Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 2
Apr 2023
Turn off MathJax
Article Contents
Abdullah Sar, Sevcan Kürüm, Ahmet Feyzi Bingöl. Early Cretaceous to Middle Eocene Magmatic Evolution of Eastern Pontides: Zircon U-Pb Ages and Hf Isotopes, and Geochemical and Sr-Nd Isotopic Constraints from Multiphase Granitoids, NE Turkey. Journal of Earth Science, 2023, 34(2): 518-535. doi: 10.1007/s12583-022-1640-2
Citation: Abdullah Sar, Sevcan Kürüm, Ahmet Feyzi Bingöl. Early Cretaceous to Middle Eocene Magmatic Evolution of Eastern Pontides: Zircon U-Pb Ages and Hf Isotopes, and Geochemical and Sr-Nd Isotopic Constraints from Multiphase Granitoids, NE Turkey. Journal of Earth Science, 2023, 34(2): 518-535. doi: 10.1007/s12583-022-1640-2

Early Cretaceous to Middle Eocene Magmatic Evolution of Eastern Pontides: Zircon U-Pb Ages and Hf Isotopes, and Geochemical and Sr-Nd Isotopic Constraints from Multiphase Granitoids, NE Turkey

doi: 10.1007/s12583-022-1640-2
More Information
  • Corresponding author: Abdullah Sar, asar@firat.edu.tr
  • Received Date: 24 Sep 2021
  • Accepted Date: 22 Feb 2022
  • The Eastern Pontides orogenic belt (EPOB) represents a significant segment of the Alpine-Himalayan orogenic belt that evolved from the Paleozoic to Cenozoic periods. Here we report new zircon U-Pb ages, together with Lu-Hf isotopes, and whole-rock geochemical and Sr-Nd isotopic analyses of plutonic rocks from EPOB, northeastern Turkey. Our aim is to interpret magmatic evolution in which the granitoids formed. Zircon U-Pb dating of six samples yielded crystallization ages of ~134, ~82, ~39 Ma, respectively. They show a wide range of 87Sr/86Sr(i) (0.703 9–0.710 9), and εNd(t) values varying from -9 to +4.6, yielding model ages (TDM) from 520 to 1 623 Ma, suggesting a heterogeneous magma source. Dated zircons show exlusively positive εHf(t) values (+12.4 to +1.4), yielding model ages (TDM) from 352 to 1 059 Ma, implying that they are most likely derived from a juvenile lower crust rather than the mature continental crust. In this study, we suggested that the northward subduction of the Neo-Tethyan oceanic slab began from the Early Cretaceous and resulted in the Late Cretaceous magmatism. Moreover, the Middle Eocene magmatism in the EPOB was related to the collision of the Anatolide Taurid Platform (ATP) with the Pontides.

     

  • Electronic Supplementary Materials: Supplementary materials (Material 1, Tables S1, S2, S3, S4) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1640-2.
  • loading
  • Abdulzahra, I. K., Hadi, A., Azizi, H., et al., 2017. Zircon U-Pb Ages and Sr-Nd Isotope Ratios for the Sirstan Granitoid Body, NE Iraq: Evidence of Magmatic Activity in the Middle Cretaceous Period. Comptes Rendus Geoscience, 349(2): 53–62. https://doi.org/10.1016/j.crte.2017.02.004
    Arslan, M., Temizel, İ., Abdioğlu, E., et al., 2013. 40Ar-39Ar Dating, Whole-Rock and Sr-Nd-Pb Isotope Geochemistry of Post-Collisional Eocene Volcanic Rocks in the Southern Part of the Eastern Pontides (NE Turkey): Implications for Magma Evolution in Extension-Induced Origin. Contributions to Mineralogy and Petrology, 166(1): 113–142. https://doi.org/10.1007/s00410-013-0868-3
    Aslan, Z., 2010. U-Pb Zircon SHRIMP Age, Geochemical and Petrographical Characteristics of Tuffs within Calc-Alkaline Eocene Volcanics around Gumushane (NE Turkey), Eastern Pontides. Neues Jahrbuch Für Mineralogie-Abhandlungen, 187(3): 329–346. https://doi.org/10.1127/0077-7757/2010/0181
    Aydın, F., Oğuz Saka, S., Şen, C., et al., 2020. Temporal, Geochemical and Geodynamic Evolution of the Late Cretaceous Subduction Zone Volcanism in the Eastern Sakarya Zone, NE Turkey: Implications for Mantle-Crust Interaction in an Arc Setting. Journal of Asian Earth Sciences, 192: 104–217. https://doi.org/10.1016/j.jseaes.2019.104217
    Bektaş, O., Şen, C., Atici, Y., et al., 1999. Migration of the Upper Cretaceous Subduction-Related Volcanism towards the Back-Arc Basin of the Eastern Pontide Magmatic Arc (NE Turkey). Geological Journal, 34(1/2): 95–106. https://doi.org/10.1002/(SICI)1099-1034(199901/06)34:1/295:aıd-gj816>3.0.co;2-j doi: 10.1002/(SICI)1099-1034(199901/06)34:1/295:aıd-gj816>3.0.co;2-j
    Bektaş, O., Yilmaz, C., Tasli, K., et al., 1995. Cretaceous Rifting of the Eastern Pontide Carbonate Platform (NE Turkey): The Formation of Carbonates Breccias and Turbidites as Evidences of a Drowned Platform. Geologia, 57: 233–244
    Boehnke, P., Schmitt, A. K., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351: 324–334. https://doi.org/10.1016/j.chemgeo.2013.05.028
    Boztuğ, D., Erçin, A. İ., Kuruçelik, M. K., et al., 2006. Geochemical Characteristics of the Composite Kaçkar Batholith Generated in a Neo-Tethyan Convergence System, Eastern Pontides, Turkey. Journal of Asian Earth Sciences, 27(3): 286–302. https://doi.org/10.1016/j.jseae s.2005.03.008 doi: 10.1016/j.jseaes.2005.03.008
    Boztuğ, D., Harlavan, Y., 2008. K-Ar Ages of Granitoids Unravel the Stages of Neo-Tethyan Convergence in the Eastern Pontides and Central Anatolia, Turkey. International Journal of Earth Sciences, 97(3): 585–599. https://doi.org/10.1007/s00531-007-0176-0
    Boztuğ, D., Jonckheere, R., Wagner, G. A., et al., 2004. Slow Senonian and Fast Palaeocene-Early Eocene Uplift of the Granitoids in the Central Eastern Pontides, Turkey: Apatite Fission-Track Results. Tectonophysics, 382(3/4): 213–228. https://doi.org/10.1016/j.tecto.2004.01.001
    Brenan, J. M., Shaw, H. F., Ryerson, F. J., 1995. Experimental Evidence for the Origin of Lead Enrichment in Convergent-Margin Magmas. Nature, 378(6552): 54–56. https://doi.org/10.1038/378054a0
    Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2018. Atlas of Zircon Textures. Zircon, 469–502. https://doi.org/10.1515/9781501509322-019
    Delibaş, O., Moritz, R., Ulianov, A., et al., 2016. Cretaceous Subduction-Related Magmatism and Associated Porphyry-Type Cu-Mo Prospects in the Eastern Pontides, Turkey: New Constraints from Geochronology and Geochemistry. Lithos, 248–251, 119–137. http://doi.org/10.1016/j.lithos.2016.01.020
    DePaolo, D. J., 1981. Neodymium Isotopes in the Colorado Front Range and Crust–Mantle Evolution in the Proterozoic. Nature, 291(5812): 193–196. https://doi.org/10.1038/291193a0
    Dokuz, A., 2011. A Slab Detachment and Delamination Model for the Generation of Carboniferous High-Potassium I-Type Magmatism in the Eastern Pontides, NE Turkey: The Köse Composite Pluton. Gondwana Research, 19(4): 926–944. https://doi.org/10.1016/j.gr.2010.09.006
    Dokuz, A., Karslı, O., Chen, B., et al., 2010. Sources and Petrogenesis of Jurassic Granitoids in the Yusufeli Area, Northeastern Turkey: Implications for Pre- and Post-Collisional Lithospheric Thinning of the Eastern Pontides. Tectonophysics, 480(1/2/3/4): 259–279. https://doi.org/10.1016/j.tecto.2009.10.009
    Dokuz, A., Aydın, F., Karslı, O., 2019. Postcollisional Transition from Subduction- to İntraplate-Type Magmatism in the Eastern Sakarya Zone, Turkey: Indicators of Northern Neotethyan Slab Breakoff. The Geological Society of America Bulletin, 131: 1623–1642. http://doi.org/10.1130/b31993.1
    Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
    Evcimen, Ö., 2011. İkizdere Plütonunun (KD Türkiye) U-Pb Jeokronolojisi, Petrolojisi ve Jeodinamik Önemi: [Dissertation]. Gümüşhane Üniversity, Gümüşhane
    Eyüboğlu, Y., 2010. Late Cretaceous High-K Volcanism in the Eastern Pontide Orogenic Belt: Implications for the Geodynamic Evolution of NE Turkey. International Geology Review, 52(2/3): 142–186. https://doi.org/10.1080/00206810902757164
    Eyüboǧlu, Y., Bektas, O., Şeren, A., et al., 2006. Three-Directional Extensional Deformation and Formation of the Liassic Rift Basins in the Eastern Pontides (NE Turkey). Geologica Carpathica, 57(5): 337–346
    Eyüboğlu, Y., Dilek, Y., Bozkurt, E., et al., 2010. Structure and Geochemistry of an Alaskan-Type Ultramafic-Mafic Complex in the Eastern Pontides, NE Turkey. Gondwana Research, 18(1): 230–252. https://doi.org/10.1016/j.gr.2010.01.008
    Eyüboglu, Y., Dudas, F. O., Santosh, M., et al., 2013. Petrogenesis and U-Pb Zircon Chronology of Adakitic Porphyries within the Kop Ultramafic Massif (Eastern Pontides Orogenic Belt, NE Turkey). Gondwana Research, 24(2): 742–766. https://doi.org/10.1016/j.gr.201 2.11.014 doi: 10.1016/j.gr.2012.11.014
    Eyüboglu, Y., Dudas, F. O., Santosh, M., et al., 2016. Cenozoic Forearc Gabbros from the Northern Zone of the Eastern Pontides Orogenic Belt, NE Turkey: Implications for Slab Window Magmatism and Convergent Margin Tectonics. Gondwana Research, 33: 160–189. https://doi.org/10.1016/j.gr.2015.07.006
    Eyüboğlu, Y., Dudas, F. O., Zhu, D. C., et al., 2019. Late Cretaceous I- and A-Type Magmas in Eastern Turkey: Magmatic Response to Double-Sided Subduction of Paleo- and Neo-Tethyan Lithospheres. Lithos, 326/327: 39–70. https://doi.org/10.1016/j.lithos.2018.12.017
    Eyüboğlu, Y., Santosh, M., Bektas, O., et al., 2011. Late Triassic Subduction-Related Ultramafic-Mafic Magmatism in the Amasya Region (Eastern Pontides, N. Turkey): Implications for the Ophiolite Conundrum in Eastern Mediterranean. Journal of Asian Earth Sciences, 42(3): 234–257. https://doi.org/10.1016/j.jseaes.2011.01.007
    Garzanti, E., Radeff, G., Malusa, M. G., 2018. Slab Breakoff: A Critical Appraisal of a Geological Theory as Applied in Space and Time. Earth-Science Reviews, 177: 303–319. https://doi.org/10.1016/j.earscirev.20 17.11.012 doi: 10.1016/j.earscirev.2017.11.012
    Giles, D. L., 1973. Geology and Mineralization of the Ulutaş Copper-Molybdenum Deposits, Eastern Anatolia, Turkey. United Nations Development Programme, Technical Report 6, 56.
    Guillaume, B., Martinod, J., Espurt, N., 2009. Variations of Slab Dip and Overriding Plate Tectonics during Subduction: Insights from Analogue Modelling. Tectonophysics, 463: 167–174. http://doi.org/10.1016/j.tect o.2008.09.043 doi: 10.1016/j.tecto.2008.09.043
    Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347–359. https://doi.org/10.1016/0009-2541(94)00145-x
    Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5/6): 1–26. https://doi.org/10.1007/s00410-015-1199-3
    Haba, M. K., Wotzlaw, J. F., 2021. ID-TIMS Zircon U-Pb Geochronology of the Camel Donga Eucrite. Chemical Geology, 567: 120073. http://doi.org/10.1016/j.chemgeo.2021.120073
    Hawkesworth, C. J., Gallagher, K., Hergt, J. M., et al., 1993. Mantle and Slab Contributions in ARC Magmas. Annual Review of Earth and Planetary Sciences, 21: 175–204. https://doi.org/10.1146/annurev.ea.2 1.050193.001135 doi: 10.1146/annurev.ea.21.050193.001135
    Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297–314. https://doi.org/10.1016/0012-821x(88)90132-x
    Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
    Jagoutz, O. E., 2010. Construction of the Granitoid Crust of an Island Arc. Part II: A Quantitative Petrogenetic Model. Contributions to Mineralogy and Petrology, 160(3): 359–381. https://doi.org/10.1007/s00410-009-0482-6
    Kandemir, Ö., Akbayram, K., Çobankaya, M., et al., 2019. From Arc Evolution to Arc-Continent Collision: Late Cretaceous–Middle Eocene Geology of the Eastern Pontides, Northeastern Turkey. GSA Bulletin, 131(11/12): 1889–1906. https://doi.org/10.1130/b31913.1
    Karslı, O., Aydın, F., Uysal, I., et al., 2018. Latest Cretaceous "A2-Type" Granites in the Sakarya Zone, NE Turkey: Partial Melting of Mafic Lower Crust in Response to Roll-back of Neo-Tethyan Oceanic Lithosphere. Lithos, 302/303: 312–328. https://doi.org/10.1016/j.litho s.2017.12.025 doi: 10.1016/j.lithos.2017.12.025
    Karslı, O., Caran, Ş., Çoban, H., et al., 2021. Melting of the Juvenile Lower Crust in a Far-Field Response to Roll-back of the Southern Neotethyan Oceanic Lithosphere: The Oligocene Adakitic Dacites, NE Turkey. Lithos, 370/371: 105614. https://doi.org/10.1016/j.lithos.2020.105614
    Karslı, O., Caran, Ş., Dokuz, A., et al., 2012. A-Type Granitoids from the Eastern Pontides, NE Turkey: Records for Generation of Hybrid A-Type Rocks in a Subduction-Related Environment. Tectonophysics, 530/531: 208–224. https://doi.org/10.1016/j.tecto.2011.12.030
    Karslı, O., Dokuz, A., Kaliwoda, M., et al., 2014. Geochemical Fingerprints of Late Triassic Calc-Alkaline Lamprophyres from the Eastern Pontides, NE Turkey: A Key to Understanding Lamprophyre Formation in a Subduction-Related Environment. Lithos, 196/197: 181–197. https://doi.org/10.1016/j.lithos.2014.02.022
    Karslı, O., Dokuz, A., Kandemir, R., 2016. Subduction-Related Late Carboniferous to Early Permian Magmatism in the Eastern Pontides, the Camlik and Casurluk Plutons: Insights from Geochemistry, Whole-Rock Sr-Nd and in situ Zircon Lu-Hf Isotopes, and U-Pb Geochronology. Lithos, 266/267: 98–114. https://doi.org/10.1016/j.lith os.2016.10.007 doi: 10.1016/j.lithos.2016.10.007
    Karslı, O., İlhan, M., Kandemir, R., et al., 2021. Nature of the Early Cretaceous Lamprophyre and High-Nb Basaltic Dykes, NE Turkey: Constraints on Their Linkage to Subduction Initiation of Neotethyan Oceanic Lithosphere. Lithos, 380/381: 105884. https://doi.org/10.1016/j.lithos.2020.105884
    Kaygusuz, A., Arslan, M., Siebel, W., et al., 2012. Geochronological Evidence and Tectonic Significance of Carboniferous Magmatism in the Southwest Trabzon Area, Eastern Pontides, Turkey. International Geology Review, 54(15): 1–25. https://doi.org/10.1080/00206814.201 2.676371 doi: 10.1080/00206814.2012.676371
    Kaygusuz, A., Arslan, M., Siebel, W., et al., 2014. LA-ICP MS Zircon Dating, Whole-Rock and Sr-Nd-Pb-O Isotope Geochemistry of the Camiboğazı Pluton, Eastern Pontides, NE Turkey: Implications for Lithospheric Mantle and Lower Crustal Sources in Arc-Related I-Type Magmatism. Lithos, 192/193/194/195: 271–290. https://doi.org/10.1016/j.lithos.2014.02.014
    Kaygusuz, A., Arslan, M., Sipahi, F., et al., 2016. U-Pb Zircon Chronology and Petrogenesis of Carboniferous Plutons in the Northern Part of the Eastern Pontides, NE Turkey: Constraints for Paleozoic Magmatism and Geodynamic Evolution. Gondwana Research, 39: 327–346. https://doi.org/10.1016/j.gr.2016.01.011
    Kaygusuz, A., Arslan, M., Temizel, İ., et al., 2021. U-Pb Zircon Ages and Petrogenesis of the Late Cretaceous I-Type Granitoids in Arc Setting, Eastern Pontides, NE Turkey. Journal of African Earth Sciences, 174: 104040. https://doi.org/10.1016/j.jafrearsci.2020.104040
    Kaygusuz, A., Öztürk, M., 2015. Geochronology, Geochemistry, and Petrogenesis of the Eocene Bayburt Intrusions, Eastern Pontides, NE Turkey: Evidence for Lithospheric Mantle and Lower Crustal Sources in the High-K Calc-Alkaline Magmatism. Journal of Asian Earth Sciences, 108: 97–116. https://doi.org/10.1016/j.jseaes.2015.04.017
    Kaygusuz, A., Şen, C., 2011. Calc-Alkaline I-Type Plutons in the Eastern Pontides, NE Turkey: U-Pb Zircon Ages, Geochemical and Sr-Nd Isotopic Compositions. Geochemistry, 71(1): 59–75. https://doi.org/10.1016/j.chemer.2010.07.005
    Kaygusuz, A., Sipahi, F., İlbeyli, N., et al., 2013. Petrogenesis of the Late Cretaceous Turnagöl Intrusion in the Eastern Pontides: Implications for Magma Genesis in the Arc Setting. Geoscience Frontiers, 4(4): 423–438. https://doi.org/10.1016/j.gsf.2012.09.003
    Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980–983. https://doi.org/10.11 26/science.1136154 doi: 10.1126/science.1136154
    Keskin, M., 2002. FC-Modeler: A Microsoft® Excel© Spreadsheet Program for Modeling Rayleigh Fractionation Vectors in Closed Magmatic Systems. Computers & Geosciences, 28(8): 919–928. https://doi.org/10.1016/s0098-3004(02)00010-9
    Keskin, M., 2013. AFC-Modeler: A Microsoft® Excel© Workbook Program for Modeling Assimilation Combined with Fractional Crystallisation (AFC) Process in Magmatic Systems by Using Equations of DePaolo (1981). Turkish Journal of Earth Science, 22: 304–319. https://doi.org/10.3906/yer-1110-3
    Ketin, İ., 1966. Anadolu'nun Tektonik Birlikleri (Tectonic Units of Anatolia). Bulletin of the Mineral Res. and Exploration, 66: 23–34
    Kogiso, T., Tatsumi, Y., Nakano, S., 1997. Trace Element Transport during Dehydration Processes in the Subducted Oceanic Crust: 1. Experiments and Implications for the Origin of Ocean Island Basalts. Earth and Planetary Science Letters, 148(1/2): 193–205. https://doi.org/10.1016/s0012-821x(97)00018-6
    Le Bas, M. J., Maitre, R. W. L., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750. https://doi.org/10.109 3/petrology/27.3.745 doi: 10.1093/petrology/27.3.745
    Li, X. H., Li, W. X., Wang, X. C., et al., 2009. Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China: In Situ Zircon Hf-O Isotopic Constraints. Science in China Series D: Earth Sciences, 52(9): 1262–1278. https://doi.org/10.1007/s11430-009-0117-9
    Liu, Z., Zhu, D. C., Wang, Q., et al., 2018. Transition From Low-K to High-K Calc-Alkaline Magmatism at Approximately 84 Ma in the Eastern Pontides (NE Turkey): Magmatic Response to Slab Rollback of the Black Sea. Journal of Geophysical Research Solid, 123, 7604–7628. https://doi. org/10.1029/2018jb016026 doi: 10.1029/2018jb016026
    McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3/4): 358–374. https://doi.org/10.1016/0012-821x(91)90029-h
    McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 1021. https://doi.org/10.1029/2000gc000109
    Moore, W. J., McKee, E. H., Akıncı, Ö., 1980. Chemistry and Chronology of Plutonic Rocks in the Pontid Mountains, Northern Turkey. Sym. of European Copper Deposits, Belgrade, 209–216
    Noll, P. D., Newsom, H. E., Leeman, W. P., et al., 1996. The Role of Hydrothermal Fluids in the Production of Subduction Zone Magmas: Evidence from Siderophile and Chalcophile Trace Elements and Boron. Geochimica et Cosmochimica Acta, 60(4): 587–611. https://doi.org/10.1016/0016-7037(95)00405-x
    Okay, A. I., Şahintürk, O., 1997. Geology of the Eastern Pontides. In: Robinson, A. G., ed., Regional and Petroleum Geol. of the Black Sea and Surrounding Region. AAPG Memoir, 68: 292–311. https://doi.org/10.1306/m68612c15
    Payne, J. L., McInerney, D. J., et al., 2016. Strengths and Limitations of Zircon Lu-Hf and O Isotopes in Modelling Crustal Growth. Lithos, 248/249/250/251: 175–192. https://doi.org/10.1016/j.lithos.2015.12.015
    Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120–125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. , 25: 956–983. http://doi.org/10.1093/petrology/25.4.956
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745
    Pietranik, A. B., Hawkesworth, C. J., Storey, C. D., et al., 2008. Episodic, Mafic Crust Formation from 4.5 to 2.8 Ga: New Evidence from Detrital Zircons, Slave Craton, Canada. Geology, 36(11): 875–878. https://doi.org/10.1130/g24861a.1
    Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46(5): 921–944. https://doi.org/10.1093/petrology/egi005
    Pupin, J. P., 1980. Zircon and Granite Petrology. Contributions to Mineralogy and Petrology, 73(3): 207–220. https://doi.org/10.1007/bf0 0381441 doi: 10.1007/bf00381441
    Sar, A., Ertürk, M. A., Rizeli, M. E., 2019. Genesis of Late Cretaceous Intra-Oceanic Arc Intrusions in the Pertek Area of Tunceli Province, Eastern Turkey, and Implications for the Geodynamic Evolution of the Southern Neo-Tethys: Results of Zircon U-Pb Geochronology and Geochemical and Sr-Nd Isotopic Analyses. Lithos, 350/351: 105263. https://doi.org/10.1016/j.lithos.2019.105263
    Sarjoughian, F., Zahedi, B., Azizi, H., et al., 2021. Zircon U-Pb Ages, Geochemistry and Sr-Nd Isotopes of the Golshekanan Granitoid, Urumieh-Dokhtar Magmatic Arc, Iran: Evidence for Partial Melting of Juvenile Crust. Geological Magazine, 158(7): 1289–1304. https://doi.org/10.1017/s0016756820001338
    Şen, C., 2007. Jurassic Volcanismin the Eastern Pontides: Is It Rift Related or Subduction Related? Turkish Journal of Earth Sciences, 16: 523–539
    Şengör, A. M. C., Özeren, S., Genç, T., et al., 2003. East Anatolian High Plateau as a Mantle-Supported, North-South Shortened Domal Structure. Geophysical Research Letters, 30(24): 8045. https://doi.org/10.1029/2003gl017858
    Şengör, A. M. C., Yılmaz, Y., 1981. Tethyan Evolution of Turkey: A Plate Tectonic Approach. Tectonophysics, 75(3/4): 181–241. https://doi.org/10.1016/0040-1951(81)90275-4
    Shand, S. J., 1943. Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. John Wiley & Sons, New-York
    Shi, W. X., Liao, Q. A., Hu, Y. Q., et al., 2010. Characteristics of Mesoproterozoic Granites and Their Geological Significances from Middle Tianshan Block, East Tianshan District, NW China. Geol. Sci. Technol. Inf., 29: 29–37 (in Chinese with English Abstract)
    Sims, K. W., DePaolo, D. J., 1997. Inferences about Mantle Magma Sources from Incompatible Element Concentration Ratios in Oceanic Basalts. Geochimica et Cosmochimica Acta, 61(4): 765–784. https://doi.org/10.1016/s0016-7037(96)00372-9
    Sipahi, F., Akpınar, İ., Saydam Eker, Ç., et al., 2017. Formation of the Eğrikar (Gümüşhane) Fe-Cu Skarn Type Mineralization in NE Turkey: U-Pb Zircon Age, Lithogeochemistry, Mineral Chemistry, Fluid Inclusion, and O-H-C-S Isotopic Compositions. Journal of Geochemical Exploration, 182: 32–52. https://doi.org/10.1016/j.gexpl o.2017.08.006 doi: 10.1016/j.gexplo.2017.08.006
    Sipahi, F., Kaygusuz, A., Saydam Eker, Ç., et al., 2018. Late Cretaceous Arc Igneous Activity: The Eğrikar Monzogranite Example. International Geology Review, 60(3): 382–400. https://doi.org/10.1080/00206814.2017.1336120
    Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635–661. https://doi.org/10.1007/s00410-004-0632-9
    Stockwell, R. B., Peterson, A. T., 2002. Effects of Sample Size on Accuracy of Species Distribution Models. Ecological Modelling, 148(1): 1–13. https://doi.org/10.1016/s0304-3800(01)00388-x
    Sun, L. -Q., Wang, K. -X., Liu, X. -D., et al., 2020. Two Stages of Granitoid Intrusions and Their Implications on the Early Paleoproterozoic Tectonic Evolution of the Quanji Massif. Lithos, 362/363: 105479. https://doi.org/10.1016/j.lithos.2020.105479
    Sun, S., McDonough, W. F., 1989. Chemical and Isotopic Systematic of Oceanic Basalts. Implications for Mantle Compositional Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins, Special Publication 42, Geol. Society of London, 312. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Taner, M. F., 1977. Etudé Géologique et Pétrographique de la Région de Güneyce-İkizdere, Située au sud de Rize (Pontides Orientales, Tur-quie): [Dissertation]. Université de Geneve (in French)
    Tatsumi, Y., 2000. Slab Melting: Its Role in Continental Crust Formation and Mantle Evolution. Geophysical Research Letters, 27(23): 3941–3944. https://doi.org/10.1029/2000gl012061
    Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Geoscience Texts, Blackwell Scientific, London
    Temizel, İ., Arslan, Ruffet, G., Peucat, J. J., 2012. Petrochemistry, Geochronology and Sr-Nd Isotopic Systematics of the Tertiary Collisional and Post-Collisional Volcanic Rocks from the Ulubey (Ordu) Area, Eastern Pontide, NE Turkey: Implications for Extension-Related Origin and Mantle Source Characteristics. Lithos, 128/129/130/131: 126–147. https://doi.org/10.1016/j.lithos.2011.10.006
    Topuz, G., Altherr, R., Kalt, A., et al., 2004. Aluminous Granulites from the Pulur Complex, NE Turkey: A Case of Partial Melting, Efficient Melt Ex-Traction and Crystallization. Lithos, 72: 183–207. https://doi.org/10.1016/j.lithos.2003.10.002
    Topuz, G., Altherr, R., Schwarz, W. H., et al., 2005. Post-Collisional Plutonism with Adakite-Like Signatures: The Eocene Saraycık Granodiorite (Eastern Pontides, Turkey). Contributions to Mineralogy and Petrology, 150(4): 441–455. https://doi.org/10.1007/s00410-005-0022-y
    Topuz, G., Altherr, R., Wolfgang, S., et al., 2010. Carboniferous High-Potassium I-Type Granitoid Magmatism in the Eastern Pontides: The Gümüşhane Pluton (NE Turkey). Lithos, 116(1/2): 92–110. https://doi.org/10.1016/j.lithos.2010.01.003
    Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202
    Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2007. Tracing Magma Mixing in Granite Genesis: In situ U-Pb Dating and Hf-Isotope Analysis of Zircons. Contributions to Mineralogy and Petrology, 153(2): 177–190. https://doi.org/10.1007/s00410-006-0139-7
    Yılmaz, C., Korkmaz S., 1999. Basin Development in the Eastern Pontides, Jurassic to Cretaceous, NE Turkey. Zentralblatt für Geol. und Paläontologie, Teil I, 10–12: 1485–1494
    Yilmaz-Şahi̇n, S., 2005. Transition from Arc- to Post-Collision Extensional Setting Revealed by K-Ar Dating and Petrology: An Example from the Granitoids of the Eastern Pontide Igneous Terrane, Araklı-Trabzon, NE Turkey. Geological Journal, 40(4): 425–440. https://doi.org/10.1002/gj.1020
    Zhang, W., Chen, H., Han, J., et al., 2016. Geochronology and Geochemistry of Igneous Rocks in the Bailingshan Area: Implications for the Tectonic Setting of Late Paleozoic Magmatism and Iron Skarn Mineralization in the Eastern Tianshan, NW China. Gondwana Research, 38: 40–59. https://doi.org/10.1016/j.gr.2015.10.011
    Zhao, P., Jahn, B. -M., Xu, B., 2017. Elemental and Sr-Nd Isotopic Geochemistry of Cretaceous to Early Paleogene Granites and Volcanic Rocks in the Sikhote-Alin Orogenic Belt (Russian far East): Implications for the Regional Tectonic Evolution. Journal of Asian Earth Sciences, 146: 383–401. https://doi.org/10.1016/j.jseaes.2017.06.017
    Zhao, S. Q., Tan, J., Wei, J. H., et al., 2015. Late Triassic Batang Group Arc Volcanic Rocks in the Northeastern Margin of Qiangtang Terrane, Northern Tibet: Partial Melting of Juvenile Crust and Implications for Paleo-Tethys Ocean Subduction. International Journal of Earth Sciences, 104(2): 369–387. https://doi.org/10.1007/s00531-014-1080-z
    Zhu, D. C., Wang, Q., Zhao, Z. D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5: 14289. https://doi.org/10.1038/srep14289
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views(311) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return