Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 5
Oct 2023
Turn off MathJax
Article Contents
Shiming Liu, Lian Jiang, Bangjun Liu, Cunliang Zhao, Shuheng Tang, Furong Tan. Investigation of Organic Matter Sources and Depositional Environment Changes for Terrestrial Shale Succession from the Yuka Depression: Implications from Organic Geochemistry and Petrological Analyses. Journal of Earth Science, 2023, 34(5): 1577-1595. doi: 10.1007/s12583-022-1617-1
Citation: Shiming Liu, Lian Jiang, Bangjun Liu, Cunliang Zhao, Shuheng Tang, Furong Tan. Investigation of Organic Matter Sources and Depositional Environment Changes for Terrestrial Shale Succession from the Yuka Depression: Implications from Organic Geochemistry and Petrological Analyses. Journal of Earth Science, 2023, 34(5): 1577-1595. doi: 10.1007/s12583-022-1617-1

Investigation of Organic Matter Sources and Depositional Environment Changes for Terrestrial Shale Succession from the Yuka Depression: Implications from Organic Geochemistry and Petrological Analyses

doi: 10.1007/s12583-022-1617-1
More Information
  • Corresponding author: Bangjun Liu, liubangjun@hebeu.edu.cn
  • Received Date: 01 Nov 2021
  • Accepted Date: 15 Jan 2022
  • Available Online: 14 Oct 2023
  • Issue Publish Date: 30 Oct 2023
  • Continental organic-rich shales are well developed in the Dameigou Formation within the Yuka Depression of the Qaidam Basin. Here, the Rock-Eval pyrolysis, biomarkers, organic petrology, and stable carbon isotope have been carried out on the Middle Jurassic Dameigou Formation source rocks from the northwest part of Yuka Depression, Qaidam Basin in order to study their thermal maturity, source of organic matter (OM), and palaeoenvironment changes. The Rock-Eval pyrolysis data (e.g., Tmax), vitrinite reflectance, and biomarker-derived thermal maturity parameters (e.g., carbon preference index, Ts/(Ts+Tm), C29 Ts/(C29Ts+C29 αβ hopane), C30 αβ/(αβ+βα) hopanes, C29 ααα 20S/(20S+20R) steranes, and C29 αββ/ (αββ+ααα) steranes) suggest all studied samples stay between immature and low mature stage. The maceral compositions, stable carbon isotope compositions, n-alkane distributions, and biomarker-derived source parameters (e.g., C27/C29 ααα 20R sterane, ternary diagram of C27-C28-C29 steranes, C24 tetracyclic terpane) indicate both aquatic organisms and higher plants are the source of OM in the shales, but land plants are dominant. Generally low gammacerane concentration and environment-related parameters (e.g., cross-plots of C27/C29 ααα 20R sterane vs. Pr/Ph) indicate these source rocks may be derived from lacustrine and fluvial-deltaic environments with fresh water, which is also supported by the variations of stable carbon isotopes from OM in the source rocks. However, the stable carbon isotope compositions of OM in the source rocks were influenced by multiple factors (e.g., source types and depositional environment) in the Yuka Depression. Slightly brackish condition is recorded in the upper part of the ZK6-1 well favor the formation of lacustrine algae, as confirmed by high contents of C27 steranes and short-chain n-alkanes. The variation of reducing to oxidizing condition of study area is possibly associated with the periodical flooded river-influenced aquatic condition during the deposition of the Middle Jurassic Dameigou Formation.

     

  • The authors declare that they have no conflict of interest.
  • loading
  • Alexander, R., Kagi, R., Noble, R., 1983. Identification of the Bicyclic Sesquiterpenes Drimane and Eudesmane in Petroleum. Journal of the Chemical Society, Chemical Communications, 5: 226. https://doi.org/10.1039/c39830000226
    Algeo, T. J., Ingall, E., 2007. Sedimentary Corg : P Ratios, Paleocean Ventilation, and Phanerozoic Atmospheric pO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3/4): 130–155. https://doi.org/10.1016/j.palaeo.2007.02.029
    Algeo, T. J., Li, C., 2020. Redox Classification and Calibration of Redox Thresholds in Sedimentary Systems. Geochimica et Cosmochimica Acta, 287: 8–26. https://doi.org/10.1016/j.gca.2020.01.055
    Bauer, P. E., Nelson, D. A., Watt, D. S., et al., 1985. Synthesis of Biological Markers in Fossil Fuels. 4. C27, C28, and C29 13. Beta., 17. alpha. (H)-Diasteranes. The Journal of Organic Chemistry, 50(26): 5460–5464. https://doi.org/10.1021/jo00350a003
    Bechtel, A., Gratzer, R., Sachsenhofer, R. F., et al., 2008. Biomarker and Carbon Isotope Variation in Coal and Fossil Wood of Central Europe through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 262(3/4): 166–175. https://doi.org/10.1016/j.palaeo.2008.03.005
    Bechtel, A., Jia, J. L., Strobl, S. A. I., et al., 2012. Palaeoenvironmental Conditions during Deposition of the Upper Cretaceous Oil Shale Sequences in the Songliao Basin (NE China): Implications from Geochemical Analysis. Organic Geochemistry, 46: 76–95. https://doi.org/10.1016/j.orggeochem.2012.02.003
    Bechtel, A., Oberauer, K., Kostić, A., et al., 2018. Depositional Environment and Hydrocarbon Source Potential of the Lower Miocene Oil Shale Deposit in the Aleksinac Basin (Serbia). Organic Geochemistry, 115: 93–112. https://doi.org/10.1016/j.orggeochem.20 17.10.009 doi: 10.1016/j.orggeochem.2017.10.009
    Berner, R. A., 1994. GEOCARB II; A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 294(1): 56–91. https://doi.org/10.2475/ajs.294.1.56
    Berner, R. A., 2003. The Long-Term Carbon Cycle, Fossil Fuels and Atmospheric Composition. Nature, 426(6964): 323–326. https://doi.org/10.1038/nature02131
    Bruce, W. S., Paul, J. V., 2008. Jurassic Climates. Proceedings of the Geologists Association, 119(1): 5–17 doi: 10.1016/S0016-7878(59)80068-7
    Cao, J., Bian, L. Z., Hu, K., et al., 2009. Benthic Macro Red Alga: A New Possible Bio-Precursor of Jurassic Mudstone Source Rocks in the Northern Qaidam Basin, Northwestern China. Science in China Series D: Earth Sciences, 52(5): 647–654. https://doi.org/10.1007/s11430-00 9-0063-6 doi: 10.1007/s11430-009-0063-6
    Chattopadhyay, A., Dutta, S., 2014. Higher Plant Biomarker Signatures of Early Eocene Sediments of North Eastern India. Marine and Petroleum Geology, 57: 51–67. https://doi.org/10.1016/j.marpetgeo.20 14.04.004 doi: 10.1016/j.marpetgeo.2014.04.004
    Chivelet, J. M., José, L. G., Aguado, R., et al., 2019. The Late Jurassic–Early Cretaceous Rifting, In: Quesada, C., Oliveira, J. T., eds., The Geology of Iberia: A Geodynamic Approach. Regional Geology Reviews. Springer Nature, Switzerland. https://doi.org/10.1007/978-3-030-11295-0_5
    Chojnacka, K., Mikulewicz, M., 2018. Biomarkers of Trace Element Status. Recent Advances in Trace Elements. John Wiley & Sons, Chichester. https://doi.org/10.1002/9781119133780.ch22
    Cloern, J. E., Canuel, E. A., Harris, D., 2002. Stable Carbon and Nitrogen Isotope Composition of Aquatic and Terrestrial Plants of the San Francisco Bay Estuarine System. Limnology and Oceanography, 47(3): 713–729. https://doi.org/10.4319/lo.2002.47.3.0713
    Connan, J., Cassou, A. M., 1980. Properties of Gases and Petroleum Liquids Derived from Terrestrial Kerogen at Various Maturation Levels. Geochimica et Cosmochimica Acta, 44(1): 1–23. https://doi.org/10.1016/0016-7037(80)90173-8
    Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., et al., 1978. Organic Geochemical Indicators of Palaeoenvironmental Conditions of Sedimentation. Nature, 272(5650): 216–222. https://doi.org/10.1038/2 72216a0 doi: 10.1038/272216a0
    Eglinton, G., Hamilton, R. J., 1967. Leaf Epicuticular Waxes. Science, 156(3780): 1322–1335. https://doi.org/10.1126/science.156.3780.1322
    Escobar, M., Márquez, G., Inciarte, S., et al., 2011. The Organic Geochemistry of Oil Seeps from the Sierra de Perijá Eastern Foothills, Lake Maracaibo Basin, Venezuela. Organic Geochemistry, 42(7): 727–738. https://doi.org/10.1016/j.orggeochem.2011.06.005
    Farrimond, P., Green, A., Williams, L., 2015. Petroleum Geochemistry of the Sea Lion Field, North Falkland Basin. Petroleum Geoscience, 21(2/3): 125–135. https://doi.org/10.1144/petgeo2014-052
    Ficken, K. J., Li, B., Swain, D. L., et al., 2000. An n-Alkane Proxy for the Sedimentary Input of Submerged/Floating Freshwater Aquatic Macrophytes. Organic Geochemistry, 31(7/8): 745–749. https://doi.org/10.1016/s0146-6380(00)00081-4
    Gong, Y. J., Zhang, K. H., Zeng, Z. P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588–3600. https://doi.org/10.3799/dqkx.2020.366
    Grantham, P. J., Douglas, A. G., 1980. The Nature and Origin of Sesquiterpenoids in some Tertiary Fossil Resins. Geochimica et Cosmochimica Acta, 44(11): 1801–1810. https://doi.org/10.1016/0016-7037(80)90229-x
    Guo, T. X., Ren, S. M., Luo, X. R., et al., 2018. Accumulation Conditions and Prospective Areas of Shale Gas in the Middle Jurassic Dameigou Formation, Northern Qaidam Basin, Northwest China. Geological Journal, 53(6): 2944–2954. https://doi.org/10.1002/gj.3134
    Hautevelle, Y., Michels, R., Malartre, F., et al., 2006. Vascular Plant Biomarkers as Proxies for Palaeoflora and Palaeoclimatic Changes at the Dogger/Malm Transition of the Paris Basin (France). Organic Geochemistry, 37(5): 610–625. https://doi.org/10.1016/j.orggeochem. 2005.12.010 doi: 10.1016/j.orggeochem.2005.12.010
    Hou, H. H., Shao, L. Y., Li, Y. H., et al., 2017. Geochemistry, Reservoir Characterization and Hydrocarbon Generation Potential of Lacustrine Shales: A Case of YQ-1 Well in the Yuqia Coalfield, Northern Qaidam Basin, NW China. Marine and Petroleum Geology, 88: 458–471. https://doi.org/10.1016/j.marpetgeo.2017.08.030
    Jiang, L., Ding, W. J., George, S. C., 2020. Late Cretaceous-Paleogene Palaeoclimate Reconstruction of the Gippsland Basin, SE Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 556: 109885. https://doi.org/10.1016/j.palaeo.2020.109885
    Jiang, L., George, S. C., 2018. Biomarker Signatures of Upper Cretaceous Latrobe Group Hydrocarbon Source Rocks, Gippsland Basin, Australia: Distribution and Palaeoenvironment Significance of Aliphatic Hydrocarbons. International Journal of Coal Geology, 196: 29–42. https://doi.org/10.1016/j.coal.2018.06.025
    Jiao, G., Qin, J., Jing, W., et al., 2005. Organic Petrology Characters of Jurassic Source Rocks in the Northern Margin of Qaidam Basin. Pet. Geol. Exp. , 27(3): 249–250
    Kodner, R. B., Pearson, A., Summons, R. E., et al., 2008. Sterols in Red and Green Algae: Quantification, Phylogeny, and Relevance for the Interpretation of Geologic Steranes. Geobiology, 6(4): 411–420. https://doi.org/10.1111/j.1472-4669.2008.00167.x
    Lewan, M. D., 1983. Effects of Thermal Maturation on Stable Organic Carbon Isotopes as Determined by Hydrous Pyrolysis of Woodford Shale. Geochimica et Cosmochimica Acta, 47(8): 1471–1479. https://doi.org/10.1016/0016-7037(83)90306-x
    Li, H., Ren, S., Guo, T., et al., 2016. Organic Geochemistry Characteristics and Reservoir Conditions of Jurassic Shale in Yuka Depression of Northern Qaidam Basin: A Case Study of Chaiye-1 Well. Geological Bulletin of China, 35(2/3): 250–259 (in Chinese with English Abstract)
    Li, M., Shao, L. Y., Lu, J., et al., 2014. Sequence Stratigraphy and Paleogeography of the Middle Jurassic Coal Measures in the Yuqia Coalfield, Northern Qaidam Basin, Northwestern China. AAPG Bulletin, 98(12): 2531–2550. https://doi.org/10.1306/06041413129
    Li, X. B., Ji, J. L., Cao, Z. M., et al., 2021. The Climatic Significance of the Color of the Paleo-Neogene Fluvial and Lacustrine Sediments in the Northern Qaidam Basin. Earth Science, 46(9): 3278–3289. https://doi.org/10.3799/dqkx.2020.329
    Liu, B. J., Vrabec, M., Markič, M., et al., 2019. Reconstruction of Paleobotanical and Paleoenvironmental Changes in the Pliocene Velenje Basin, Slovenia, by Molecular and Stable Isotope Analysis of Lignites. International Journal of Coal Geology, 206: 31–45. https://doi.org/10.1016/j.coal.2019.03.006
    Liu, S. M., Tang, S. H., Tan, F. R., et al., 2020. Pore Structure Characteristics and Hydrocarbon Generation Potential of Middle Jurassic Lacustrine Source Rocks in the Yuka Depression, Qaidam Basin, NW China: Implications from Petrographic and Organic Geochemical Analyses. Journal of Natural Gas Science and Engineering, 81: 103481. https://doi.org/10.1016/j.jngse.2020.103481
    Liu, T., Shao, L., Cao, D., et al., 2013. Formation Conditions and Evaluation of Coal Resources of the Middle Jurassic in the Northern Qaidam Basin. Geological Press, Beijing
    Liu, Y. T., Hu, K., Cao, J. A., et al., 2008. Organic Biofacies of Jurassic Source Rocks in Northern Qaidam Basin, NW China. Petroleum Exploration and Development, 35(3): 281–288. https://doi.org/10.1016/s1876-3804(08)60073-7
    Lu, J., Yang, M. F., Shao, L. Y., et al., 2016. Paleoclimate Change and Sedimentary Environment Evolution, Coal Accumulation: A Middle Jurassic Terrestrial. Journal of China Coal Society, 41(7): 1788–1797. (in Chinese with English Abstract)
    Lu, J., Zhang, P. X., Dal Corso, J., et al., 2021. Volcanically Driven Lacustrine Ecosystem Changes during the Carnian Pluvial Episode (Late Triassic). Proceedings of the National Academy of Sciences of the United States of America, 118(40): e2109895118. https://doi.org/10.1073/pnas.2109895118
    Lu, J., Zhang, P. X., Yang, M. F., et al., 2020a. Continental Records of Organic Carbon Isotopic Composition (δ13Corg), Weathering, Paleoclimate and Wildfire Linked to the End-Permian Mass Extinction. Chemical Geology, 558: 119764. https://doi.org/10.1016/j.chemgeo.2020.119764
    Lu, J., Zhou, K., Yang, M. F., et al., 2020b. Terrestrial Organic Carbon Isotopic Composition (δ13Corg) and Environmental Perturbations Linked to Early Jurassic Volcanism: Evidence from the Qinghai-Tibet Plateau of China. Global and Planetary Change, 195: 103331. https://doi.org/10.1016/j.gloplacha.2020.103331
    McKirdy, D. M., Cox, R. E., Volkman, J. K., et al., 1986. Botryococcane in a New Class of Australian Non-Marine Crude Oils. Nature, 320(6057): 57–59. https://doi.org/10.1038/320057a0
    Meyers, P. A., 1994. Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter. Chemical Geology, 114(3/4): 289–302. https://doi.org/10.1016/0009-2541(94)90059-0
    Milkov, A. V., Faiz, M., Etiope, G., 2020. Geochemistry of Shale Gases from around the World: Composition, Origins, Isotope Reversals and Rollovers, and Implications for the Exploration of Shale Plays. Organic Geochemistry, 143: 103997. https://doi.org/10.1016/j.orggeo chem.2020.103997 doi: 10.1016/j.orggeochem.2020.103997
    Moldowan, J. M., Dahl, J., Huizinga, B. J., et al., 1994. The Molecular Fossil Record of Oleanane and Its Relation to Angiosperms. Science, 265(5173): 768–771. https://doi.org/10.1126/science.265.5173.768
    Moldowan, J. M., Seifert, W. K., Gallegos, E. J., 1985. Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rocks. AAPG Bulletin, 69: 1255–1268. https://doi.org/10.1306/ad462bc8-16f7-11d7-8645000102c1865d
    Mook, W. G., 2001. Environmental Isotopes in the Hydrological Cycle: Principles and Applications, v. II: Atmospheric Water. Contraception, 87(4): 506–507
    Nott, C. J., Xie, S. C., Avsejs, L. A., et al., 2000. n-Alkane Distributions in Ombrotrophic Mires as Indicators of Vegetation Change Related to Climatic Variation. Organic Geochemistry, 31(2/3): 231–235. https://doi.org/10.1016/S0146-6380(99)00153-9
    Otto, A., Walther, H., Püttmann, W., 1997. Sesqui- and Diterpenoid Biomarkers Preserved in Taxodium-Rich Oligocene Oxbow Lake Clays, Weisselster Basin, Germany. Organic Geochemistry, 26(1/2): 105–115. https://doi.org/10.1016/S0146-6380(96)00133-7
    Otto, A., Wilde, V., 2001. Sesqui-, Di-, and Triterpenoids as Chemosystematic Markers in Extant Conifers—A Review. The Botanical Review, 67(2): 141–238. https://doi.org/10.1007/bf02858076
    Ourisson, G., Albrecht, P., Rohmer, M., 1979. The Hopanoids: Palaeochemistry and Biochemistry of a Group of Natural Products. Pure and Applied Chemistry, 51(4): 709–729. https://doi.org/10.1351/pac197951040709
    Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide: Volume 2, Biomarkers and Isotopes in Petroleum Systems and Earth History. Cambridge University Press, Cambridge
    Peters, K., Moldowan, J. M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall, Englewood Cliffs
    Petroleum Geological Exploration Professional Standardization Committee (PGEPSC), 2003. Rock Pyrolysis Analysis: GB/T 18602-2001. Standards Press of China, Beijing
    Petroleum Geological Exploration Professional Standardization Committee (PGEPSC), 2002. Determination of Total Organic Carbon In Sedimentary Rock: GB/T 19145-2003. Standards Press of China, Beijing
    Petroleum Geological Exploration Professional Standardization Committee (PGEPSC), 2008. Analysis Method for Carbon and Oxygen Isotope in Organic Matter and Carbonate: SY/T 5238-2008. Standards Press of China, Beijing
    Philippi, G. T., 1974. The Influence of Marine and Terrestrial Source Material on the Composition of Petroleum. Geochimica et Cosmochimica Acta, 38(6): 947–966. https://doi.org/10.1016/0016-703 7(74)90067-2 doi: 10.1016/0016-7037(74)90067-2
    Philp, R. P., 1985. Fossil Fuel Biomarkers: Application and Spectra. Elsevier Science and Publishing Company, New York
    Qin, J., Wang, S. Q., Sanei, H., et al., 2018. Revelation of Organic Matter Sources and Sedimentary Environment Characteristics for Shale Gas Formation by Petrographic Analysis of Middle Jurassic Dameigou Formation, Northern Qaidam Basin, China. International Journal of Coal Geology, 195: 373–385. https://doi.org/10.1016/j.coal.2018.0 6.015 doi: 10.1016/j.coal.2018.06.015
    Regnery, J., Püttmann, W., Koutsodendris, A., et al., 2013. Comparison of the Paleoclimatic Significance of Higher Land Plant Biomarker Concentrations and Pollen Data: A Case Study of Lake Sediments from the Holsteinian Interglacial. Organic Geochemistry, 61: 73–84. https://doi.org/10.1016/j.orggeochem.2013.06.006
    Ren, S. M., Bao, S. J., Zhang, Y., et al., 2016. Geological Conditions of the Jurassic Shale Gas on the Northern Margin of Qaidam Basin. Geological Bulletin of China, 35(2/3): 204–210 (in Chinese with English Abstract)
    Ritts, B. D., Hanson, A. D., Zinniker, D., et al., 1999. Lower–Middle Jurassic Nonmarine Source Rocks and Petroleum Systems of the Northern Qaidam Basin, Northwest China. AAPG Bulletin, 83: 1980–2005. https://doi.org/10.1306/e4fd4661-1732-11d7-8645000102c1865d
    Rohmer, M., Bisseret, P., Neunlist, S., 1992. The Hopanoids, Prokaryotic Triterpenoids and Precursors of Ubiquitous Molecular Fossils. In: Moldowan, J., Albrecht, P., Philip, R., Biol. Markers in Sediments and Pet., P rentice-Hall, New Jersey
    Sachsenhofer, R. F., Bechtel, A., Reischenbacher, D., et al., 2003. Evolution of Lacustrine Systems along the Miocene Mur-MÜRZ Fault System (Eastern Alps, Austria) and Implications on Source Rocks in Pull-Apart Basins. Marine and Petroleum Geology, 20(2): 83–110. https://doi.org/10.1016/s0264-8172(03)00018-7
    Seifert, W. K., Moldowan, J. M., 1980. The Effect of Thermal Stress on Source-Rock Quality as Measured by Hopane Stereochemistry. Physics and Chemistry of the Earth, 12: 229–237. https://doi.org/10.1 016/0079-1946(79)90107-1 doi: 10.1016/0079-1946(79)90107-1
    Seifert, W. K., Moldowan, J., 1986. Use of Biological Markers in Petroleum Exploration. Biol. Markers Sediment. Rec. , 24: 261–290
    Shao, L. Y., Li, M., Li, Y. H., et al., 2014. Geological Characteristics and Controlling Factors of Shale Gas in the Jurassic of the Northern Qaidam Basin. Earth Science Frontiers, 21(4): 311–322 (in Chinese with English Abstract)
    Shao, L. Y., Liu, L., Wen, H. J., et al., 2016. Characteristics and Influencing Factors of Nanopores in the Middle Jurassic Shimengou Shale in Well YQ-1 of the Northern Qaidam Basin. Earth Science Frontiers, 23(1): 164–173 (in Chinese with English Abstract)
    Simoneit, B. R. T., 1985. Cyclic Terpenoids of the Geosphere. Methods Geochemistry Geophys, 25: 43–99
    Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., et al., 1995. Evidence for Gammacerane as an Indicator of Water Column Stratification. Geochimica et Cosmochimica Acta, 59(9): 1895–1900. https://doi.org/10.1016/0016-7037(95)00073-9
    Stefanova, M., Kortenski, J., Zdravkov, A., et al., 2013. Paleoenvironmental Settings of the Sofia Lignite Basin: Insights from Coal Petrography and Molecular Indicators. International Journal of Coal Geology, 107: 45–61. https://doi.org/10.1016/j.coal.2012.09.014
    Summons, R. E., Jahnke, L. L., Hope, J. M., et al., 1999. 2-Methylhopanoids as Biomarkers for Cyanobacterial Oxygenic Photosynthesis. Nature, 400(6744): 554–557. https://doi.org/10.1038/2 3005 doi: 10.1038/23005
    Summons, R. E., Metzger, P., Largeau, C., et al., 2002. Polymethylsqualanes from Botryococcus Braunii in Lacustrine Sediments and Crude Oils. Organic Geochemistry, 33(2): 99–109. https://doi.org/10.1016/s0146-6380(01)00147-4
    Ten Haven, H. L., de Leeuw, J. W., Rullkötter, J., et al., 1987. Restricted Utility of the Pristane/Phytane Ratio as a Palaeoenvironmental Indicator. Nature, 330(6149): 641–643. https://doi.org/10.1038/33064 1a0 doi: 10.1038/330641a0
    Tissot, B., Welte, D., 1989. Petroleum Formation and Occurrence. Springer-Verlag, Berlin
    Tong, X. N., Hu, J. F., Xi, D. P., et al., 2018. Depositional Environment of the Late Santonian Lacustrine Source Rocks in the Songliao Basin (NE China): Implications from Organic Geochemical Analyses. Organic Geochemistry, 124: 215–227. https://doi.org/10.1016/j.orggeochem.20 18.07.018 doi: 10.1016/j.orggeochem.2018.07.018
    Volkman, J. K., 1986. A Review of Sterol Markers for Marine and Terrigenous Organic Matter. Organic Geochemistry, 9(2): 83–99. https://doi.org/10.1016/0146-6380(86)90089-6
    Wang, H. Y., Hou, Q. J., Sun, D. J., 2004. Mesozoic-Cenozoic Hydrocarbon Formation and Resource Assessment in the Northern Qaidam Basin. Science Press, Beijing
    Wang, L., Song, Z. G., Cao, X. X., et al., 2015. Compound-Specific Carbon Isotope Study on the Hydrocarbon Biomarkers in Lacustrine Source Rocks from Songliao Basin. Organic Geochemistry, 87: 68–77. https://doi.org/10.1016/j.orggeochem.2015.07.011
    Wang, M., Wu, B. L., Li, Y. Q., et al., 2022. Experimental Study on Possibility of Deep Uranium-Rich Source Rocks Providing Uranium Source in Ordos Basin. Earth Science, 47(1): 224–239. https://doi.org/10.3799/dqkx.2021.050
    Wang, Y. D., Mosbrugger, V., Zhang, H., 2005. Early to Middle Jurassic Vegetation and Climatic Events in the Qaidam Basin, Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 224(1/2/3): 200–216. https://doi.org/10.1016/j.palaeo.2005.03.035
    Wei, W., Algeo, T. J., 2020. Elemental Proxies for Paleosalinity Analysis of Ancient Shales and Mudrocks. Geochimica et Cosmochimica Acta, 287: 341–366. https://doi.org/10.1016/j.gca.2019.06.034
    Weiss, H. M., Wilhelms, A., Mills, N., et al., 2000. NIGOGA-The Norwegian Industry Guide to Organic Geochemical Analyses [online]. Edition 4.0. Available at: http://www.npd.no/engelsk/nigoga/default.htm (accessed November 3, 2022)
    Wierzbowski, H., Joachimski, M., 2007. Reconstruction of Late Bajocian-Bathonian Marine Palaeoenvironments Using Carbon and Oxygen Isotope Ratios of Calcareous Fossils from the Polish Jura Chain (Central Poland). Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3/4): 523–540. https://doi.org/10.1016/j.palaeo.2007.07.010
    Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 3: Applied Geomechanics, Petrophysics and Reservoir Modeling. Journal of Earth Science, 28(5): 779–803. https://doi.org/10.1007/s12583-017-07 34-8 doi: 10.1007/s12583-017-0734-8
    Woodhouse, A. D., Oung, J. N., Philp, R. P., et al., 1992. Triterpanes and Ring-a Degraded Triterpanes as Biomarkers Characteristic of Tertiary Oils Derived from Predominantly Higher Plant Sources. Organic Geochemistry, 18(1): 23–31. https://doi.org/10.1016/0146-6380(92)9014 0-s doi: 10.1016/0146-6380(92)90140-s
    Xiang, Y., Jiao, Y. Q., Wu, L. Q., et al., 2022. Markers and Genetic Mechanisms of Primary and Epigenetic Oxidation of an Aeolian Depositional System of the Luohandong Formation, Ordos Basin. Journal of Earth Science, 33(2): 358–372. https://doi.org/10.1007/s12 583-020-1109-0 doi: 10.1007/s12583-020-1109-0
    Yang, P., Xie, Z. K., Yuan, X. J., et al., 2006. Palaeoecological Characteristics and Its Palaeogeographic Significance of the Jurassic in Northern Margin of Qaidam Basin. Journal of Palaeogeogrphy, 8(2): 165–173
    Yuan, X. J., 2007. Evolution of the Jurassic Sedimentary Environment in Northern Margin of Qaidam Basin and Its Significance in Petroleum Geology. Pet. Explor. Dev. , 34: 160–164
    Yue, P., Wang, P., Yu, D., et al., 2011. Depositional Characteristics of the Early and Middle Jurassic on the Northern Margin of the Qaidam Basin and Their Implications for Petroleum Geology. Mar. Geol. Front. , 27: 38–44
    Zhong. X. C., Zhao C. B., Yang, S. Z., 2003. Northern Jurassic of Central China (II): Paleoenvironment and Petroleum. Petroleum Industry Press, Beijing
    Zhu, W., Wang, R., Lu, X. C., et al., 2021. Yanshanian Tectonic Activities and Their Sedimentary Responses in Northwestern Junggar Basin. Earth Science, 46(5): 1692–1709. https://doi.org/10.3799/dqkx.202 0.118 doi: 10.3799/dqkx.2020.118
    Zou, C., Pan, S., Jing, Z., et al., 2020. Shale Oil and Gas Revolution and Its Impact. Acta Pet. Sinica, 41(1): 1–12 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views(120) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return