Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 5
Oct 2023
Turn off MathJax
Article Contents
Shaheen Mohammed Saleh Ahmed, Hakan Guneyli. Robust Multi-Output Machine Learning Regression for Seismic Hazard Model Using Peak Crust Acceleration Case Study, Turkey, Iraq and Iran. Journal of Earth Science, 2023, 34(5): 1447-1464. doi: 10.1007/s12583-022-1616-2
Citation: Shaheen Mohammed Saleh Ahmed, Hakan Guneyli. Robust Multi-Output Machine Learning Regression for Seismic Hazard Model Using Peak Crust Acceleration Case Study, Turkey, Iraq and Iran. Journal of Earth Science, 2023, 34(5): 1447-1464. doi: 10.1007/s12583-022-1616-2

Robust Multi-Output Machine Learning Regression for Seismic Hazard Model Using Peak Crust Acceleration Case Study, Turkey, Iraq and Iran

doi: 10.1007/s12583-022-1616-2
More Information
  • Corresponding author: Shaheen Mohammed Saleh Ahmed, shaheengeolo@gmail.com
  • Received Date: 05 Jul 2021
  • Accepted Date: 08 Jan 2022
  • Available Online: 14 Oct 2023
  • Issue Publish Date: 30 Oct 2023
  • This paper for the first time improved a Robust Multi-Output machine learning regression model for seismic hazard zoning of Turkey, Iraq and Iran using constructed 3-D shear-wave velocity (Vs), seismic tomography dataset model for the crust and uppermost mantle beneath the study area. The focus of this paper's opportunity is to develop a scientific framework leveraging machine learning that will ultimately provide the rapid and more complete characterization of earthquake properties. This work can be targeted at improving the seismic hazard zones system ability to detect and associate seismic signals, or at estimating other seismic characteristics (crust acceleration and crust energy) while traditionally, methods cannot monitor the earthquakes system. This work has derived some physical equations for extraction of many variables as inputs for our developed machine learning model based on a reliable understanding of the tomography data to physical variables by preparing huge dataset from diffe-rent physical conditions of crust. We have extracted the velocity values of the shear waves from the original NETCDF file, which contains the S velocity values for every one km of the depths of the crust for the study area from one km down to the uppermost mantle beneath the Middle East. For the first time, this study calculated new seismic hazard parameter called Peak Crust Acceleration (PCA) for seismic hazard analysis by considering the transmitted initial seismic energy through the Earth's crust layers from hypocenter. All machine learning algorithms in this study wrote in python language using anaconda platform the open-source Individual Edition (Distribution).

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Agard, P., Omrani, J., Jolivet, L., et al., 2011. Zagros Orogeny: A Subduction-Dominated Process. Geological Magazine, 148(5–6): 692–725. https://doi.org/10.1017/s001675681100046x
    Aho, T., Zenko, B. D., Zeroski, S., et al., 2009. Multi-Target Regression with Rule Ensembles. J., Mach. Learn. Res., 373: 2055–2066
    Allen, M. B., Saville, C., Blanc, E. J. P., et al., 2013. Orogenic Plateau Growth: Expansion of the Turkish-Iranian Plateau across the Zagros Fold-and-Thrust Belt. Tectonics, 32(2): 171–190. https://doi.org/10.1002/tect.20025
    Appice, A., Džeroski, S., 2007. Stepwise Induction of Multi-Target Model Trees. Machine Learning: ECML 2007. Springer, Heidelberg, Berlin. https://doi.org/10.1007/978-3-540-74958-5_46
    Asim, K. M., Martínez-Álvarez, F., Basit, A., et al., 2017. Earthquake Magnitude Prediction in Hindukush Region Using Machine Learning Techniques. Natural Hazards, 85(1): 471–486. https://doi.org/10.1007/s11069-016-2579-3
    Berberian, M., King, G. C. P., 1981. Towards a Paleogeography and Tectonic Evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265. https://doi.org/10.1139/e81-019
    Borchani, H., Varando, G., Bielza, C., et al., 2015. A Survey on Multi-Output Regression. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5(5): 216–233. https://doi.org/10.1002/wid m. 1157 doi: 10.1002/widm.1157
    Böse, M., Heaton, T. H., Hauksson, E., 2012. Real-Time Finite Fault Rupture Detector (FinDer) for Large Earthquakes. Geophysical Journal International, 191(2): 803–812. https://doi.org/10.1111/j.1365-246X.2012.05657.x
    Breiman, L., Friedman, J. H., 1997. Predicting Multivariate Responses in Multiple Linear Regression. Journal of the Royal Statistical Society Series B: Statistical Methodology, 59(1): 3–54. https://doi.org/10.1111/1467-9868.00054
    Brown, P., Zidek, J., 1980. Adaptive Multivariate Ridge Regression. Ann. Stat., 8(1): 64–74
    Brownlee, J., 2020. How to Develop Multi-Output Regression Models with Python, on March 27, 2020 in Ensemble Learning, Machine Learning Mastery, https://machinelearningmastery.com/multi-output-regression-models-with-python/
    Erdik, M., Doyuran, V., Akkaş, N., et al., 1985. A Probabilistic Assessment of the Seismic Hazard in Turkey. Tectonophysics, 117(3/4): 295–344. https://doi.org/10.1016/0040-1951(85)90275-6
    Gitis, V., Derendyaev, A., 2019. Machine Learning Methods for Seismic Hazards Forecast. Geosciences, 9(7): 308. https://doi.org/10.3390/geos ciences9070308 doi: 10.3390/geosciences9070308
    Haitovsky, Y., 1987. On Multivariate Ridge Regression. Biometrika, 74(3): 563–570. https://doi.org/10.1093/biomet/74.3.563
    Kaviani, A., 2020. 3-D Shear-Wave Velocity (Vs) Model for the Crust and Uppermost Mantle beneath the Middle East. Incorporated Research Institutions for Seismology (IRIS). IRIS Data Management Center. http://ds.iris.edu/spud/earthmodel
    Kaviani, A., Paul, A., Moradi, A., et al., 2020. Crustal and Uppermost Mantle Shear-Wave Velocity Structure beneath the Middle East from Surface-Wave Tomography. Geophys. J. Int., https://doi.org/10.17611/DP/18050884
    Keskin, M., 2003. Magma Generation by Slab Steepening and Breakoff beneath a Subduction-Accretion Complex: An Alternative Model for Collision-Related Volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30: 1–4
    Kramer, S. L., 1996. U. S. Department of Transportation, Federal Highway Administration, Washington, D. C. Geotechnical Earthquake Engineering. Prentice-Hall, Inc., Upper Saddle River, NJ
    Kuhn, M., Johnson, K., 2013. Applied Predictive Modeling. Springer, New York
    Micchelli, C. A., Pontil, M., 2005. On Learning Vector-Valued Functions. Neural Computation, 17(1): 177–204. https://doi.org/10.1162/0899766052530802
    Numan, N. M. S., 1997. A Plate Tectonic Scenario for the Phanerozoic Succession in Iraq. Iraqi Geological Journal, 89–90
    Perol, T., Gharbi, M., Denolle, M., 2018. Convolutional Neural Network for Earthquake Detection and Location. Science Advances, 4(2): e1700578. https://doi.org/10.1126/sciadv.1700578
    Seber, D., Vallve. M., Sandvol, E., et al., 1997. Middle-East Tectonics: Applications of 20 Geographical Information Systems (GIS). GSA Today, 7: 1–5
    Similä, T., Tikka, J., 2007. Input Selection and Shrinkage in Multiresponse Linear Regression. Computational Statistics & Data Analysis, 52: 406 –422. https://doi.org/10.1016/j.csda.2007.01.025
    Spyromitros-Xious, E., Groves, W., Tsoumakas, G., et al., 2012. Multi-Label Classication Methods for Multi-Target Regression. arXiv preprint arXiv: 1211.6581, Cornel University Library, Ithaca
    Stöcklin, J., 1968. Structural History and Tectonics of Iran: A Review. American Association of Petroleum Geologists Bulletin, 52: 1229-58. https://doi.org/10.1306/5d25c4a5-16c1-11d7-8645000102c1865d
    Thomas, S., Pillai, G. N., Pal, K., et al., 2016. Prediction of Ground Motion Parameters Using Randomized ANFIS (RANFIS). Applied Soft Computing, 40: 624–634. https://doi.org/10.1016/j.asoc.2015.12.013
    Trugman Daniel, T., Shearer Peter, M., 2018. Strong Correlation between Stress Drop and Peak Ground Acceleration for Recent M1–4 Earthquakes in the San Francisco Bay Area. Bulletin of the Seismological Society of America, 108(2): 929–945
    Tsoumakas, G., Spyromitros-Xious, E., Vrekou, A., et al., 2014. Multi-Target Regression via Random Linear Target Combinations. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Springer Verlag, Nancy. 225–240
    USGS, 2020. "M6.7-4 km ENE of Doganyol, Turkey". United States Geological Survey. Retrieved 24 January 2020
    Wong, I., Thomas, P., Abrahamson, N., 2004. The PEER-Lifelines Validation of Software Used in Probabilistic Seismic Hazard Analysis. In Geotechnical Engineering for Transportation Projects, 807–815
    Zhu, W. Q., Beroza, G. C., 2019. PhaseNet: A Deep-Neural-Network-Based Seismic Arrival-Time Picking Method. Geophysical Journal International, 216(1): 261–273. https://doi.org/10.1093/gji/ggy423
    Zukerman, W., 2011. Turkey Earthquake Reveals a New Active Fault Zone. New Scientist, 212(2836): 4. https://doi.org/10.1016/S0262-4079(11)62621-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(6)

    Article Metrics

    Article views(129) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return