 238–250. https://doi.org/10.1016/j.gr.2015.12.005 |
O'Connor, J. T., 1965. A Classification of Quartz-Rich Igneous Rocks Based on Feldspar Ratio. US Geological Survey Professional Paper, 525: 79–84 |
Patchett, P. J., Tatsumoto, M, 1981. A Routine High-Precision Method for Lu-Hf Isotope Geochemistry and Chronology. Contributions to Mineralogy and Petrology, 75(3): 263–267. https://doi.org/10.1007/bf01166766 |
Paton, C., Hellstrom, J., Paul, B., et al., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 26(12): 2508–2518. https://doi.org/10.1039/c1ja10172b |
Pouclet, A., El Hadi, H., Álvaro, J. J., et al., 2018. Review of the Cambrian Volcanic Activity in Morocco: Geochemical Fingerprints and Geotectonic Implications for the Rifting of West Gondwana. International Journal of Earth Sciences, 107(6): 2101–2123. https://doi.org/10.1007/s00531-018-1590-1 |
Quiroga, D. F., 1886. Geologia y Geografia del Sahara Occidental: Estructura y Formacion del Sahara Occidental; Observaciones al Mapa de Lenz, con notas Geograficas de Cervera. Revista de Geografia Comercial, 2(25–30): 63–66 |
Quiroga, D. F., 1889. Observaciones Geologicas Hechas en el S_ahara Occidental. Anales de la Sociedad Espanola de Historia Natural, 18: 313–393 |
Rjimati, E., Michard, A., Sadiqqi, O., 2011. Anti-Atlas Occidental et Provinces Sahariennes. In: Nouveaux Guides Geologiques et Miniers du Maroc. Notes et Memoires du Service Geologique du Maroc, 6: 9–95 |
Rjimati, E., Zemmouri, A., 2002. Memoire Explicatif de la Carte Geologique du Maroc, Feuille d'Awsard. Notes et Memoires du Service Geologique du Maroc, 439 |
Rjimati, E., Zemmouri, A., Benlakhdim, A. H. M., et al., 2009. Carte Geologique du Maroc au 1/50 000. Feuille d' Awsard |
Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the Lutetium Hafnium Clock. Science, 293: 683–687 doi: 10.1126/science.1061372 |
Soderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth Planet. Sci. Lett., 219(3): 311–324. https://doi.org/10.1016/s0012-821x(04)00012-3 |
Sougy, J., 1962. West African Fold Belt. Geological Society of America Bulletin, 73(7): 871–876. https://doi.org/10.1130/0016-7606(1962)73[871:wafb]2.0.co;2 |
Sougy, J., 1962b. Contribution a L'etude Geologique des Guelb Bou Leriah (Region d'Aoucert, Sahara Espagnol). Bulletin de la Société Géologique de France, S7-IV(3): 436–445. https://doi.org/10.2113/gssgfbull.s7-iv.3.436 |
Sougy, J., Brönner, G., 1969. Nappes Hercyniennes au Sahara Espagnol Meridional (Troncon Nord des Mauritanides). Ann. Fac. Sc. Univ. Clermont, 41: 75–76 |
Soulaimani, A., Ouanaimi, H., Saddiqi, O., et al., 2018. The Anti-Atlas Pan-African Belt (Morocco): Overview and Pending Questions. Comptes Rendus Geoscience, 350(6): 279–288. https://doi.org/10.1016/j.crte.2018.07.002 |
Tahiri, A., Montero, P., Hadi, H. E., et al., 2010. Geochronological Data on the Rabat-Tiflet Granitoids: Their Bearing on the Tectonics of the Moroccan Variscides. Journal of African Earth Sciences, 57(1/2): 1–13. https://doi.org/10.1016/j.jafrearsci.2009.07.005 |
Vervoort, J. D., Kemp, A. I. S., 2016. Clarifying the Zircon Hf Isotope Record of Crust-Mantle Evolution. Chemical Geology, 425: 65–75. https://doi.org/10.1016/j.chemgeo.2016.01.023 |
Villeneuve, M., Bellon, H., El Archi, A., et al., 2006. Événements Panafricains Dans l'Adrar Souttouf (Sahara Marocain). Comptes Rendus Geoscience, 338(5): 359–367. https://doi.org/10.1016/j.crte.2006.02.008 |
Villeneuve, M., Gärtner, A., Youbi, N., et al., 2015. The Southern and Central Parts of the"Souttoufide" Belt, Northwest Africa. Journal of African Earth Sciences, 112: 451–470. https://doi.org/10.1016/j.jafrearsci.2015.04.016 |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202 |
Wiedenbeck, M., Hanchar, J. M., Peck, W. H., et al., 2004. Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, 28(1): 9–39. https://doi.org/10.1111/j.1751-908x.2004.tb01041.x |
Williams, I. S., Claesson, S., 1987. Isotopic Evidence for the Precambrian Prove-Nance and Caledonian Metamorphism of High Grade Paragneisses from the SeveNappes Scandinavian Caledonides. Ⅱ: Ion Microprobe Zircon U-Th-Pb. Mineralogy and Petrology, 97: 205–217 doi: 10.1007/BF00371240 |