Citation: | Sen Li, Andrew Schauer, Alexis Licht, Jie Liang, Kate Huntington, Kangning Peng. Clumped Isotope Analysis of Calcite and Dolomite Mixtures Using Selective Acid Extraction. Journal of Earth Science, 2023, 34(3): 726-734. doi: 10.1007/s12583-022-1630-4 |
Acid extraction methods have been used in the last half century to selectively extract the CO2 produced from different carbonate minerals in mixed samples. However, these methods are often time-consuming and labor intensive. Their application to clumped isotope (Δ47) analysis has not been demonstrated. We propose here an acid extraction method with phosphoric acid for bulk stable and clumped isotope analysis that treats mixtures of calcite and dolomite the same regardless of the proportional composition. CO2 evolved from calcite is extracted by allowing a reaction with phosphoric acid to proceed for 10 min at 50 ℃. We then extract CO2 evolved from dolomite by rapid ramping the acid temperature from 50 to 90 ℃ and allowing the reaction to complete. The experimental results show that our method yields accurate calcite and dolomite Δ47 values from mixed samples under different proportional compositions. Our method also displays equal or higher accuracy for calcite δ13C and dolomite δ13C and δ18O values from mixtures when compared to previous studies. Our approach exhibits higher sample throughput than previous methods, is adequate for clumped isotopic analysis and simplifies the reaction progression from over 24 h to less than 2 h, while maintaining relatively high isotopic obtaining accuracy. It yet poorly resolves calcite δ18O values, as found with previous methods.
Affek, H. P., 2012. Clumped Isotope Paleothermometry: Principles, Applications, and Challenges. The Paleontological Society Papers, 18: 101–114 http://www.researchgate.net/profile/Hagit_Affek/publication/235891063_CLUMPED_ISOTOPE_PALEOTHERMOMETRY_PRINCIPLES_APPLICATIONS_AND_CHALLENGES/links/0fcfd513e34c08914c000000.pdf?ev=pub_ext_doc_dl_meta |
Al-Aasm, I. S., Taylor, B. E., South, B., 1990. Stable Isotope Analysis of Multiple Carbonate Samples Using Selective Acid Extraction. Chemical Geology: Isotope Geoscience Section, 80(2): 119–125. https://doi.org/10.1016/0168-9622(90)90020-d |
Aloisi, G., Baudrand, M., Lécuyer, C., et al., 2013. Biomarker and Isotope Evidence for Microbially-Mediated Carbonate Formation from Gypsum and Petroleum Hydrocarbons. Chemical Geology, 347: 199–207. https://doi.org/10.1016/j.chemgeo.2013.03.007 |
Baudrand, M., Aloisi, G., Lécuyer, C., et al., 2012. Semi-Automatic Determination of the Carbon and Oxygen Stable Isotope Compositions of Calcite and Dolomite in Natural Mixtures. Applied Geochemistry, 27(1): 257–265. https://doi.org/10.1016/j.apgeochem.2011.11.003 |
Bernasconi, S. M., Daëron, M., Bergmann, K. D., et al., 2021. InterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards. Geochemistry, Geophysics, Geosystems: G(3), 22(5): e2020GC009588. https://doi.org/10.1029/2020gc009588 |
Brand, W. A., Coplen, T. B., Vogl, J., et al., 2014. Assessment of International Reference Materials for Isotope-Ratio Analysis (IUPAC Technical Report). Pure and Applied Chemistry, 86(3): 425–467. https://doi.org/10.1515/pac-2013-1023 |
Bristow, T. F., Bonifacie, M., Derkowski, A., et al., 2011. A Hydrothermal Origin for Isotopically Anomalous Cap Dolostone Cements from South China. Nature, 474(7349): 68–71. https://doi.org/10.1038/natur e10096 doi: 10.1038/nature10096 |
Burgener, L., Huntington, K. W., Hoke, G. D., et al., 2016. Variations in Soil Carbonate Formation and Seasonal Bias over > 4 km of Relief in the Western Andes (30°S) Revealed by Clumped Isotope Thermometry. Earth and Planetary Science Letters, 441: 188–199. https://doi.org/10.1016/j.epsl.2016.02.033 |
Bustillo, M. A., Armenteros, I., Huerta, P., 2017. Dolomitization, Gypsum Calcitization and Silicification in Carbonate-Evaporite Shallow Lacustrine Deposits. Sedimentology, 64(4): 1147–1172. https://doi.org/10.1111/sed.12345 |
Chen, Y. X., Tang, J., Zheng, Y. F., et al., 2016. Geochemical Constraints on Petrogenesis of Marble-Hosted Eclogites from the Sulu Orogen in China. Chemical Geology, 436: 35–53. https://doi.org/10.1016/j.chemg eo.2016.05.006 doi: 10.1016/j.chemgeo.2016.05.006 |
Clayton, R. N., Jones, B. F., 1968. Isotope Studies of Dolomite Formation under Sedimentary Conditions. Geochimica et Cosmochimica Acta, 32(4): 415–432. https://doi.org/10.1016/0016-7037(68)90076-8 |
Cong, F. Y., Tian, J. Q., Hao, F., et al., 2021. A Thermal Pulse Induced by a Permian Mantle Plume in the Tarim Basin, Northwest China: Constraints from Clumped Isotope Thermometry and in situ Calcite U-Pb Dating. Journal of Geophysical Research: Solid Earth, 126(4): e2020jb020636. https://doi.org/10.1029/2020jb020636 |
Dale, A., John, C. M., Mozley, P. S., et al., 2014. Time-Capsule Concretions: Unlocking Burial Diagenetic Processes in the Mancos Shale Using Carbonate Clumped Isotopes. Earth and Planetary Science Letters, 394: 30–37. https://doi.org/10.1016/j.epsl.2014.03.004 |
Dean, J. R., Jones, M. D., Leng, M. J., et al., 2015. Eastern Mediterranean Hydroclimate over the Late Glacial and Holocene, Reconstructed from the Sediments of Nar Lake, Central Turkey, Using Stable Isotopes and Carbonate Mineralogy. Quaternary Science Reviews, 124: 162–174. https://doi.org/10.1016/j.quascirev.2015.07.023 |
Eiler, J. M., 2011. Paleoclimate Reconstruction Using Carbonate Clumped Isotope Thermometry. Quaternary Science Reviews, 30(25/26): 3575–3588. https://doi.org/10.1016/j.quascirev.2011.09.001 |
Eiler, J. M., Bergquist, B., Bourg, I., et al., 2014. Frontiers of Stable Isotope Geoscience. Chemical Geology, 372: 119–143. https://doi.org/10.1016/j.chemgeo.2014.02.006 |
Epstein, S., Graf, D. L., Degens, E. T., 1964. Oxygen Isotope Studies on the Origin of Dolomites. In: Craig, H., Miller, S. L., Wasserburg, G. J., eds., Isotopic and Cosmic Chemistry. North Holland Publishing, Amsterdam |
Frantz, C. M., Petryshyn, V. A., Marenco, P. J., et al., 2014. Dramatic Local Environmental Change during the Early Eocene Climatic Optimum Detected Using High Resolution Chemical Analyses of Green River Formation Stromatolites. Palaeogeography, Palaeoclimatology, Palaeoecology, 405: 1–15. https://doi.org/10.1016/j.palaeo.2014.04.001 |
Guo, W. F., 2020. Kinetic Clumped Isotope Fractionation in the DIC-H2O-CO2 System: Patterns, Controls, and Implications. Geochimica et Cosmochimica Acta, 268: 230–257. https://doi.org/10.1016/j.gca.2019.07.055 |
Huntington, K. W., Lechler, A. R., 2015. Carbonate Clumped Isotope Thermometry in Continental Tectonics. Tectonophysics, 647/648: 1–20. https://doi.org/10.1016/j.tecto.2015.02.019 |
Kyser, T. K., James, N. P., Bone, Y., 2002. Shallow Burial Dolomitization and Dedolomitization of Cenozoic Cool-Water Limestones, Southern Australia: Geochemistry and Origin. Journal of Sedimentary Research, 72(1): 146–157. https://doi.org/10.1306/060801720146 |
Lechler, A. R., Niemi, N. A., Hren, M. T., et al., 2013. Paleoelevation Estimates for the Northern and Central Proto-Basin and Range from Carbonate Clumped Isotope Thermometry. Tectonics, 32(3): 295–316. https://doi.org/10.1002/tect.20016 |
Leng, M. J., Marshall, J. D., 2004. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quaternary Science Reviews, 23(7/8): 811–831. https://doi.org/10.1016/j.quascirev.2003.0 6.012 doi: 10.1016/j.quascirev.2003.06.012 |
Liu, X., Deng, W. F., Wei, G. J., 2019. Carbon and Oxygen Isotopic Analyses of Calcite in Calcite-Dolomite Mixtures: Optimization of Selective Acid Extraction. Rapid Communications in Mass Spectrometry, 33(5): 411–418. https://doi.org/10.1002/rcm.8365 |
Lloyd, M. K., Eiler, J. M., Nabelek, P. I., 2017. Clumped Isotope Thermometry of Calcite and Dolomite in a Contact Metamorphic Environment. Geochimica et Cosmochimica Acta, 197: 323–344. https://doi.org/10.1016/j.gca.2016.10.037 |
Luzón, A., Mayayo, M. J., Pérez, A., 2009. Stable Isotope Characterisation of Co-Existing Carbonates from the Holocene Gallocanta Lake (NE Spain): Palaeolimnological Implications. International Journal of Earth Sciences, 98(5): 1129–1150. https://doi.org/10.1007/s00531-008-0308-1 |
Maglambayan, V. B., Ishiyama, D., Mizuta, T., et al., 2001. Oxygen and Carbon Isotope Study of Calcite and Dolomite in the Disseminated Au-Ag Telluride Bulawan Deposit, Negros Island, Philippines. Resource Geology, 51(2): 107–116. https://doi.org/10.1111/j.1751-3928.2001.tb00085.x |
Mangenot, X., Gasparrini, M., Rouchon, V., et al., 2018. Basin Scale Thermal and Fluid Flow Histories Revealed by Carbonate Clumped Isotopes (Δ47)―Middle Jurassic Carbonates of the Paris Basin Depocentre. Sedimentology, 65(1): 123–150. https://doi.org/10.1111/sed.12427 |
Petersen, S. V., Defliese, W. F., Saenger, C., et al., 2019. Effects of Improved 17O Correction on Interlaboratory Agreement in Clumped Isotope Calibrations, Estimates of Mineral-Specific Offsets, and Temperature Dependence of Acid Digestion Fractionation. Geochemistry, Geophysics, Geosystems, 20(7): 3495–3519. https://doi.org/10.1029/2018gc008127 |
Ray, J., Ramesh, R., 1998. Stable Carbon and Oxygen Isotope Analysis of Natural Calcite and Dolomite Mixtures Using Selective Acid Extraction. Journal of Geological Society of India, 52(3): 323–332 http://ci.nii.ac.jp/naid/80010866684 |
Schauer, A. J., Kelson, J., Saenger, C., et al., 2016. Choice of 17 Correction Affects Clumped Isotope (Δ47) Values of CO2 Measured with Mass Spectrometry. Rapid Communications in Mass Spectrometry, 30(24): 2607–2616. https://doi.org/10.1002/rcm.7743 |
Staudigel, P. T., Murray, S., Dunham, D. P., et al., 2018. Cryogenic Brines as Diagenetic Fluids: Reconstructing the Diagenetic History of the Victoria Land Basin Using Clumped Isotopes. Geochimica et Cosmochimica Acta, 224: 154–170. https://doi.org/10.1016/j.gca.201 8.01.002 doi: 10.1016/j.gca.2018.01.002 |
van de Velde, J. H., Bowen, G. J., Passey, B. H., et al., 2013. Climatic and Diagenetic Signals in the Stable Isotope Geochemistry of Dolomitic Paleosols Spanning the Paleocene–Eocene Boundary. Geochimica et Cosmochimica Acta, 109: 254–267. https://doi.org/10.1016/j.gca.20 13.02.005 doi: 10.1016/j.gca.2013.02.005 |
Wada, H., Suzuki, K., 1983. Carbon Isotopic Thermometry Calibrated by Dolomite-Calcite Solvus Temperatures. Geochimica et Cosmochimica Acta, 47(4): 697–706. https://doi.org/10.1016/0016-7037(83)90104-7 |
Walters, L. J., Claypool, G. E., Choquette, P. W., 1972. Reaction Rates and δO18 Variation for the Carbonate-Phosphoric Acid Preparation Method. Geochimica et Cosmochimica Acta, 36(2): 129–140. https://doi.org/10.1016/0016-7037(72)90002-6 |
Yang, X. Y., Sun, W. D., Zhang, Y. X., et al., 2009. Geochemical Constraints on the Genesis of the Bayan Obo Fe-Nb-REE Deposit in Inner Mongolia, China. Geochimica et Cosmochimica Acta, 73(5): 1417–1435. https://doi.org/10.1016/j.gca.2008.12.003 |
Yui, T. F., Gong, S. Y., 2003. Stoichiometry Effect on Stable Isotope Analysis of Dolomite. Chemical Geology, 201(3/4): 359–368. https://doi.org/10.1016/j.chemgeo.2003.08.007 |