Citation: | Abdullah Sar, Sevcan Kürüm, Ahmet Feyzi Bingöl. Early Cretaceous to Middle Eocene Magmatic Evolution of Eastern Pontides: Zircon U-Pb Ages and Hf Isotopes, and Geochemical and Sr-Nd Isotopic Constraints from Multiphase Granitoids, NE Turkey. Journal of Earth Science, 2023, 34(2): 518-535. doi: 10.1007/s12583-022-1640-2 |
The Eastern Pontides orogenic belt (EPOB) represents a significant segment of the Alpine-Himalayan orogenic belt that evolved from the Paleozoic to Cenozoic periods. Here we report new zircon U-Pb ages, together with Lu-Hf isotopes, and whole-rock geochemical and Sr-Nd isotopic analyses of plutonic rocks from EPOB, northeastern Turkey. Our aim is to interpret magmatic evolution in which the granitoids formed. Zircon U-Pb dating of six samples yielded crystallization ages of ~134, ~82, ~39 Ma, respectively. They show a wide range of 87Sr/86Sr(
Abdulzahra, I. K., Hadi, A., Azizi, H., et al., 2017. Zircon U-Pb Ages and Sr-Nd Isotope Ratios for the Sirstan Granitoid Body, NE Iraq: Evidence of Magmatic Activity in the Middle Cretaceous Period. Comptes Rendus Geoscience, 349(2): 53–62. https://doi.org/10.1016/j.crte.2017.02.004 |
Arslan, M., Temizel, İ., Abdioğlu, E., et al., 2013. 40Ar-39Ar Dating, Whole-Rock and Sr-Nd-Pb Isotope Geochemistry of Post-Collisional Eocene Volcanic Rocks in the Southern Part of the Eastern Pontides (NE Turkey): Implications for Magma Evolution in Extension-Induced Origin. Contributions to Mineralogy and Petrology, 166(1): 113–142. https://doi.org/10.1007/s00410-013-0868-3 |
Aslan, Z., 2010. U-Pb Zircon SHRIMP Age, Geochemical and Petrographical Characteristics of Tuffs within Calc-Alkaline Eocene Volcanics around Gumushane (NE Turkey), Eastern Pontides. Neues Jahrbuch Für Mineralogie-Abhandlungen, 187(3): 329–346. https://doi.org/10.1127/0077-7757/2010/0181 |
Aydın, F., Oğuz Saka, S., Şen, C., et al., 2020. Temporal, Geochemical and Geodynamic Evolution of the Late Cretaceous Subduction Zone Volcanism in the Eastern Sakarya Zone, NE Turkey: Implications for Mantle-Crust Interaction in an Arc Setting. Journal of Asian Earth Sciences, 192: 104–217. https://doi.org/10.1016/j.jseaes.2019.104217 |
Bektaş, O., Şen, C., Atici, Y., et al., 1999. Migration of the Upper Cretaceous Subduction-Related Volcanism towards the Back-Arc Basin of the Eastern Pontide Magmatic Arc (NE Turkey). Geological Journal, 34(1/2): 95–106. https://doi.org/10.1002/(SICI)1099-1034(199901/06)34:1/295:aıd-gj816>3.0.co;2-j doi: 10.1002/(SICI)1099-1034(199901/06)34:1/295:aıd-gj816>3.0.co;2-j |
Bektaş, O., Yilmaz, C., Tasli, K., et al., 1995. Cretaceous Rifting of the Eastern Pontide Carbonate Platform (NE Turkey): The Formation of Carbonates Breccias and Turbidites as Evidences of a Drowned Platform. Geologia, 57: 233–244 |
Boehnke, P., Schmitt, A. K., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351: 324–334. https://doi.org/10.1016/j.chemgeo.2013.05.028 |
Boztuğ, D., Erçin, A. İ., Kuruçelik, M. K., et al., 2006. Geochemical Characteristics of the Composite Kaçkar Batholith Generated in a Neo-Tethyan Convergence System, Eastern Pontides, Turkey. Journal of Asian Earth Sciences, 27(3): 286–302. https://doi.org/10.1016/j.jseae s.2005.03.008 doi: 10.1016/j.jseaes.2005.03.008 |
Boztuğ, D., Harlavan, Y., 2008. K-Ar Ages of Granitoids Unravel the Stages of Neo-Tethyan Convergence in the Eastern Pontides and Central Anatolia, Turkey. International Journal of Earth Sciences, 97(3): 585–599. https://doi.org/10.1007/s00531-007-0176-0 |
Boztuğ, D., Jonckheere, R., Wagner, G. A., et al., 2004. Slow Senonian and Fast Palaeocene-Early Eocene Uplift of the Granitoids in the Central Eastern Pontides, Turkey: Apatite Fission-Track Results. Tectonophysics, 382(3/4): 213–228. https://doi.org/10.1016/j.tecto.2004.01.001 |
Brenan, J. M., Shaw, H. F., Ryerson, F. J., 1995. Experimental Evidence for the Origin of Lead Enrichment in Convergent-Margin Magmas. Nature, 378(6552): 54–56. https://doi.org/10.1038/378054a0 |
Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2018. Atlas of Zircon Textures. Zircon, 469–502. https://doi.org/10.1515/9781501509322-019 |
Delibaş, O., Moritz, R., Ulianov, A., et al., 2016. Cretaceous Subduction-Related Magmatism and Associated Porphyry-Type Cu-Mo Prospects in the Eastern Pontides, Turkey: New Constraints from Geochronology and Geochemistry. Lithos, 248–251, 119–137. http://doi.org/10.1016/j.lithos.2016.01.020 |
DePaolo, D. J., 1981. Neodymium Isotopes in the Colorado Front Range and Crust–Mantle Evolution in the Proterozoic. Nature, 291(5812): 193–196. https://doi.org/10.1038/291193a0 |
Dokuz, A., 2011. A Slab Detachment and Delamination Model for the Generation of Carboniferous High-Potassium I-Type Magmatism in the Eastern Pontides, NE Turkey: The Köse Composite Pluton. Gondwana Research, 19(4): 926–944. https://doi.org/10.1016/j.gr.2010.09.006 |
Dokuz, A., Karslı, O., Chen, B., et al., 2010. Sources and Petrogenesis of Jurassic Granitoids in the Yusufeli Area, Northeastern Turkey: Implications for Pre- and Post-Collisional Lithospheric Thinning of the Eastern Pontides. Tectonophysics, 480(1/2/3/4): 259–279. https://doi.org/10.1016/j.tecto.2009.10.009 |
Dokuz, A., Aydın, F., Karslı, O., 2019. Postcollisional Transition from Subduction- to İntraplate-Type Magmatism in the Eastern Sakarya Zone, Turkey: Indicators of Northern Neotethyan Slab Breakoff. The Geological Society of America Bulletin, 131: 1623–1642. http://doi.org/10.1130/b31993.1 |
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 |
Evcimen, Ö., 2011. İkizdere Plütonunun (KD Türkiye) U-Pb Jeokronolojisi, Petrolojisi ve Jeodinamik Önemi: [Dissertation]. Gümüşhane Üniversity, Gümüşhane |
Eyüboğlu, Y., 2010. Late Cretaceous High-K Volcanism in the Eastern Pontide Orogenic Belt: Implications for the Geodynamic Evolution of NE Turkey. International Geology Review, 52(2/3): 142–186. https://doi.org/10.1080/00206810902757164 |
Eyüboǧlu, Y., Bektas, O., Şeren, A., et al., 2006. Three-Directional Extensional Deformation and Formation of the Liassic Rift Basins in the Eastern Pontides (NE Turkey). Geologica Carpathica, 57(5): 337–346 |
Eyüboğlu, Y., Dilek, Y., Bozkurt, E., et al., 2010. Structure and Geochemistry of an Alaskan-Type Ultramafic-Mafic Complex in the Eastern Pontides, NE Turkey. Gondwana Research, 18(1): 230–252. https://doi.org/10.1016/j.gr.2010.01.008 |
Eyüboglu, Y., Dudas, F. O., Santosh, M., et al., 2013. Petrogenesis and U-Pb Zircon Chronology of Adakitic Porphyries within the Kop Ultramafic Massif (Eastern Pontides Orogenic Belt, NE Turkey). Gondwana Research, 24(2): 742–766. https://doi.org/10.1016/j.gr.201 2.11.014 doi: 10.1016/j.gr.2012.11.014 |
Eyüboglu, Y., Dudas, F. O., Santosh, M., et al., 2016. Cenozoic Forearc Gabbros from the Northern Zone of the Eastern Pontides Orogenic Belt, NE Turkey: Implications for Slab Window Magmatism and Convergent Margin Tectonics. Gondwana Research, 33: 160–189. https://doi.org/10.1016/j.gr.2015.07.006 |
Eyüboğlu, Y., Dudas, F. O., Zhu, D. C., et al., 2019. Late Cretaceous I- and A-Type Magmas in Eastern Turkey: Magmatic Response to Double-Sided Subduction of Paleo- and Neo-Tethyan Lithospheres. Lithos, 326/327: 39–70. https://doi.org/10.1016/j.lithos.2018.12.017 |
Eyüboğlu, Y., Santosh, M., Bektas, O., et al., 2011. Late Triassic Subduction-Related Ultramafic-Mafic Magmatism in the Amasya Region (Eastern Pontides, N. Turkey): Implications for the Ophiolite Conundrum in Eastern Mediterranean. Journal of Asian Earth Sciences, 42(3): 234–257. https://doi.org/10.1016/j.jseaes.2011.01.007 |
Garzanti, E., Radeff, G., Malusa, M. G., 2018. Slab Breakoff: A Critical Appraisal of a Geological Theory as Applied in Space and Time. Earth-Science Reviews, 177: 303–319. https://doi.org/10.1016/j.earscirev.20 17.11.012 doi: 10.1016/j.earscirev.2017.11.012 |
Giles, D. L., 1973. Geology and Mineralization of the Ulutaş Copper-Molybdenum Deposits, Eastern Anatolia, Turkey. United Nations Development Programme, Technical Report 6, 56. |
Guillaume, B., Martinod, J., Espurt, N., 2009. Variations of Slab Dip and Overriding Plate Tectonics during Subduction: Insights from Analogue Modelling. Tectonophysics, 463: 167–174. http://doi.org/10.1016/j.tect o.2008.09.043 doi: 10.1016/j.tecto.2008.09.043 |
Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347–359. https://doi.org/10.1016/0009-2541(94)00145-x |
Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5/6): 1–26. https://doi.org/10.1007/s00410-015-1199-3 |
Haba, M. K., Wotzlaw, J. F., 2021. ID-TIMS Zircon U-Pb Geochronology of the Camel Donga Eucrite. Chemical Geology, 567: 120073. http://doi.org/10.1016/j.chemgeo.2021.120073 |
Hawkesworth, C. J., Gallagher, K., Hergt, J. M., et al., 1993. Mantle and Slab Contributions in ARC Magmas. Annual Review of Earth and Planetary Sciences, 21: 175–204. https://doi.org/10.1146/annurev.ea.2 1.050193.001135 doi: 10.1146/annurev.ea.21.050193.001135 |
Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297–314. https://doi.org/10.1016/0012-821x(88)90132-x |
Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x |
Jagoutz, O. E., 2010. Construction of the Granitoid Crust of an Island Arc. Part II: A Quantitative Petrogenetic Model. Contributions to Mineralogy and Petrology, 160(3): 359–381. https://doi.org/10.1007/s00410-009-0482-6 |
Kandemir, Ö., Akbayram, K., Çobankaya, M., et al., 2019. From Arc Evolution to Arc-Continent Collision: Late Cretaceous–Middle Eocene Geology of the Eastern Pontides, Northeastern Turkey. GSA Bulletin, 131(11/12): 1889–1906. https://doi.org/10.1130/b31913.1 |
Karslı, O., Aydın, F., Uysal, I., et al., 2018. Latest Cretaceous "A2-Type" Granites in the Sakarya Zone, NE Turkey: Partial Melting of Mafic Lower Crust in Response to Roll-back of Neo-Tethyan Oceanic Lithosphere. Lithos, 302/303: 312–328. https://doi.org/10.1016/j.litho s.2017.12.025 doi: 10.1016/j.lithos.2017.12.025 |
Karslı, O., Caran, Ş., Çoban, H., et al., 2021. Melting of the Juvenile Lower Crust in a Far-Field Response to Roll-back of the Southern Neotethyan Oceanic Lithosphere: The Oligocene Adakitic Dacites, NE Turkey. Lithos, 370/371: 105614. https://doi.org/10.1016/j.lithos.2020.105614 |
Karslı, O., Caran, Ş., Dokuz, A., et al., 2012. A-Type Granitoids from the Eastern Pontides, NE Turkey: Records for Generation of Hybrid A-Type Rocks in a Subduction-Related Environment. Tectonophysics, 530/531: 208–224. https://doi.org/10.1016/j.tecto.2011.12.030 |
Karslı, O., Dokuz, A., Kaliwoda, M., et al., 2014. Geochemical Fingerprints of Late Triassic Calc-Alkaline Lamprophyres from the Eastern Pontides, NE Turkey: A Key to Understanding Lamprophyre Formation in a Subduction-Related Environment. Lithos, 196/197: 181–197. https://doi.org/10.1016/j.lithos.2014.02.022 |
Karslı, O., Dokuz, A., Kandemir, R., 2016. Subduction-Related Late Carboniferous to Early Permian Magmatism in the Eastern Pontides, the Camlik and Casurluk Plutons: Insights from Geochemistry, Whole-Rock Sr-Nd and in situ Zircon Lu-Hf Isotopes, and U-Pb Geochronology. Lithos, 266/267: 98–114. https://doi.org/10.1016/j.lith os.2016.10.007 doi: 10.1016/j.lithos.2016.10.007 |
Karslı, O., İlhan, M., Kandemir, R., et al., 2021. Nature of the Early Cretaceous Lamprophyre and High-Nb Basaltic Dykes, NE Turkey: Constraints on Their Linkage to Subduction Initiation of Neotethyan Oceanic Lithosphere. Lithos, 380/381: 105884. https://doi.org/10.1016/j.lithos.2020.105884 |
Kaygusuz, A., Arslan, M., Siebel, W., et al., 2012. Geochronological Evidence and Tectonic Significance of Carboniferous Magmatism in the Southwest Trabzon Area, Eastern Pontides, Turkey. International Geology Review, 54(15): 1–25. https://doi.org/10.1080/00206814.201 2.676371 doi: 10.1080/00206814.2012.676371 |
Kaygusuz, A., Arslan, M., Siebel, W., et al., 2014. LA-ICP MS Zircon Dating, Whole-Rock and Sr-Nd-Pb-O Isotope Geochemistry of the Camiboğazı Pluton, Eastern Pontides, NE Turkey: Implications for Lithospheric Mantle and Lower Crustal Sources in Arc-Related I-Type Magmatism. Lithos, 192/193/194/195: 271–290. https://doi.org/10.1016/j.lithos.2014.02.014 |
Kaygusuz, A., Arslan, M., Sipahi, F., et al., 2016. U-Pb Zircon Chronology and Petrogenesis of Carboniferous Plutons in the Northern Part of the Eastern Pontides, NE Turkey: Constraints for Paleozoic Magmatism and Geodynamic Evolution. Gondwana Research, 39: 327–346. https://doi.org/10.1016/j.gr.2016.01.011 |
Kaygusuz, A., Arslan, M., Temizel, İ., et al., 2021. U-Pb Zircon Ages and Petrogenesis of the Late Cretaceous I-Type Granitoids in Arc Setting, Eastern Pontides, NE Turkey. Journal of African Earth Sciences, 174: 104040. https://doi.org/10.1016/j.jafrearsci.2020.104040 |
Kaygusuz, A., Öztürk, M., 2015. Geochronology, Geochemistry, and Petrogenesis of the Eocene Bayburt Intrusions, Eastern Pontides, NE Turkey: Evidence for Lithospheric Mantle and Lower Crustal Sources in the High-K Calc-Alkaline Magmatism. Journal of Asian Earth Sciences, 108: 97–116. https://doi.org/10.1016/j.jseaes.2015.04.017 |
Kaygusuz, A., Şen, C., 2011. Calc-Alkaline I-Type Plutons in the Eastern Pontides, NE Turkey: U-Pb Zircon Ages, Geochemical and Sr-Nd Isotopic Compositions. Geochemistry, 71(1): 59–75. https://doi.org/10.1016/j.chemer.2010.07.005 |
Kaygusuz, A., Sipahi, F., İlbeyli, N., et al., 2013. Petrogenesis of the Late Cretaceous Turnagöl Intrusion in the Eastern Pontides: Implications for Magma Genesis in the Arc Setting. Geoscience Frontiers, 4(4): 423–438. https://doi.org/10.1016/j.gsf.2012.09.003 |
Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980–983. https://doi.org/10.11 26/science.1136154 doi: 10.1126/science.1136154 |
Keskin, M., 2002. FC-Modeler: A Microsoft® Excel© Spreadsheet Program for Modeling Rayleigh Fractionation Vectors in Closed Magmatic Systems. Computers & Geosciences, 28(8): 919–928. https://doi.org/10.1016/s0098-3004(02)00010-9 |
Keskin, M., 2013. AFC-Modeler: A Microsoft® Excel© Workbook Program for Modeling Assimilation Combined with Fractional Crystallisation (AFC) Process in Magmatic Systems by Using Equations of DePaolo (1981). Turkish Journal of Earth Science, 22: 304–319. https://doi.org/10.3906/yer-1110-3 |
Ketin, İ., 1966. Anadolu'nun Tektonik Birlikleri (Tectonic Units of Anatolia). Bulletin of the Mineral Res. and Exploration, 66: 23–34 |
Kogiso, T., Tatsumi, Y., Nakano, S., 1997. Trace Element Transport during Dehydration Processes in the Subducted Oceanic Crust: 1. Experiments and Implications for the Origin of Ocean Island Basalts. Earth and Planetary Science Letters, 148(1/2): 193–205. https://doi.org/10.1016/s0012-821x(97)00018-6 |
Le Bas, M. J., Maitre, R. W. L., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750. https://doi.org/10.109 3/petrology/27.3.745 doi: 10.1093/petrology/27.3.745 |
Li, X. H., Li, W. X., Wang, X. C., et al., 2009. Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China: In Situ Zircon Hf-O Isotopic Constraints. Science in China Series D: Earth Sciences, 52(9): 1262–1278. https://doi.org/10.1007/s11430-009-0117-9 |
Liu, Z., Zhu, D. C., Wang, Q., et al., 2018. Transition From Low-K to High-K Calc-Alkaline Magmatism at Approximately 84 Ma in the Eastern Pontides (NE Turkey): Magmatic Response to Slab Rollback of the Black Sea. Journal of Geophysical Research Solid, 123, 7604–7628. https://doi. org/10.1029/2018jb016026 doi: 10.1029/2018jb016026 |
McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3/4): 358–374. https://doi.org/10.1016/0012-821x(91)90029-h |
McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 1021. https://doi.org/10.1029/2000gc000109 |
Moore, W. J., McKee, E. H., Akıncı, Ö., 1980. Chemistry and Chronology of Plutonic Rocks in the Pontid Mountains, Northern Turkey. Sym. of European Copper Deposits, Belgrade, 209–216 |
Noll, P. D., Newsom, H. E., Leeman, W. P., et al., 1996. The Role of Hydrothermal Fluids in the Production of Subduction Zone Magmas: Evidence from Siderophile and Chalcophile Trace Elements and Boron. Geochimica et Cosmochimica Acta, 60(4): 587–611. https://doi.org/10.1016/0016-7037(95)00405-x |
Okay, A. I., Şahintürk, O., 1997. Geology of the Eastern Pontides. In: Robinson, A. G., ed., Regional and Petroleum Geol. of the Black Sea and Surrounding Region. AAPG Memoir, 68: 292–311. |
Payne, J. L., McInerney, D. J., et al., 2016. Strengths and Limitations of Zircon Lu-Hf and O Isotopes in Modelling Crustal Growth. Lithos, 248/249/250/251: 175–192. https://doi.org/10.1016/j.lithos.2015.12.015 |
Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120–125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 |
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. , 25: 956–983. http://doi.org/10.1093/petrology/25.4.956 |
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745 |
Pietranik, A. B., Hawkesworth, C. J., Storey, C. D., et al., 2008. Episodic, Mafic Crust Formation from 4.5 to 2.8 Ga: New Evidence from Detrital Zircons, Slave Craton, Canada. Geology, 36(11): 875–878. https://doi.org/10.1130/g24861a.1 |
Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46(5): 921–944. https://doi.org/10.1093/petrology/egi005 |
Pupin, J. P., 1980. Zircon and Granite Petrology. Contributions to Mineralogy and Petrology, 73(3): 207–220. https://doi.org/10.1007/bf0 0381441 doi: 10.1007/bf00381441 |
Sar, A., Ertürk, M. A., Rizeli, M. E., 2019. Genesis of Late Cretaceous Intra-Oceanic Arc Intrusions in the Pertek Area of Tunceli Province, Eastern Turkey, and Implications for the Geodynamic Evolution of the Southern Neo-Tethys: Results of Zircon U-Pb Geochronology and Geochemical and Sr-Nd Isotopic Analyses. Lithos, 350/351: 105263. https://doi.org/10.1016/j.lithos.2019.105263 |
Sarjoughian, F., Zahedi, B., Azizi, H., et al., 2021. Zircon U-Pb Ages, Geochemistry and Sr-Nd Isotopes of the Golshekanan Granitoid, Urumieh-Dokhtar Magmatic Arc, Iran: Evidence for Partial Melting of Juvenile Crust. Geological Magazine, 158(7): 1289–1304. https://doi.org/10.1017/s0016756820001338 |
Şen, C., 2007. Jurassic Volcanismin the Eastern Pontides: Is It Rift Related or Subduction Related? Turkish Journal of Earth Sciences, 16: 523–539 |
Şengör, A. M. C., Özeren, S., Genç, T., et al., 2003. East Anatolian High Plateau as a Mantle-Supported, North-South Shortened Domal Structure. Geophysical Research Letters, 30(24): 8045. https://doi.org/10.1029/2003gl017858 |
Şengör, A. M. C., Yılmaz, Y., 1981. Tethyan Evolution of Turkey: A Plate Tectonic Approach. Tectonophysics, 75(3/4): 181–241. https://doi.org/10.1016/0040-1951(81)90275-4 |
Shand, S. J., 1943. Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. John Wiley & Sons, New-York |
Shi, W. X., Liao, Q. A., Hu, Y. Q., et al., 2010. Characteristics of Mesoproterozoic Granites and Their Geological Significances from Middle Tianshan Block, East Tianshan District, NW China. Geol. Sci. Technol. Inf., 29: 29–37 (in Chinese with English Abstract) |
Sims, K. W., DePaolo, D. J., 1997. Inferences about Mantle Magma Sources from Incompatible Element Concentration Ratios in Oceanic Basalts. Geochimica et Cosmochimica Acta, 61(4): 765–784. https://doi.org/10.1016/s0016-7037(96)00372-9 |
Sipahi, F., Akpınar, İ., Saydam Eker, Ç., et al., 2017. Formation of the Eğrikar (Gümüşhane) Fe-Cu Skarn Type Mineralization in NE Turkey: U-Pb Zircon Age, Lithogeochemistry, Mineral Chemistry, Fluid Inclusion, and O-H-C-S Isotopic Compositions. Journal of Geochemical Exploration, 182: 32–52. https://doi.org/10.1016/j.gexpl o.2017.08.006 doi: 10.1016/j.gexplo.2017.08.006 |
Sipahi, F., Kaygusuz, A., Saydam Eker, Ç., et al., 2018. Late Cretaceous Arc Igneous Activity: The Eğrikar Monzogranite Example. International Geology Review, 60(3): 382–400. https://doi.org/10.1080/00206814.2017.1336120 |
Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635–661. https://doi.org/10.1007/s00410-004-0632-9 |
Stockwell, R. B., Peterson, A. T., 2002. Effects of Sample Size on Accuracy of Species Distribution Models. Ecological Modelling, 148(1): 1–13. https://doi.org/10.1016/s0304-3800(01)00388-x |
Sun, L. -Q., Wang, K. -X., Liu, X. -D., et al., 2020. Two Stages of Granitoid Intrusions and Their Implications on the Early Paleoproterozoic Tectonic Evolution of the Quanji Massif. Lithos, 362/363: 105479. https://doi.org/10.1016/j.lithos.2020.105479 |
Sun, S., McDonough, W. F., 1989. Chemical and Isotopic Systematic of Oceanic Basalts. Implications for Mantle Compositional Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins, Special Publication 42, Geol. Society of London, 312. |
Taner, M. F., 1977. Etudé Géologique et Pétrographique de la Région de Güneyce-İkizdere, Située au sud de Rize (Pontides Orientales, Tur-quie): [Dissertation]. Université de Geneve (in French) |
Tatsumi, Y., 2000. Slab Melting: Its Role in Continental Crust Formation and Mantle Evolution. Geophysical Research Letters, 27(23): 3941–3944. https://doi.org/10.1029/2000gl012061 |
Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Geoscience Texts, Blackwell Scientific, London |
Temizel, İ., Arslan, Ruffet, G., Peucat, J. J., 2012. Petrochemistry, Geochronology and Sr-Nd Isotopic Systematics of the Tertiary Collisional and Post-Collisional Volcanic Rocks from the Ulubey (Ordu) Area, Eastern Pontide, NE Turkey: Implications for Extension-Related Origin and Mantle Source Characteristics. Lithos, 128/129/130/131: 126–147. https://doi.org/10.1016/j.lithos.2011.10.006 |
Topuz, G., Altherr, R., Kalt, A., et al., 2004. Aluminous Granulites from the Pulur Complex, NE Turkey: A Case of Partial Melting, Efficient Melt Ex-Traction and Crystallization. Lithos, 72: 183–207. https://doi.org/10.1016/j.lithos.2003.10.002 |
Topuz, G., Altherr, R., Schwarz, W. H., et al., 2005. Post-Collisional Plutonism with Adakite-Like Signatures: The Eocene Saraycık Granodiorite (Eastern Pontides, Turkey). Contributions to Mineralogy and Petrology, 150(4): 441–455. https://doi.org/10.1007/s00410-005-0022-y |
Topuz, G., Altherr, R., Wolfgang, S., et al., 2010. Carboniferous High-Potassium I-Type Granitoid Magmatism in the Eastern Pontides: The Gümüşhane Pluton (NE Turkey). Lithos, 116(1/2): 92–110. https://doi.org/10.1016/j.lithos.2010.01.003 |
Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2 |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202 |
Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2007. Tracing Magma Mixing in Granite Genesis: In situ U-Pb Dating and Hf-Isotope Analysis of Zircons. Contributions to Mineralogy and Petrology, 153(2): 177–190. https://doi.org/10.1007/s00410-006-0139-7 |
Yılmaz, C., Korkmaz S., 1999. Basin Development in the Eastern Pontides, Jurassic to Cretaceous, NE Turkey. Zentralblatt für Geol. und Paläontologie, Teil I, 10–12: 1485–1494 |
Yilmaz-Şahi̇n, S., 2005. Transition from Arc- to Post-Collision Extensional Setting Revealed by K-Ar Dating and Petrology: An Example from the Granitoids of the Eastern Pontide Igneous Terrane, Araklı-Trabzon, NE Turkey. Geological Journal, 40(4): 425–440. https://doi.org/10.1002/gj.1020 |
Zhang, W., Chen, H., Han, J., et al., 2016. Geochronology and Geochemistry of Igneous Rocks in the Bailingshan Area: Implications for the Tectonic Setting of Late Paleozoic Magmatism and Iron Skarn Mineralization in the Eastern Tianshan, NW China. Gondwana Research, 38: 40–59. https://doi.org/10.1016/j.gr.2015.10.011 |
Zhao, P., Jahn, B. -M., Xu, B., 2017. Elemental and Sr-Nd Isotopic Geochemistry of Cretaceous to Early Paleogene Granites and Volcanic Rocks in the Sikhote-Alin Orogenic Belt (Russian far East): Implications for the Regional Tectonic Evolution. Journal of Asian Earth Sciences, 146: 383–401. https://doi.org/10.1016/j.jseaes.2017.06.017 |
Zhao, S. Q., Tan, J., Wei, J. H., et al., 2015. Late Triassic Batang Group Arc Volcanic Rocks in the Northeastern Margin of Qiangtang Terrane, Northern Tibet: Partial Melting of Juvenile Crust and Implications for Paleo-Tethys Ocean Subduction. International Journal of Earth Sciences, 104(2): 369–387. https://doi.org/10.1007/s00531-014-1080-z |
Zhu, D. C., Wang, Q., Zhao, Z. D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5: 14289. https://doi.org/10.1038/srep14289 |