Citation: | Biao Shu, Fan Zeng, John Kemeny, Runjun Zhu, Keping Chen, Jingqiang Tan. Analysis of the Hydraulic and Heat Transfer Evolution Mechanism of a Single Rock Fracture. Journal of Earth Science, 2023, 34(1): 205-213. doi: 10.1007/s12583-022-1648-7 |
Mineral dissolution and mechanical deformation of granite are two main mechanisms that affect permeability evolution of rock fracture. In this study, two water flow-through experiments with large granite fractures were conducted at 200 ℃ with a constant flow rate for 24 h, under confining pressures of 5 and 10 MPa, respectively. Water pressure and temperature were measured, fracture aperture and permeability were calculated, and chemical element concentrations in effluent water were tested for mechanism analysis. The permeability fluctuates up and down between 2.62 × 10-12 and 3.16 × 10-12 m2 at confining pressure of 5 MPa; while it decreased monotonously by 24% from 1.92 × 10-12 to 1.45 × 10-12 m2 at a confining pressure of 10 MPa. The heat transfer rates at both experiments stay stable at about 0.25 J/s. The mass concentration of Ca, Na, K, and Si in effluent water are between 5 to 23 mg/L, indicating slight dissolution of Ca-plagioclase, Na-plagioclase, and K-feldspar, as well as possible precipitation of minor amount of kaolinite or quartz. The total amount of free-face dissolution and pressure dissolution are similar at 5 and 10 MPa. The geochemical reaction counts for only small part of the aperture change, while the mechanical deformation counts the major part of the aperture change.
Bai, B., He, Y. Y., Li, X. C., et al., 2017. Experimental and Analytical Study of the Overall Heat Transfer Coefficient of Water Flowing through a Single Fracture in a Granite Core. Applied Thermal Engineering, 116: 79–90. https://doi.org/10.1016/j.applthermaleng.2017.01.020 |
Bertani, R., 2016. Geothermal Power Generation in the World 2010–2014 Update Report. Geothermics, 60: 31–43. https://doi.org/10.1016/j.geothermics.2015.11.003 |
Bentz, S., Kwiatek, G., Martínez-Garzón, P., et al., 2020. Seismic Moment Evolution during Hydraulic Stimulations. Geophysical Research Letters, 47(5): e2019GL086185. https://doi.org/10.1029/2019gl086185 |
Browning, J., Meredith, P. G., Gudmundsson, A., 2016. Cooling-Dominated Cracking in Thermally Stressed Volcanic Rocks. Geophysical Research Letters, 43(16): 8417–8425. https://doi.org/10.1002/2016gl070532 |
Caulk, R. A., Ghazanfari, E., Perdrial, J. N., et al., 2016. Experimental Investigation of Fracture Aperture and Permeability Change within Enhanced Geothermal Systems. Geothermics, 62: 12–21. https://doi.org/10.1016/j.geothermics.2016.02.003 |
Chen, Y., Ma, G. W., Wang, H. D., et al., 2020. Optimizing Heat Mining Strategies in a Fractured Geothermal Reservoir Considering Fracture Deformation Effects. Renewable Energy, 148: 326–337. https://doi.org/10.1016/j.renene.2019.10.037 |
Durham, W. B., Bourcier, W. L., Burton, E. A., 2001. Direct Observation of Reactive Flow in a Single Fracture. Water Resources Research, 37(1): 1–12. https://doi.org/10.1029/2000wr900228 |
Frash, L. P., Gutierrez, M., Hampton, J., 2014. True-Triaxial Apparatus for Simulation of Hydraulically Fractured Multi-Borehole Hot Dry Rock Reservoirs. International Journal of Rock Mechanics and Mining Sciences, 70: 496–506. https://doi.org/10.1016/j.ijrmms.2014.05.017 |
Guo, T. K., Gong, F. C., Wang, X. Z., et al., 2019. Performance of Enhanced Geothermal System (EGS) in Fractured Geothermal Reservoirs with CO2 as Working Fluid. Applied Thermal Engineering, 152: 215–230. https://doi.org/10.1016/j.applthermaleng.2019.02.024 |
Iwai, K., 1976. Fundamental Studies of Fluid Flow through a Single Fracture: [Dissertation]. University of California, Berkeley. 208 |
Klepikova, M., Méheust, Y., Roques, C., et al., 2021. Heat Transport by Flow through Rough Rock Fractures: A Numerical Investigation. Advances in Water Resources, 156: 104042. https://doi.org/10.1016/j.advwatres.2021.104042 |
Liu, J. S., Sheng, J. C., Polak, A., et al., 2006. A Fully-Coupled Hydrological-Mechanical-Chemical Model for Fracture Sealing and Preferential Opening. International Journal of Rock Mechanics and Mining Sciences, 43(1): 23–36. https://doi.org/10.1016/j.ijrmms.2005.04.012 |
Ma, Y. Q., Zhang, Y. J., Huang, Y. B., et al., 2019. Experimental Study on Flow and Heat Transfer Characteristics of Water Flowing through a Rock Fracture Induced by Hydraulic Fracturing for an Enhanced Geothermal System. Applied Thermal Engineering, 154: 433–441. https://doi.org/10.1016/j.applthermaleng.2019.03.114 |
Moore, D. E., Lockner, D. A., Byerlee, J. D., 1994. Reduction of Permeability in Granite at Elevated Temperatures. Science, 265(5178): 1558–1561. https://doi.org/10.1126/science.265.5178.1558 |
Morrow, C. A., Moore, D. E., Lockner, D. A., 2001. Permeability Reduction in Granite under Hydrothermal Conditions. Journal of Geophysical Research: Solid Earth, 106(B12): 30551–30560. https://doi.org/10.1029/2000jb000010 |
Olasolo, P., Juárez, M. C., Morales, M. P., et al., 2016. Enhanced Geothermal Systems (EGS): A Review. Renewable and Sustainable Energy Reviews, 56: 133–144. https://doi.org/10.1016/j.rser.2015.11.031 |
Parisio, F., Yoshioka, K., 2020. Modeling Fluid Reinjection into an Enhanced Geothermal System. Geophysical Research Letters, 47(19): e2020GL089886. https://doi.org/10.1029/2020gl089886 |
Polak, A., Elsworth, D., Yasuhara, H., et al., 2003. Permeability Reduction of a Natural Fracture under Net Dissolution by Hydrothermal Fluids. Geophysical Research Letters, 30(20): 2003GL017575. https://doi.org/10.1029/2003gl017575 |
Polak, A., Elsworth, D., Liu, J. S., et al., 2004. Spontaneous Switching of Permeability Changes in a Limestone Fracture with Net Dissolution. Water Resources Research, 40(3): W035502. https://doi.org/10.1029/2003wr002717 |
Qiao, L. P., Huang, A. D., Wang, Z. C., et al., 2019. Alteration of Minerals and Temporal Evolution of Solution in Reactive Flow through Granitic Rock Fractures. International Journal of Rock Mechanics and Mining Sciences, 123: 104105. https://doi.org/10.1016/j.ijrmms.2019.104105 |
Qu, Z. Q., Zhang, W., Guo, T. K., 2017. Influence of Different Fracture Morphology on Heat Mining Performance of Enhanced Geothermal Systems Based on COMSOL. International Journal of Hydrogen Energy, 42(29): 18263–18278. https://doi.org/10.1016/j.ijhydene.2017.04.168 |
Regenauer-Lieb, K., Bunger, A., Chua, H. T., et al., 2015. Deep Geothermal: The 'Moon Landing' Mission in the Unconventional Energy and Minerals Space. Journal of Earth Science, 26(1): 2–10. https://doi.org/10.1007/s12583-015-0515-1 |
Richter, A., 2019. Global Geothermal Capacity Reaches 14 900 MW–New Top 10 Ranking of Geothermal Countries.[2022-09-07]. https://www.thinkgeoenergy.com/global-geothermal-capacity-reaches-14900-mw-new-top10-ranking/ |
Savage, D., Bateman, K., Richards, H. G., 1992. Granite-Water Interactions in a Flow-through Experimental System with Applications to the Hot Dry Rock Geothermal System at Rosemanowes, Cornwall, U.K. Applied Geochemistry, 7(3): 223–241. https://doi.org/10.1016/0883-2927(92)90039-6 |
Shu, B., Zhu, R. J., Zhang, S. H., et al., 2019a. A Qualitative Prediction Method of New Crack-Initiation Direction during Hydraulic Fracturing of Pre-Cracks Based on Hyperbolic Failure Envelope. Applied Energy, 248: 185–195. https://doi.org/10.1016/j.apenergy.2019.04.151 |
Shu, B., Zhu, R. J., Tan, J. Q., et al., 2019b. Evolution of Permeability in a Single Granite Fracture at High Temperature. Fuel, 242: 12–22. https://doi.org/10.1016/j.fuel.2019.01.031 |
Shu, B., Zhu, R. J., Elsworth, D., et al., 2020. Effect of Temperature and Confining Pressure on the Evolution of Hydraulic and Heat Transfer Properties of Geothermal Fracture in Granite. Applied Energy, 272: 115290. https://doi.org/10.1016/j.apenergy.2020.115290 |
Shu, B., Wang, Y. M., Zhu, R. J., et al., 2022. Experimental Study of the Heat Transfer Characteristics of Single Geothermal Fracture at Different Reservoir Temperature and in situ Stress Conditions. Applied Thermal Engineering, 207: 118195. https://doi.org/10.1016/j.applthermaleng.2022.118195 |
Taron, J., Elsworth, D., 2009. Thermal-Hydrologic-Mechanical-Chemical Processes in the Evolution of Engineered Geothermal Reservoirs. International Journal of Rock Mechanics and Mining Sciences, 46(5): 855–864. https://doi.org/10.1016/j.ijrmms.2009.01.007 |
Witherspoon, P. A., Wang, J. S. Y., Iwai, K., et al., 1980. Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture. Water Resources Research, 16(6): 1016–1024. https://doi.org/10.1029/wr016i006p01016 |
Wu, B. S., Zhang, X., Jeffrey, R. G., et al., 2015. Perturbation Analysis for Predicting the Temperatures of Water Flowing through Multiple Parallel Fractures in a Rock Mass. International Journal of Rock Mechanics and Mining Sciences, 76: 162–173. https://doi.org/10.1016/j.ijrmms.2015.03.013 |
Wu, B. S., Zhang, X., Jeffrey, R. G., et al., 2016. A Simplified Model for Heat Extraction by Circulating Fluid through a Closed-Loop Multiple-Fracture Enhanced Geothermal System. Applied Energy, 183: 1664–1681. https://doi.org/10.1016/j.apenergy.2016.09.113 |
Wu, B. S., Zhang, G. Q., Zhang, X., et al., 2017. Semi-Analytical Model for a Geothermal System Considering the Effect of Areal Flow between Dipole Wells on Heat Extraction. Energy, 138: 290–305. https://doi.org/10.1016/j.energy.2017.07.043 |
Xiao, Z. C., Wang, S., Qi, S. H., et al., 2020. Petrogenesis, Tectonic Evolution and Geothermal Implications of Mesozoic Granites in the Huangshadong Geothermal Field, South China. Journal of Earth Science, 31(1): 141–158. https://doi.org/10.1007/s12583-019-1242-9 |
Yasuhara, H., Elsworth, D., Polak, A., 2004. Yasuhara, H, 2004. Evolution of Permeability in a Natural Fracture: Significant Role of Pressure Solution. Journal of Geophysical Research, 109(B3): B03204. https://doi.org/10.1029/2003jb002663 |
Yasuhara, H., Kinoshita, N., Ohfuji, H., et al., 2011. Temporal Alteration of Fracture Permeability in Granite under Hydrothermal Conditions and Its Interpretation by Coupled Chemo-Mechanical Model. Applied Geochemistry, 26(12): 2074–2088. https://doi.org/10.1016/j.apgeochem.2011.07.005 |
Yasuhara, H., Polak, A., Mitani, Y., et al., 2006. Evolution of Fracture Permeability through Fluid-Rock Reaction under Hydrothermal Conditions. Earth and Planetary Science Letters, 244(1/2): 186–200. https://doi.org/10.1016/j.epsl.2006.01.046 |
Zheng, X. H., Duan, C. Y., Xia, B. R., et al., 2019. Hydrogeochemical Modeling of the Shallow Thermal Water Evolution in Yangbajing Geothermal Field, Tibet. Journal of Earth Science, 30(4): 870–878. https://doi.org/10.1007/s12583-016-0918-7 |
Zhong, Z., Elsworth, D., Hu, Y. J., 2016. Evolution of Strength and Permeability in Stressed Fractures with Fluid-Rock Interactions. Pure and Applied Geophysics, 173(2): 525–536. https://doi.org/10.1007/s00024-015-1099-5 |