Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 3
Jun 2023
Turn off MathJax
Article Contents
Sen Li, Andrew Schauer, Alexis Licht, Jie Liang, Kate Huntington, Kangning Peng. Clumped Isotope Analysis of Calcite and Dolomite Mixtures Using Selective Acid Extraction. Journal of Earth Science, 2023, 34(3): 726-734. doi: 10.1007/s12583-022-1630-4
Citation: Sen Li, Andrew Schauer, Alexis Licht, Jie Liang, Kate Huntington, Kangning Peng. Clumped Isotope Analysis of Calcite and Dolomite Mixtures Using Selective Acid Extraction. Journal of Earth Science, 2023, 34(3): 726-734. doi: 10.1007/s12583-022-1630-4

Clumped Isotope Analysis of Calcite and Dolomite Mixtures Using Selective Acid Extraction

doi: 10.1007/s12583-022-1630-4
More Information
  • Corresponding author: Andrew Schauer, aschauer@uw.edu; Alexis Licht, licht@cerege.fr
  • Received Date: 04 Jan 2022
  • Accepted Date: 30 Jan 2022
  • Available Online: 08 Jun 2023
  • Issue Publish Date: 30 Jun 2023
  • Acid extraction methods have been used in the last half century to selectively extract the CO2 produced from different carbonate minerals in mixed samples. However, these methods are often time-consuming and labor intensive. Their application to clumped isotope (Δ47) analysis has not been demonstrated. We propose here an acid extraction method with phosphoric acid for bulk stable and clumped isotope analysis that treats mixtures of calcite and dolomite the same regardless of the proportional composition. CO2 evolved from calcite is extracted by allowing a reaction with phosphoric acid to proceed for 10 min at 50 ℃. We then extract CO2 evolved from dolomite by rapid ramping the acid temperature from 50 to 90 ℃ and allowing the reaction to complete. The experimental results show that our method yields accurate calcite and dolomite Δ47 values from mixed samples under different proportional compositions. Our method also displays equal or higher accuracy for calcite δ13C and dolomite δ13C and δ18O values from mixtures when compared to previous studies. Our approach exhibits higher sample throughput than previous methods, is adequate for clumped isotopic analysis and simplifies the reaction progression from over 24 h to less than 2 h, while maintaining relatively high isotopic obtaining accuracy. It yet poorly resolves calcite δ18O values, as found with previous methods.

     

  • loading
  • Affek, H. P., 2012. Clumped Isotope Paleothermometry: Principles, Applications, and Challenges. The Paleontological Society Papers, 18: 101–114 http://www.researchgate.net/profile/Hagit_Affek/publication/235891063_CLUMPED_ISOTOPE_PALEOTHERMOMETRY_PRINCIPLES_APPLICATIONS_AND_CHALLENGES/links/0fcfd513e34c08914c000000.pdf?ev=pub_ext_doc_dl_meta
    Al-Aasm, I. S., Taylor, B. E., South, B., 1990. Stable Isotope Analysis of Multiple Carbonate Samples Using Selective Acid Extraction. Chemical Geology: Isotope Geoscience Section, 80(2): 119–125. https://doi.org/10.1016/0168-9622(90)90020-d
    Aloisi, G., Baudrand, M., Lécuyer, C., et al., 2013. Biomarker and Isotope Evidence for Microbially-Mediated Carbonate Formation from Gypsum and Petroleum Hydrocarbons. Chemical Geology, 347: 199–207. https://doi.org/10.1016/j.chemgeo.2013.03.007
    Baudrand, M., Aloisi, G., Lécuyer, C., et al., 2012. Semi-Automatic Determination of the Carbon and Oxygen Stable Isotope Compositions of Calcite and Dolomite in Natural Mixtures. Applied Geochemistry, 27(1): 257–265. https://doi.org/10.1016/j.apgeochem.2011.11.003
    Bernasconi, S. M., Daëron, M., Bergmann, K. D., et al., 2021. InterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards. Geochemistry, Geophysics, Geosystems: G(3), 22(5): e2020GC009588. https://doi.org/10.1029/2020gc009588
    Brand, W. A., Coplen, T. B., Vogl, J., et al., 2014. Assessment of International Reference Materials for Isotope-Ratio Analysis (IUPAC Technical Report). Pure and Applied Chemistry, 86(3): 425–467. https://doi.org/10.1515/pac-2013-1023
    Bristow, T. F., Bonifacie, M., Derkowski, A., et al., 2011. A Hydrothermal Origin for Isotopically Anomalous Cap Dolostone Cements from South China. Nature, 474(7349): 68–71. https://doi.org/10.1038/natur e10096 doi: 10.1038/nature10096
    Burgener, L., Huntington, K. W., Hoke, G. D., et al., 2016. Variations in Soil Carbonate Formation and Seasonal Bias over > 4 km of Relief in the Western Andes (30°S) Revealed by Clumped Isotope Thermometry. Earth and Planetary Science Letters, 441: 188–199. https://doi.org/10.1016/j.epsl.2016.02.033
    Bustillo, M. A., Armenteros, I., Huerta, P., 2017. Dolomitization, Gypsum Calcitization and Silicification in Carbonate-Evaporite Shallow Lacustrine Deposits. Sedimentology, 64(4): 1147–1172. https://doi.org/10.1111/sed.12345
    Chen, Y. X., Tang, J., Zheng, Y. F., et al., 2016. Geochemical Constraints on Petrogenesis of Marble-Hosted Eclogites from the Sulu Orogen in China. Chemical Geology, 436: 35–53. https://doi.org/10.1016/j.chemg eo.2016.05.006 doi: 10.1016/j.chemgeo.2016.05.006
    Clayton, R. N., Jones, B. F., 1968. Isotope Studies of Dolomite Formation under Sedimentary Conditions. Geochimica et Cosmochimica Acta, 32(4): 415–432. https://doi.org/10.1016/0016-7037(68)90076-8
    Cong, F. Y., Tian, J. Q., Hao, F., et al., 2021. A Thermal Pulse Induced by a Permian Mantle Plume in the Tarim Basin, Northwest China: Constraints from Clumped Isotope Thermometry and in situ Calcite U-Pb Dating. Journal of Geophysical Research: Solid Earth, 126(4): e2020jb020636. https://doi.org/10.1029/2020jb020636
    Dale, A., John, C. M., Mozley, P. S., et al., 2014. Time-Capsule Concretions: Unlocking Burial Diagenetic Processes in the Mancos Shale Using Carbonate Clumped Isotopes. Earth and Planetary Science Letters, 394: 30–37. https://doi.org/10.1016/j.epsl.2014.03.004
    Dean, J. R., Jones, M. D., Leng, M. J., et al., 2015. Eastern Mediterranean Hydroclimate over the Late Glacial and Holocene, Reconstructed from the Sediments of Nar Lake, Central Turkey, Using Stable Isotopes and Carbonate Mineralogy. Quaternary Science Reviews, 124: 162–174. https://doi.org/10.1016/j.quascirev.2015.07.023
    Eiler, J. M., 2011. Paleoclimate Reconstruction Using Carbonate Clumped Isotope Thermometry. Quaternary Science Reviews, 30(25/26): 3575–3588. https://doi.org/10.1016/j.quascirev.2011.09.001
    Eiler, J. M., Bergquist, B., Bourg, I., et al., 2014. Frontiers of Stable Isotope Geoscience. Chemical Geology, 372: 119–143. https://doi.org/10.1016/j.chemgeo.2014.02.006
    Epstein, S., Graf, D. L., Degens, E. T., 1964. Oxygen Isotope Studies on the Origin of Dolomites. In: Craig, H., Miller, S. L., Wasserburg, G. J., eds., Isotopic and Cosmic Chemistry. North Holland Publishing, Amsterdam
    Frantz, C. M., Petryshyn, V. A., Marenco, P. J., et al., 2014. Dramatic Local Environmental Change during the Early Eocene Climatic Optimum Detected Using High Resolution Chemical Analyses of Green River Formation Stromatolites. Palaeogeography, Palaeoclimatology, Palaeoecology, 405: 1–15. https://doi.org/10.1016/j.palaeo.2014.04.001
    Guo, W. F., 2020. Kinetic Clumped Isotope Fractionation in the DIC-H2O-CO2 System: Patterns, Controls, and Implications. Geochimica et Cosmochimica Acta, 268: 230–257. https://doi.org/10.1016/j.gca.2019.07.055
    Huntington, K. W., Lechler, A. R., 2015. Carbonate Clumped Isotope Thermometry in Continental Tectonics. Tectonophysics, 647/648: 1–20. https://doi.org/10.1016/j.tecto.2015.02.019
    Kyser, T. K., James, N. P., Bone, Y., 2002. Shallow Burial Dolomitization and Dedolomitization of Cenozoic Cool-Water Limestones, Southern Australia: Geochemistry and Origin. Journal of Sedimentary Research, 72(1): 146–157. https://doi.org/10.1306/060801720146
    Lechler, A. R., Niemi, N. A., Hren, M. T., et al., 2013. Paleoelevation Estimates for the Northern and Central Proto-Basin and Range from Carbonate Clumped Isotope Thermometry. Tectonics, 32(3): 295–316. https://doi.org/10.1002/tect.20016
    Leng, M. J., Marshall, J. D., 2004. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quaternary Science Reviews, 23(7/8): 811–831. https://doi.org/10.1016/j.quascirev.2003.0 6.012 doi: 10.1016/j.quascirev.2003.06.012
    Liu, X., Deng, W. F., Wei, G. J., 2019. Carbon and Oxygen Isotopic Analyses of Calcite in Calcite-Dolomite Mixtures: Optimization of Selective Acid Extraction. Rapid Communications in Mass Spectrometry, 33(5): 411–418. https://doi.org/10.1002/rcm.8365
    Lloyd, M. K., Eiler, J. M., Nabelek, P. I., 2017. Clumped Isotope Thermometry of Calcite and Dolomite in a Contact Metamorphic Environment. Geochimica et Cosmochimica Acta, 197: 323–344. https://doi.org/10.1016/j.gca.2016.10.037
    Luzón, A., Mayayo, M. J., Pérez, A., 2009. Stable Isotope Characterisation of Co-Existing Carbonates from the Holocene Gallocanta Lake (NE Spain): Palaeolimnological Implications. International Journal of Earth Sciences, 98(5): 1129–1150. https://doi.org/10.1007/s00531-008-0308-1
    Maglambayan, V. B., Ishiyama, D., Mizuta, T., et al., 2001. Oxygen and Carbon Isotope Study of Calcite and Dolomite in the Disseminated Au-Ag Telluride Bulawan Deposit, Negros Island, Philippines. Resource Geology, 51(2): 107–116. https://doi.org/10.1111/j.1751-3928.2001.tb00085.x
    Mangenot, X., Gasparrini, M., Rouchon, V., et al., 2018. Basin Scale Thermal and Fluid Flow Histories Revealed by Carbonate Clumped Isotopes (Δ47)―Middle Jurassic Carbonates of the Paris Basin Depocentre. Sedimentology, 65(1): 123–150. https://doi.org/10.1111/sed.12427
    Petersen, S. V., Defliese, W. F., Saenger, C., et al., 2019. Effects of Improved 17O Correction on Interlaboratory Agreement in Clumped Isotope Calibrations, Estimates of Mineral-Specific Offsets, and Temperature Dependence of Acid Digestion Fractionation. Geochemistry, Geophysics, Geosystems, 20(7): 3495–3519. https://doi.org/10.1029/2018gc008127
    Ray, J., Ramesh, R., 1998. Stable Carbon and Oxygen Isotope Analysis of Natural Calcite and Dolomite Mixtures Using Selective Acid Extraction. Journal of Geological Society of India, 52(3): 323–332 http://ci.nii.ac.jp/naid/80010866684
    Schauer, A. J., Kelson, J., Saenger, C., et al., 2016. Choice of 17 Correction Affects Clumped Isotope (Δ47) Values of CO2 Measured with Mass Spectrometry. Rapid Communications in Mass Spectrometry, 30(24): 2607–2616. https://doi.org/10.1002/rcm.7743
    Staudigel, P. T., Murray, S., Dunham, D. P., et al., 2018. Cryogenic Brines as Diagenetic Fluids: Reconstructing the Diagenetic History of the Victoria Land Basin Using Clumped Isotopes. Geochimica et Cosmochimica Acta, 224: 154–170. https://doi.org/10.1016/j.gca.201 8.01.002 doi: 10.1016/j.gca.2018.01.002
    van de Velde, J. H., Bowen, G. J., Passey, B. H., et al., 2013. Climatic and Diagenetic Signals in the Stable Isotope Geochemistry of Dolomitic Paleosols Spanning the Paleocene–Eocene Boundary. Geochimica et Cosmochimica Acta, 109: 254–267. https://doi.org/10.1016/j.gca.20 13.02.005 doi: 10.1016/j.gca.2013.02.005
    Wada, H., Suzuki, K., 1983. Carbon Isotopic Thermometry Calibrated by Dolomite-Calcite Solvus Temperatures. Geochimica et Cosmochimica Acta, 47(4): 697–706. https://doi.org/10.1016/0016-7037(83)90104-7
    Walters, L. J., Claypool, G. E., Choquette, P. W., 1972. Reaction Rates and δO18 Variation for the Carbonate-Phosphoric Acid Preparation Method. Geochimica et Cosmochimica Acta, 36(2): 129–140. https://doi.org/10.1016/0016-7037(72)90002-6
    Yang, X. Y., Sun, W. D., Zhang, Y. X., et al., 2009. Geochemical Constraints on the Genesis of the Bayan Obo Fe-Nb-REE Deposit in Inner Mongolia, China. Geochimica et Cosmochimica Acta, 73(5): 1417–1435. https://doi.org/10.1016/j.gca.2008.12.003
    Yui, T. F., Gong, S. Y., 2003. Stoichiometry Effect on Stable Isotope Analysis of Dolomite. Chemical Geology, 201(3/4): 359–368. https://doi.org/10.1016/j.chemgeo.2003.08.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views(140) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return