Citation: | Tieniu Wu, Antai Cheng, Henry Lin, Hailin Zhang, Yi Jie. Climatic Fluctuation of Marine Isotope Stage 9: A Case Study in the Southern Margin of the Chinese Loess Plateau. Journal of Earth Science, 2023, 34(5): 1556-1566. doi: 10.1007/s12583-022-1610-8 |
Marine Isotope Stages (MIS) 9 has been proposed as an analog for the present warm period. However, detailed studies of this geological time period are rare in loess-paleosol sequence. In the Chinese Loess Plateau (CLP), the corresponding stratum is the third paleosol layer (S3). Here, we report the terrestrial reconstruction of climatic fluctuations during MIS 9 by analyzing the paleo-climate indexes of S3 with high sampling density. Our results showed that: (1) During the period of MIS 9, the main climatic sub-cycle was 29 ka; (2) MIS 9 could be divided into five sections, MIS 9a, 9b, 9c, 9d, and 9e. Among them, MIS 9a, 9c, and 9e were warm stages, while MIS 9b and 9d were cool intervals; and 3) There were also three swift warm-wet events and one cool-dry event, which occurred around 332–331, 324–323, 311–310, and 331–329 ka BP, respectively. The overall trend of paleo-climate fluctuation correlated approximately with SPECMAP, LR04 stack and Iberian margin deep-sea cores. This study suggested that the paleosol records in the southern margin of the CLP have global significance and contain more detailed climatic signals than marine deposits.
Aitken, M. J., 1998. An Introduction to Optical Dating. Oxford University Press, Oxford |
An, Z. S., Kukla, G., Porter, S. C., et al., 1991. Late Quaternary Dust Flow on the Chinese Loess Plateau. CATENA, 18(2): 125–132. https://doi.org/10.1016/0341-8162(91)90012-m |
An, Z. S., Porter, S. C., 1997. Millennial-Scale Climatic Oscillations during the Last Interglaciation in Central China. Geology, 25(7): 603. https://doi.org/10.1130/0091-7613(1997)0250603:mscodt>2.3.co;2 doi: 10.1130/0091-7613(1997)0250603:mscodt>2.3.co;2 |
Arienzo, M. M., Swart, P. K., Broad, K., et al., 2017. Multi-Proxy Evidence of Millennial Climate Variability from Multiple Bahamian Speleothems. Quaternary Science Reviews, 161: 18–29. https://doi.org/10.1016/j.quascirev.2017.02.004 |
Bagniewski, W., Meissner, K. J., Menviel, L., 2017. Exploring the Oxygen Isotope Fingerprint of Dansgaard-Oeschger Variability and Heinrich Events. Quaternary Science Reviews, 159: 1–14. https://doi.org/10.101 6/j.quascirev.2017.01.007 doi: 10.1016/j.quascirev.2017.01.007 |
Balsam, W., Ellwood, B., Ji, J. F., 2005. Direct Correlation of the Marine Oxygen Isotope Record with the Chinese Loess Plateau Iron Oxide and Magnetic Susceptibility Records. Palaeogeography, Palaeoclimatology, Palaeoecology, 221(1/2): 141–152. https://doi.org/10.1016/j.palaeo.2005.02.009 |
Bascomb, C., 1961. A Calcimeter for Routine Use on Soil Samples. Chem. Ind., London |
Berstad, I. M., Lundberg, J., Lauritzen, S. E., et al., 2002. Comparison of the Climate during Marine Isotope Stage 9 and 11 Inferred from a Speleothem Isotope Record from Northern Norway. Quaternary Research, 58(3): 361–371. https://doi.org/10.1006/qres.2002.2387 |
Bridgland, D. R., Harding, P., Allen, P., et al., 2013. An Enhanced Record of MIS 9 Environments, Geochronology and Geoarchaeology: Data from Construction of the High Speed 1 (London-Channel Tunnel) Rail-Link and Other Recent Investigations at Purfleet, Essex, UK. Proceedings of the Geologists' Association, 124(3): 417–476. https://doi.org/10.1016/j.pgeola.2012.03.006 |
Broecker, W. S., 1994. Massive Iceberg Discharges as Triggers for Global Climate Change. Nature, 372(6505): 421–424. https://doi.org/10.1038/372421a0 |
Brook, E. J., Buizert, C., 2018. Antarctic and Global Climate History Viewed from Ice Cores. Nature, 558(7709): 200–208. https://doi.org/10.1038/s41586-018-0172-5 |
Cai, M. T., Wei, M. J., Xu, D. N., et al., 2013. Vegetation and Climate Changes during Three Interglacial Periods Represented in the Luochuan Loess-Paleosol Section, on the Chinese Loess Plateau. Quaternary International, 296: 131–140. https://doi.org/10.1016/j.quai nt.2012.06.041 doi: 10.1016/j.quaint.2012.06.041 |
Chen, F. H., Bloemendal, J., Wang, J. M., et al., 1997. High-Resolution Multi-Proxy Climate Records from Chinese Loess: Evidence for Rapid Climatic Changes over the Last 75 Kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 130(1/2/3/4): 323–335. https://doi.org/10.1016/S0031-0182(96)00149-6 |
Cheng, H., Edwards, R. L., Sinha, A., et al., 2016. The Asian Monsoon over the Past 640 000 Years and Ice Age Terminations. Nature, 534(7609): 640–646. https://doi.org/10.1038/nature18591 |
Cheng, H., Zhang, P. Z., Spötl, C., et al., 2012. The Climatic Cyclicity in Semiarid-Arid Central Asia over the Past 500, 000 Years. Geophysical Research Letters, 39: L01705. https://doi.org/10.1029/2011gl050202 |
Cooke, A., 2012. Ice Ages and Long-Term Cycles. Astronomers' Universe. Springer, New York. |
D'Anjou, R. M., Wei, J. H., Castañeda, I. S., et al., 2013. High-Latitude Environmental Change during MIS 9 and 11: Biogeochemical Evidence from Lake El'gygytgyn, Far East Russia. Climate of the Past, 9(2): 567–581. https://doi.org/10.5194/cp-9-567-2013 |
Dansgaard, W., Johnsen, S. J., Clausen, H. B., et al., 1984. North Atlantic Climatic Oscillations Revealed by Deep Greenland Ice Cores. Climate Processes and Climate Sensitivity. Washington, D. C. : American Geophysical Union: 288–298. |
Dansgaard, W., Johnsen, S. J., Clausen, H. B., et al., 1993. Evidence for General Instability of Past Climate from a 250-Kyr Ice-Core Record. Nature, 364(6434): 218–220. https://doi.org/10.1038/364218a0 |
Desprat, S., Sánchez Goñi, M. F., Naughton, F., et al., 2007.25. Climate Variability of the last Five Isotopic Interglacials: Direct Land-Sea-Ice Correlation from the Multiproxy Analysis of North-Western Iberian Margin Deep-Sea Cores. The Climate of Past Interglacials. Elsevier, Amsterdam. |
Ding, Z. L., Derbyshire, E., Yang, S. L., et al., 2002. Stacked 2.6-Ma Grain Size Record from the Chinese Loess Based on Five Sections and Correlation with the Deep-Sea δ18O Record. Paleoceanography, 17(3): 5–1. https://doi.org/10.1029/2001pa000725 |
Ding, Z., Yu, Z., Rutter, N. W., et al., 1994. Towards an Orbital Time Scale for Chinese Loess Deposits. Quaternary Science Reviews, 13(1): 39–70. https://doi.org/10.1016/0277-3791(94)90124-4 |
Goelzer, H., Huybrechts, P., Loutre, M. F., et al., 2016. Last Interglacial Climate and Sea-Level Evolution from a Coupled Ice Sheet-Climate Model. Climate of the Past, 12(12): 2195–2213. https://doi.org/10.51 94/cp-12-2195-2016 doi: 10.5194/cp-12-2195-2016 |
Green, C. P., Branch, N. P., Russell Coope, G., et al., 2006. Marine Isotope Stage 9 Environments of Fluvial Deposits at Hackney, North London, UK. Quaternary Science Reviews, 25(1/2): 89–113. https://doi.org/10.1 016/j.quascirev.2004.10.011 doi: 10.1016/j.quascirev.2004.10.011 |
Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., et al., 2002. Onset of Asian Desertification by 22 Myr Ago Inferred from Loess Deposits in China. Nature, 416(6877): 159–163. https://doi.org/10.1038/416159a |
Guo, Z., Liu, T., Guiot, J., et al., 1996. High Frequency Pulses of East Asian Monsoon Climate in the Last Two Glaciations: Link with the North Atlantic. Climate Dynamics, 12(10): 701–709. https://doi.org/10.1007/s003820050137 |
He, T., Liu, L. W., Chen, Y., et al., 2018. Glacial-Interglacial Change in Chlorite Concentration from the Lingtai Section in the Chinese Loess Plateau over the Past 1.2 Ma and Its Possible Forcing Mechanisms. Quaternary Research, 89(2): 511–519. https://doi.org/10.1017/qua.2 018.1 doi: 10.1017/qua.2018.1 |
Heller, F., Tung-Sheng, L., 1986. Palaeoclimatic and Sedimentary History from Magnetic Susceptibility of Loess in China. Geophysical Research Letters, 13(11): 1169–1172. https://doi.org/10.1029/gl013i011p01169 |
Heslop, D., Langereis, C. G., Dekkers, M. J., 2000. A New Astronomical Timescale for the Loess Deposits of Northern China. Earth and Planetary Science Letters, 184(1): 125–139. https://doi.org/10.1016/s0 012-821X(00)00324-1 doi: 10.1016/s0012-821X(00)00324-1 |
Imbrie, J., Berger, A., Boyle, E. A., et al., 1993. On the Structure and Origin of Major Glaciation Cycles 2. The 100 000-Year Cycle. Paleoceanography, 8(6): 699–735. https://doi.org/10.1029/93pa02751 |
Imbrie, J., Hays, J. D., Martinson, D. G., et al., 1984. The Orbital Theory of Pleistocene Climate: Support from a Revised Chronology of the Marine Delta δ18O Record. In: Berger, A., Imbrie, J., Hays, J., eds., Milankovitch and Climate (Pt. 1): Dordrecht (D. Reidel), Milankovitch and Climate, 269–305 |
Incarbona, A., Sprovieri, M., Di Stefano, A., et al., 2013. Productivity Modes in the Mediterranean Sea during Dansgaard-Oeschger (20 000–70 000 Yr Ago) Oscillations. Palaeogeography, Palaeoclimatology, Palaeoecology, 392: 128–137. https://doi.org/10.1016/j.palaeo.2013.09.023 |
Jia, J. A., Gao, F. Y., Xia, D. S., et al., 2018. Moisture Variations in Arid Central Asia and Its Out-of-Phase Relationship with the Asian Monsoon during MIS 5: Evidence from Loess Records. Journal of Quaternary Science, 33(4): 435–443. https://doi.org/10.1002/jqs.3024 |
Kang, S. G., Lu, Y. C., Wang, X. L., 2011. Closely-Spaced Recuperated OSL Dating of the Last Interglacial Paleosol in the Southeastern Margin of the Chinese Loess Plateau. Quaternary Geochronology, 6(5): 480–490. https://doi.org/10.1016/j.quageo.2011.04.004 |
Karner, D. B., Levine, J., Medeiros, B. P., et al., 2002. Constructing a Stacked Benthic δ18O Record. Paleoceanography, 17(3): 2–1. https://doi.org/10.1029/2001pa000667 |
Kemp, R. A., 1995. Distribution and Genesis of Calcitic Pedofeatures within a Rapidly Aggrading Loess-Paleosol Sequence in China. Geoderma, 65(3/4): 303–316. https://doi.org/10.1016/0016-7061(94)0 0038-c doi: 10.1016/0016-7061(94)00038-c |
Kemp, R. A., Derbyshire, E., Meng, X. M., 1999. Comparison of Proxy Records of Late Pleistocene Climate Change from a High-Resolution Loess-Palaeosol Sequence in North-Central China. Journal of Quaternary Science, 14(1): 91–96. https://doi.org/10.1002/(sici)1099-1417(199902)14:191:aid-jqs440>3.0.co;2-1 doi: 10.1002/(sici)1099-1417(199902)14:191:aid-jqs440>3.0.co;2-1 |
Kukla, G., An, Z. S., 1989. Loess Stratigraphy in Central China. Palaeogeography, Palaeoclimatology, Palaeoecology, 72: 203–225. https://doi.org/10.1016/0031-0182(89)90143-0 |
Lambert, F., Delmonte, B., Petit, J. R., et al., 2008. Dust-Climate Couplings over the Past 800, 000 years from the EPICA Dome C Ice Core. Nature, 452(7187): 616–619. https://doi.org/10.1038/nature06763 |
Lea, D. W., Pak, D. K., Spero, H. J., 2000. Climate Impact of Late Quaternary Equatorial Pacific Sea Surface Temperature Variations. Science, 289(5485): 1719–1724. https://doi.org/10.1126/science.28 9.5 485.1719 doi: 10.1126/science.289.5485.1719 |
Li, H. C., Bar-Matthews, M., Chang, Y. P., et al., 2017. High-Resolution δ18O and δ13C Records during the Past 65 Ka from Fengyu Cave in Guilin: Variation of Monsoonal Climates in South China. Quaternary International, 441: 117–128. https://doi.org/10.1016/j.quaint.2016.0 8.048 doi: 10.1016/j.quaint.2016.08.048 |
Liew, A. W. C., Law, N. F., Cao, X. Q., et al., 2009. Statistical Power of Fisher Test for the Detection of Short Periodic Gene Expression Profiles. Pattern Recognition, 42(4): 549–556. https://doi.org/10.1016/j.patcog.2008.09.022 |
Lisiecki, L. E., Raymo, M. E., 2005. A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records. Paleoceanography, 20(1): 1–17. https://doi.org/10.1029/2004pa001071 |
Liu, T., Ding, Z. L., Rutter, N., 1999. Comparison of Milankovitch Periods between Continental Loess and Deep Sea Records over the Last 2.5 Ma. Quaternary Science Reviews, 18(10/11): 1205–1212. https://doi.org/10.1016/S0277-3791(98)00110-3. |
Liu, T. S., 1985. Loess and the Environment. China Ocean Press, Beijing |
Liu, W. G., Huang, Y. S., An, Z. S., et al., 2005. Summer Monsoon Intensity Controls C4/C3 Plant Abundance during the Last 35 Ka in the Chinese Loess Plateau: Carbon Isotope Evidence from Bulk Organic Matter and Individual Leaf Waxes. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3/4): 243–254. https://doi.org/10.1016/j.palaeo.2005.01.001 |
Lu, H. Y., Liu, X. D., Zhang, F. Q., et al., 1999. Astronomical Calibration of Loess-Paleosol Deposits at Luochuan, Central Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 154(3): 237–246. https://doi.org/10.1016/s0031-0182(99)00113-3 |
Matyasovszky, I., 2010. Milankovitch Forcing in Paleoclimate Data. Climate Research, 41: 151–156. https://doi.org/10.3354/cr00852 |
Meyers, S. R., Sageman, B. B., Pagani, M., 2008. Resolving Milankovitch: Consideration of Signal and Noise. American Journal of Science, 308(6): 770–786. https://doi.org/10.2475/06.2008.02 |
Mudelsee, M., Schulz, M., 1997. The Mid-Pleistocene Climate Transition: Onset of 100 Ka Cycle Lags Ice Volume Build-up by 280 Ka. Earth and Planetary Science Letters, 151(1/2): 117–123. https://doi.org/10.1016/s0012-821x(97)00114-3 |
Müller, U. C., Pross, J., 2007. Lesson from the Past: Present Insolation Minimum Holds Potential for Glacial Inception. Quaternary Science Reviews, 26(25/26/27/28): 3025–3029. https://doi.org/10.1016/j.quasci rev.2007.10.006 doi: 10.1016/j.quascirev.2007.10.006 |
Oeschger, H., Beer, J., Siegenthaler, U., et al., 1983. Late-Glacial Climate History from Ice Cores. Palaeoclimatic Research and Models. Dordrecht: Springer Netherlands: 95–107. |
Penaud, A., Eynaud, F., Turon, J. L., et al., 2008. Interglacial Variability (MIS 5 and MIS 7) and Dinoflagellate Cyst Assemblages in the Bay of Biscay (North Atlantic). Marine Micropaleontology, 68(1/2): 136–155. https://doi.org/10.1016/j.marmicro.2008.01.007 |
Petit, J. R., Jouzel, J., Raynaud, D., et al., 1999. Climate and Atmospheric History of the Past 420 000 Years from the Vostok Ice Core, Antarctica. Nature, 399(6735): 429–436. https://doi.org/10.1038/20859 |
Porter, S. C., An, Z. S., 1995. Correlation between Climate Events in the North Atlantic and China during the Last Glaciation. Nature, 375(6529): 305–308. https://doi.org/10.1038/375305a0 |
Rabassa, J., Ponce, J. F., 2013. The Heinrich and Dansgaard-Oeschger Climatic Events during Marine Isotopic Stage 3: Searching for Appropriate Times for Human Colonization of the Americas. Quaternary International, 299: 94–105.https://doi.org/10.1016/j.quain t.2013.04.023 doi: 10.1016/j.quaint.2013.04.023 |
Rahmstorf, S., 2002. Ocean Circulation and Climate during the Past 120, 000 Years. Nature, 419(6903): 207–214.https://doi.org/10.1038/natur e01090 doi: 10.1038/nature01090 |
Roe, H. M., Coope, G. R., Devoy, R. J. N., et al., 2009. Differentiation of MIS 9 and MIS 11 in the Continental Record: Vegetational, Faunal, Aminostratigraphic and Sea-Level Evidence from Coastal Sites in Essex, UK. Quaternary Science Reviews, 28(23/24): 2342–2373. https://doi.org/10.1016/j.quascirev.2009.04.017 |
Roucoux, K. H., Tzedakis, P. C., de Abreu, L., et al., 2006. Climate and Vegetation Changes 180, 000 to 345, 000 Years ago Recorded in a Deep-Sea Core off Portugal. Earth and Planetary Science Letters, 249(3/4): 307–325. https://doi.org/10.1016/j.epsl.2006.07.005 |
Schellmann, G., Schielein, P., Burow, C., et al., 2020. Accuracy of ESR Dating of Small Gastropods from Loess and Fluvial Deposits in the Bavarian Alpine Foreland. Quaternary International, 556: 198–215. https://doi.org/10.1016/j.quaint.2019.07.026 |
Schulz, M., Stattegger, K., 1997. Spectrum: Spectral Analysis of Unevenly Spaced Paleoclimatic Time Series. Computers & Geosciences, 23(9): 929–945. https://doi.org/10.1016/s0098-3004(97)00087-3 |
Scourse, J., Austin, W., Sejrup, H., et al., 1999. Foraminiferal Isoleucine Epimerization Determinations from the Nar Valley Clay, Norfolk, UK: Implications for Quaternary Correlations in the Southern North Sea Basin. Geological Magazine, 136(5): 543–560. https://doi.org/10.1017/S0016756899002812 |
Shi, P. H., Yang, T. B., Tian, Q. C., et al., 2013. Loess Record of Climatic Changes during MIS 12-10 in the Jingyuan Section, Northwestern Chinese Loess Plateau. Quaternary International, 296: 149–159. https://doi.org/10.1016/j.quaint.2012.08.2102 |
Sun, Y. B., Yin, Q. Z., Crucifix, M., et al., 2019. Diverse Manifestations of the Mid-Pleistocene Climate Transition. Nature Communications, 10(1): 1–11. https://doi.org/10.1038/s41467-018-08257-9 |
Swezey, C., Lancaster, N., Kocurek, G., et al., 1999. Response of Aeolian Systems to Holocene Climatic and Hydrologic Changes on the Northern Margin of the Sahara: A High-Resolution Record from the Chott Rharsa Basin, Tunisia. The Holocene, 9(2): 141–147. https://doi.org/10.1191/095968399670329816 |
Voinchet, P., Yin, G. M., Falguères, C., et al., 2019. Dating of the Stepped Quaternary Fluvial Terrace System of the Yellow River by Electron Spin Resonance (ESR). Quaternary Geochronology, 49: 278–282. https://doi.org/10.1016/j.quageo.2018.08.001 |
Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2001. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science, 294(5550): 2345–2348.https://doi.org/10.1126/scienc e.1064618 doi: 10.1126/science.1064618 |
Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2008. Millennial- and Orbital-Scale Changes in the East Asian Monsoon over the Past 224, 000 Years. Nature, 451(7182): 1090–1093.https://doi.org/10.1038/nature 06692 doi: 10.1038/nature06692 |
Wei, K. Y., Chiu, T. C., Chen, Y. G., 2003. Toward Establishing a Maritime Proxy Record of the East Asian Summer Monsoons for the Late Quaternary. Marine Geology, 201(1/2/3): 67–79.https://doi.org/10.101 6/s0025-3227(03)00209-3 doi: 10.1016/s0025-3227(03)00209-3 |
Westaway, R., Younger, P. L., 2013. Accounting for Palaeoclimate and Topography: A Rigorous Approach to Correction of the British Geothermal Dataset. Geothermics, 48: 31–51. https://doi.org/10.1016/j.geothermics.2013.03.009 |
Wichert, S., Fokianos, K., Strimmer, K., 2004. Identifying Periodically Expressed Transcripts in Microarray Time Series Data. Bioinformatics, 20(1): 5–20. https://doi.org/10.1093/bioinformatics/btg364 |
Worth, J. R. P., Williamson, G. J., Sakaguchi, S., et al., 2014. Environmental Niche Modelling Fails to Predict Last Glacial Maximum Refugia: Niche Shifts, Microrefugia or Incorrect Palaeoclimate Estimates? Global Ecology and Biogeography, 23(11): 1186–1197. https://doi.org/10.1111/geb.12239 |
Wu, T. N., Lu, G. Y., 2012. Climatic Sub-Cycles Recorded by the Fourth Paleosol Layer at Luochuan on the Loess Plateau. Environmental Earth Sciences, 66(5): 1329–1335. https://doi.org/10.1007/s12665-011-1342-z |
Xanthakis, J., Liritzis, I., Tzanis, A., 1994. Periodic Variation of δ18O Values from V28-239 Pacific Ocean Deep-Sea Core. Earth, Moon, and Planets, 66(3): 253–278.https://doi.org/10.1007/bf00579465 |
Yang, S. H., Chen, S. T., Wang, Y. J., et al., 2020. Millennial-Scale Asian Monsoon Variability during MIS 9 Revealed by a High-Resolution Stalagmite δ18O Record in Luoshui Cave, Central China. Quaternary Science Reviews, 234: 106218.https://doi.org/10.1016/j.quascirev.202 0.106218 doi: 10.1016/j.quascirev.2020.106218 |
Yin, G. M., Lin, M., Lu, Y. C., et al., 2007. Preliminary ESR Dating Results on Loess Samples from the Loess-Paleosol Sequence at Luochuan, Central Loess Plateau, China. Quaternary Geochronology, 2(1/2/3/4): 381–385. https://doi.org/10.1016/j.quageo.2006.03.011 |
Zhao, J. B., Ma, Y. D., Cao, J. J., et al., 2015. Effect of Quaternary Climatic Change on Modern Hydrological Systems in the Southern Chinese Loess Plateau. Environmental Earth Sciences, 73(3): 1161–1167. https://doi.org/10.1007/s12665-014-3469-1 |
Zhou, W. J., Xie, X. J., Beck, W., et al., 2015. Recent Progress of 10Be Tracer Studies in Chinese Loess. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 361: 548–553. https://doi.org/10.1016/j.nimb.2015.02.061 |