Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 5
Oct 2023
Turn off MathJax
Article Contents
Tieniu Wu, Antai Cheng, Henry Lin, Hailin Zhang, Yi Jie. Climatic Fluctuation of Marine Isotope Stage 9: A Case Study in the Southern Margin of the Chinese Loess Plateau. Journal of Earth Science, 2023, 34(5): 1556-1566. doi: 10.1007/s12583-022-1610-8
Citation: Tieniu Wu, Antai Cheng, Henry Lin, Hailin Zhang, Yi Jie. Climatic Fluctuation of Marine Isotope Stage 9: A Case Study in the Southern Margin of the Chinese Loess Plateau. Journal of Earth Science, 2023, 34(5): 1556-1566. doi: 10.1007/s12583-022-1610-8

Climatic Fluctuation of Marine Isotope Stage 9: A Case Study in the Southern Margin of the Chinese Loess Plateau

doi: 10.1007/s12583-022-1610-8
More Information
  • Corresponding author: Tieniu Wu, wutieniu01@ccnu.edu.cn
  • Received Date: 29 Jul 2021
  • Accepted Date: 14 Oct 2021
  • Available Online: 14 Oct 2023
  • Issue Publish Date: 30 Oct 2023
  • Marine Isotope Stages (MIS) 9 has been proposed as an analog for the present warm period. However, detailed studies of this geological time period are rare in loess-paleosol sequence. In the Chinese Loess Plateau (CLP), the corresponding stratum is the third paleosol layer (S3). Here, we report the terrestrial reconstruction of climatic fluctuations during MIS 9 by analyzing the paleo-climate indexes of S3 with high sampling density. Our results showed that: (1) During the period of MIS 9, the main climatic sub-cycle was 29 ka; (2) MIS 9 could be divided into five sections, MIS 9a, 9b, 9c, 9d, and 9e. Among them, MIS 9a, 9c, and 9e were warm stages, while MIS 9b and 9d were cool intervals; and 3) There were also three swift warm-wet events and one cool-dry event, which occurred around 332–331, 324–323, 311–310, and 331–329 ka BP, respectively. The overall trend of paleo-climate fluctuation correlated approximately with SPECMAP, LR04 stack and Iberian margin deep-sea cores. This study suggested that the paleosol records in the southern margin of the CLP have global significance and contain more detailed climatic signals than marine deposits.

     

  • The authors declare that they have no conflict of interest.
  • loading
  • Aitken, M. J., 1998. An Introduction to Optical Dating. Oxford University Press, Oxford
    An, Z. S., Kukla, G., Porter, S. C., et al., 1991. Late Quaternary Dust Flow on the Chinese Loess Plateau. CATENA, 18(2): 125–132. https://doi.org/10.1016/0341-8162(91)90012-m
    An, Z. S., Porter, S. C., 1997. Millennial-Scale Climatic Oscillations during the Last Interglaciation in Central China. Geology, 25(7): 603. https://doi.org/10.1130/0091-7613(1997)0250603:mscodt>2.3.co;2 doi: 10.1130/0091-7613(1997)0250603:mscodt>2.3.co;2
    Arienzo, M. M., Swart, P. K., Broad, K., et al., 2017. Multi-Proxy Evidence of Millennial Climate Variability from Multiple Bahamian Speleothems. Quaternary Science Reviews, 161: 18–29. https://doi.org/10.1016/j.quascirev.2017.02.004
    Bagniewski, W., Meissner, K. J., Menviel, L., 2017. Exploring the Oxygen Isotope Fingerprint of Dansgaard-Oeschger Variability and Heinrich Events. Quaternary Science Reviews, 159: 1–14. https://doi.org/10.101 6/j.quascirev.2017.01.007 doi: 10.1016/j.quascirev.2017.01.007
    Balsam, W., Ellwood, B., Ji, J. F., 2005. Direct Correlation of the Marine Oxygen Isotope Record with the Chinese Loess Plateau Iron Oxide and Magnetic Susceptibility Records. Palaeogeography, Palaeoclimatology, Palaeoecology, 221(1/2): 141–152. https://doi.org/10.1016/j.palaeo.2005.02.009
    Bascomb, C., 1961. A Calcimeter for Routine Use on Soil Samples. Chem. Ind., London
    Berstad, I. M., Lundberg, J., Lauritzen, S. E., et al., 2002. Comparison of the Climate during Marine Isotope Stage 9 and 11 Inferred from a Speleothem Isotope Record from Northern Norway. Quaternary Research, 58(3): 361–371. https://doi.org/10.1006/qres.2002.2387
    Bridgland, D. R., Harding, P., Allen, P., et al., 2013. An Enhanced Record of MIS 9 Environments, Geochronology and Geoarchaeology: Data from Construction of the High Speed 1 (London-Channel Tunnel) Rail-Link and Other Recent Investigations at Purfleet, Essex, UK. Proceedings of the Geologists' Association, 124(3): 417–476. https://doi.org/10.1016/j.pgeola.2012.03.006
    Broecker, W. S., 1994. Massive Iceberg Discharges as Triggers for Global Climate Change. Nature, 372(6505): 421–424. https://doi.org/10.1038/372421a0
    Brook, E. J., Buizert, C., 2018. Antarctic and Global Climate History Viewed from Ice Cores. Nature, 558(7709): 200–208. https://doi.org/10.1038/s41586-018-0172-5
    Cai, M. T., Wei, M. J., Xu, D. N., et al., 2013. Vegetation and Climate Changes during Three Interglacial Periods Represented in the Luochuan Loess-Paleosol Section, on the Chinese Loess Plateau. Quaternary International, 296: 131–140. https://doi.org/10.1016/j.quai nt.2012.06.041 doi: 10.1016/j.quaint.2012.06.041
    Chen, F. H., Bloemendal, J., Wang, J. M., et al., 1997. High-Resolution Multi-Proxy Climate Records from Chinese Loess: Evidence for Rapid Climatic Changes over the Last 75 Kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 130(1/2/3/4): 323–335. https://doi.org/10.1016/S0031-0182(96)00149-6
    Cheng, H., Edwards, R. L., Sinha, A., et al., 2016. The Asian Monsoon over the Past 640 000 Years and Ice Age Terminations. Nature, 534(7609): 640–646. https://doi.org/10.1038/nature18591
    Cheng, H., Zhang, P. Z., Spötl, C., et al., 2012. The Climatic Cyclicity in Semiarid-Arid Central Asia over the Past 500, 000 Years. Geophysical Research Letters, 39: L01705. https://doi.org/10.1029/2011gl050202
    Cooke, A., 2012. Ice Ages and Long-Term Cycles. Astronomers' Universe. Springer, New York. https://doi.org/10.1007/978-1-4614-4608-8_11
    D'Anjou, R. M., Wei, J. H., Castañeda, I. S., et al., 2013. High-Latitude Environmental Change during MIS 9 and 11: Biogeochemical Evidence from Lake El'gygytgyn, Far East Russia. Climate of the Past, 9(2): 567–581. https://doi.org/10.5194/cp-9-567-2013
    Dansgaard, W., Johnsen, S. J., Clausen, H. B., et al., 1984. North Atlantic Climatic Oscillations Revealed by Deep Greenland Ice Cores. Climate Processes and Climate Sensitivity. Washington, D. C. : American Geophysical Union: 288–298. https://doi.org/10.1029/gm029p0288
    Dansgaard, W., Johnsen, S. J., Clausen, H. B., et al., 1993. Evidence for General Instability of Past Climate from a 250-Kyr Ice-Core Record. Nature, 364(6434): 218–220. https://doi.org/10.1038/364218a0
    Desprat, S., Sánchez Goñi, M. F., Naughton, F., et al., 2007.25. Climate Variability of the last Five Isotopic Interglacials: Direct Land-Sea-Ice Correlation from the Multiproxy Analysis of North-Western Iberian Margin Deep-Sea Cores. The Climate of Past Interglacials. Elsevier, Amsterdam. https://doi.org/10.1016/s1571-0866(07)80050-9
    Ding, Z. L., Derbyshire, E., Yang, S. L., et al., 2002. Stacked 2.6-Ma Grain Size Record from the Chinese Loess Based on Five Sections and Correlation with the Deep-Sea δ18O Record. Paleoceanography, 17(3): 5–1. https://doi.org/10.1029/2001pa000725
    Ding, Z., Yu, Z., Rutter, N. W., et al., 1994. Towards an Orbital Time Scale for Chinese Loess Deposits. Quaternary Science Reviews, 13(1): 39–70. https://doi.org/10.1016/0277-3791(94)90124-4
    Goelzer, H., Huybrechts, P., Loutre, M. F., et al., 2016. Last Interglacial Climate and Sea-Level Evolution from a Coupled Ice Sheet-Climate Model. Climate of the Past, 12(12): 2195–2213. https://doi.org/10.51 94/cp-12-2195-2016 doi: 10.5194/cp-12-2195-2016
    Green, C. P., Branch, N. P., Russell Coope, G., et al., 2006. Marine Isotope Stage 9 Environments of Fluvial Deposits at Hackney, North London, UK. Quaternary Science Reviews, 25(1/2): 89–113. https://doi.org/10.1 016/j.quascirev.2004.10.011 doi: 10.1016/j.quascirev.2004.10.011
    Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., et al., 2002. Onset of Asian Desertification by 22 Myr Ago Inferred from Loess Deposits in China. Nature, 416(6877): 159–163. https://doi.org/10.1038/416159a
    Guo, Z., Liu, T., Guiot, J., et al., 1996. High Frequency Pulses of East Asian Monsoon Climate in the Last Two Glaciations: Link with the North Atlantic. Climate Dynamics, 12(10): 701–709. https://doi.org/10.1007/s003820050137
    He, T., Liu, L. W., Chen, Y., et al., 2018. Glacial-Interglacial Change in Chlorite Concentration from the Lingtai Section in the Chinese Loess Plateau over the Past 1.2 Ma and Its Possible Forcing Mechanisms. Quaternary Research, 89(2): 511–519. https://doi.org/10.1017/qua.2 018.1 doi: 10.1017/qua.2018.1
    Heller, F., Tung-Sheng, L., 1986. Palaeoclimatic and Sedimentary History from Magnetic Susceptibility of Loess in China. Geophysical Research Letters, 13(11): 1169–1172. https://doi.org/10.1029/gl013i011p01169
    Heslop, D., Langereis, C. G., Dekkers, M. J., 2000. A New Astronomical Timescale for the Loess Deposits of Northern China. Earth and Planetary Science Letters, 184(1): 125–139. https://doi.org/10.1016/s0 012-821X(00)00324-1 doi: 10.1016/s0012-821X(00)00324-1
    Imbrie, J., Berger, A., Boyle, E. A., et al., 1993. On the Structure and Origin of Major Glaciation Cycles 2. The 100 000-Year Cycle. Paleoceanography, 8(6): 699–735. https://doi.org/10.1029/93pa02751
    Imbrie, J., Hays, J. D., Martinson, D. G., et al., 1984. The Orbital Theory of Pleistocene Climate: Support from a Revised Chronology of the Marine Delta δ18O Record. In: Berger, A., Imbrie, J., Hays, J., eds., Milankovitch and Climate (Pt. 1): Dordrecht (D. Reidel), Milankovitch and Climate, 269–305
    Incarbona, A., Sprovieri, M., Di Stefano, A., et al., 2013. Productivity Modes in the Mediterranean Sea during Dansgaard-Oeschger (20 000–70 000 Yr Ago) Oscillations. Palaeogeography, Palaeoclimatology, Palaeoecology, 392: 128–137. https://doi.org/10.1016/j.palaeo.2013.09.023
    Jia, J. A., Gao, F. Y., Xia, D. S., et al., 2018. Moisture Variations in Arid Central Asia and Its Out-of-Phase Relationship with the Asian Monsoon during MIS 5: Evidence from Loess Records. Journal of Quaternary Science, 33(4): 435–443. https://doi.org/10.1002/jqs.3024
    Kang, S. G., Lu, Y. C., Wang, X. L., 2011. Closely-Spaced Recuperated OSL Dating of the Last Interglacial Paleosol in the Southeastern Margin of the Chinese Loess Plateau. Quaternary Geochronology, 6(5): 480–490. https://doi.org/10.1016/j.quageo.2011.04.004
    Karner, D. B., Levine, J., Medeiros, B. P., et al., 2002. Constructing a Stacked Benthic δ18O Record. Paleoceanography, 17(3): 2–1. https://doi.org/10.1029/2001pa000667
    Kemp, R. A., 1995. Distribution and Genesis of Calcitic Pedofeatures within a Rapidly Aggrading Loess-Paleosol Sequence in China. Geoderma, 65(3/4): 303–316. https://doi.org/10.1016/0016-7061(94)0 0038-c doi: 10.1016/0016-7061(94)00038-c
    Kemp, R. A., Derbyshire, E., Meng, X. M., 1999. Comparison of Proxy Records of Late Pleistocene Climate Change from a High-Resolution Loess-Palaeosol Sequence in North-Central China. Journal of Quaternary Science, 14(1): 91–96. https://doi.org/10.1002/(sici)1099-1417(199902)14:191:aid-jqs440>3.0.co;2-1 doi: 10.1002/(sici)1099-1417(199902)14:191:aid-jqs440>3.0.co;2-1
    Kukla, G., An, Z. S., 1989. Loess Stratigraphy in Central China. Palaeogeography, Palaeoclimatology, Palaeoecology, 72: 203–225. https://doi.org/10.1016/0031-0182(89)90143-0
    Lambert, F., Delmonte, B., Petit, J. R., et al., 2008. Dust-Climate Couplings over the Past 800, 000 years from the EPICA Dome C Ice Core. Nature, 452(7187): 616–619. https://doi.org/10.1038/nature06763
    Lea, D. W., Pak, D. K., Spero, H. J., 2000. Climate Impact of Late Quaternary Equatorial Pacific Sea Surface Temperature Variations. Science, 289(5485): 1719–1724. https://doi.org/10.1126/science.28 9.5 485.1719 doi: 10.1126/science.289.5485.1719
    Li, H. C., Bar-Matthews, M., Chang, Y. P., et al., 2017. High-Resolution δ18O and δ13C Records during the Past 65 Ka from Fengyu Cave in Guilin: Variation of Monsoonal Climates in South China. Quaternary International, 441: 117–128. https://doi.org/10.1016/j.quaint.2016.0 8.048 doi: 10.1016/j.quaint.2016.08.048
    Liew, A. W. C., Law, N. F., Cao, X. Q., et al., 2009. Statistical Power of Fisher Test for the Detection of Short Periodic Gene Expression Profiles. Pattern Recognition, 42(4): 549–556. https://doi.org/10.1016/j.patcog.2008.09.022
    Lisiecki, L. E., Raymo, M. E., 2005. A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records. Paleoceanography, 20(1): 1–17. https://doi.org/10.1029/2004pa001071
    Liu, T., Ding, Z. L., Rutter, N., 1999. Comparison of Milankovitch Periods between Continental Loess and Deep Sea Records over the Last 2.5 Ma. Quaternary Science Reviews, 18(10/11): 1205–1212. https://doi.org/10.1016/S0277-3791(98)00110-3.
    Liu, T. S., 1985. Loess and the Environment. China Ocean Press, Beijing
    Liu, W. G., Huang, Y. S., An, Z. S., et al., 2005. Summer Monsoon Intensity Controls C4/C3 Plant Abundance during the Last 35 Ka in the Chinese Loess Plateau: Carbon Isotope Evidence from Bulk Organic Matter and Individual Leaf Waxes. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3/4): 243–254. https://doi.org/10.1016/j.palaeo.2005.01.001
    Lu, H. Y., Liu, X. D., Zhang, F. Q., et al., 1999. Astronomical Calibration of Loess-Paleosol Deposits at Luochuan, Central Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 154(3): 237–246. https://doi.org/10.1016/s0031-0182(99)00113-3
    Matyasovszky, I., 2010. Milankovitch Forcing in Paleoclimate Data. Climate Research, 41: 151–156. https://doi.org/10.3354/cr00852
    Meyers, S. R., Sageman, B. B., Pagani, M., 2008. Resolving Milankovitch: Consideration of Signal and Noise. American Journal of Science, 308(6): 770–786. https://doi.org/10.2475/06.2008.02
    Mudelsee, M., Schulz, M., 1997. The Mid-Pleistocene Climate Transition: Onset of 100 Ka Cycle Lags Ice Volume Build-up by 280 Ka. Earth and Planetary Science Letters, 151(1/2): 117–123. https://doi.org/10.1016/s0012-821x(97)00114-3
    Müller, U. C., Pross, J., 2007. Lesson from the Past: Present Insolation Minimum Holds Potential for Glacial Inception. Quaternary Science Reviews, 26(25/26/27/28): 3025–3029. https://doi.org/10.1016/j.quasci rev.2007.10.006 doi: 10.1016/j.quascirev.2007.10.006
    Oeschger, H., Beer, J., Siegenthaler, U., et al., 1983. Late-Glacial Climate History from Ice Cores. Palaeoclimatic Research and Models. Dordrecht: Springer Netherlands: 95–107. https://doi.org/10.1007/978-94-009-7236-0_12
    Penaud, A., Eynaud, F., Turon, J. L., et al., 2008. Interglacial Variability (MIS 5 and MIS 7) and Dinoflagellate Cyst Assemblages in the Bay of Biscay (North Atlantic). Marine Micropaleontology, 68(1/2): 136–155. https://doi.org/10.1016/j.marmicro.2008.01.007
    Petit, J. R., Jouzel, J., Raynaud, D., et al., 1999. Climate and Atmospheric History of the Past 420 000 Years from the Vostok Ice Core, Antarctica. Nature, 399(6735): 429–436. https://doi.org/10.1038/20859
    Porter, S. C., An, Z. S., 1995. Correlation between Climate Events in the North Atlantic and China during the Last Glaciation. Nature, 375(6529): 305–308. https://doi.org/10.1038/375305a0
    Rabassa, J., Ponce, J. F., 2013. The Heinrich and Dansgaard-Oeschger Climatic Events during Marine Isotopic Stage 3: Searching for Appropriate Times for Human Colonization of the Americas. Quaternary International, 299: 94–105.https://doi.org/10.1016/j.quain t.2013.04.023 doi: 10.1016/j.quaint.2013.04.023
    Rahmstorf, S., 2002. Ocean Circulation and Climate during the Past 120, 000 Years. Nature, 419(6903): 207–214.https://doi.org/10.1038/natur e01090 doi: 10.1038/nature01090
    Roe, H. M., Coope, G. R., Devoy, R. J. N., et al., 2009. Differentiation of MIS 9 and MIS 11 in the Continental Record: Vegetational, Faunal, Aminostratigraphic and Sea-Level Evidence from Coastal Sites in Essex, UK. Quaternary Science Reviews, 28(23/24): 2342–2373. https://doi.org/10.1016/j.quascirev.2009.04.017
    Roucoux, K. H., Tzedakis, P. C., de Abreu, L., et al., 2006. Climate and Vegetation Changes 180, 000 to 345, 000 Years ago Recorded in a Deep-Sea Core off Portugal. Earth and Planetary Science Letters, 249(3/4): 307–325. https://doi.org/10.1016/j.epsl.2006.07.005
    Schellmann, G., Schielein, P., Burow, C., et al., 2020. Accuracy of ESR Dating of Small Gastropods from Loess and Fluvial Deposits in the Bavarian Alpine Foreland. Quaternary International, 556: 198–215. https://doi.org/10.1016/j.quaint.2019.07.026
    Schulz, M., Stattegger, K., 1997. Spectrum: Spectral Analysis of Unevenly Spaced Paleoclimatic Time Series. Computers & Geosciences, 23(9): 929–945. https://doi.org/10.1016/s0098-3004(97)00087-3
    Scourse, J., Austin, W., Sejrup, H., et al., 1999. Foraminiferal Isoleucine Epimerization Determinations from the Nar Valley Clay, Norfolk, UK: Implications for Quaternary Correlations in the Southern North Sea Basin. Geological Magazine, 136(5): 543–560. https://doi.org/10.1017/S0016756899002812
    Shi, P. H., Yang, T. B., Tian, Q. C., et al., 2013. Loess Record of Climatic Changes during MIS 12-10 in the Jingyuan Section, Northwestern Chinese Loess Plateau. Quaternary International, 296: 149–159. https://doi.org/10.1016/j.quaint.2012.08.2102
    Sun, Y. B., Yin, Q. Z., Crucifix, M., et al., 2019. Diverse Manifestations of the Mid-Pleistocene Climate Transition. Nature Communications, 10(1): 1–11. https://doi.org/10.1038/s41467-018-08257-9
    Swezey, C., Lancaster, N., Kocurek, G., et al., 1999. Response of Aeolian Systems to Holocene Climatic and Hydrologic Changes on the Northern Margin of the Sahara: A High-Resolution Record from the Chott Rharsa Basin, Tunisia. The Holocene, 9(2): 141–147. https://doi.org/10.1191/095968399670329816
    Voinchet, P., Yin, G. M., Falguères, C., et al., 2019. Dating of the Stepped Quaternary Fluvial Terrace System of the Yellow River by Electron Spin Resonance (ESR). Quaternary Geochronology, 49: 278–282. https://doi.org/10.1016/j.quageo.2018.08.001
    Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2001. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science, 294(5550): 2345–2348.https://doi.org/10.1126/scienc e.1064618 doi: 10.1126/science.1064618
    Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2008. Millennial- and Orbital-Scale Changes in the East Asian Monsoon over the Past 224, 000 Years. Nature, 451(7182): 1090–1093.https://doi.org/10.1038/nature 06692 doi: 10.1038/nature06692
    Wei, K. Y., Chiu, T. C., Chen, Y. G., 2003. Toward Establishing a Maritime Proxy Record of the East Asian Summer Monsoons for the Late Quaternary. Marine Geology, 201(1/2/3): 67–79.https://doi.org/10.101 6/s0025-3227(03)00209-3 doi: 10.1016/s0025-3227(03)00209-3
    Westaway, R., Younger, P. L., 2013. Accounting for Palaeoclimate and Topography: A Rigorous Approach to Correction of the British Geothermal Dataset. Geothermics, 48: 31–51. https://doi.org/10.1016/j.geothermics.2013.03.009
    Wichert, S., Fokianos, K., Strimmer, K., 2004. Identifying Periodically Expressed Transcripts in Microarray Time Series Data. Bioinformatics, 20(1): 5–20. https://doi.org/10.1093/bioinformatics/btg364
    Worth, J. R. P., Williamson, G. J., Sakaguchi, S., et al., 2014. Environmental Niche Modelling Fails to Predict Last Glacial Maximum Refugia: Niche Shifts, Microrefugia or Incorrect Palaeoclimate Estimates? Global Ecology and Biogeography, 23(11): 1186–1197. https://doi.org/10.1111/geb.12239
    Wu, T. N., Lu, G. Y., 2012. Climatic Sub-Cycles Recorded by the Fourth Paleosol Layer at Luochuan on the Loess Plateau. Environmental Earth Sciences, 66(5): 1329–1335. https://doi.org/10.1007/s12665-011-1342-z
    Xanthakis, J., Liritzis, I., Tzanis, A., 1994. Periodic Variation of δ18O Values from V28-239 Pacific Ocean Deep-Sea Core. Earth, Moon, and Planets, 66(3): 253–278.https://doi.org/10.1007/bf00579465
    Yang, S. H., Chen, S. T., Wang, Y. J., et al., 2020. Millennial-Scale Asian Monsoon Variability during MIS 9 Revealed by a High-Resolution Stalagmite δ18O Record in Luoshui Cave, Central China. Quaternary Science Reviews, 234: 106218.https://doi.org/10.1016/j.quascirev.202 0.106218 doi: 10.1016/j.quascirev.2020.106218
    Yin, G. M., Lin, M., Lu, Y. C., et al., 2007. Preliminary ESR Dating Results on Loess Samples from the Loess-Paleosol Sequence at Luochuan, Central Loess Plateau, China. Quaternary Geochronology, 2(1/2/3/4): 381–385. https://doi.org/10.1016/j.quageo.2006.03.011
    Zhao, J. B., Ma, Y. D., Cao, J. J., et al., 2015. Effect of Quaternary Climatic Change on Modern Hydrological Systems in the Southern Chinese Loess Plateau. Environmental Earth Sciences, 73(3): 1161–1167. https://doi.org/10.1007/s12665-014-3469-1
    Zhou, W. J., Xie, X. J., Beck, W., et al., 2015. Recent Progress of 10Be Tracer Studies in Chinese Loess. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 361: 548–553. https://doi.org/10.1016/j.nimb.2015.02.061
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(116) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return